LSTNet: A Reference-Based Learning Spectral Transformer Network for Spectral Super-Resolution

Debao Yuan, Ling Wu, Huinan Jiang, Bingrui Zhang, Jian Li
2022 Sensors  
Hyperspectral images (HSIs) are data cubes containing rich spectral information, making them beneficial to many Earth observation missions. However, due to the limitations of the associated imaging systems and their sensors, such as the swath width and revisit period, hyperspectral imagery over a large coverage area cannot be acquired in a short amount of time. Spectral super-resolution (SSR) is a method that involves learning the relationship between a multispectral image (MSI) and an HSI,
more » ... d on the overlap region, followed by reconstruction of the HSI by making full use of the large swath width of the MSI, thereby improving its coverage. Much research has been conducted recently to address this issue, but most existing methods mainly learn the prior spectral information from training data, lacking constraints on the resulting spectral fidelity. To address this problem, a novel learning spectral transformer network (LSTNet) is proposed in this paper, utilizing a reference-based learning strategy to transfer the spectral structure knowledge of a reference HSI to create a reasonable reconstruction spectrum. More specifically, a spectral transformer module (STM) and a spectral reconstruction module (SRM) are designed, in order to exploit the prior and reference spectral information. Experimental results demonstrate that the proposed method has the ability to produce high-fidelity reconstructed spectra.
doi:10.3390/s22051978 pmid:35271131 pmcid:PMC8914896 fatcat:sqgidsrk4bhqvfmbmlswgicrja