Boron-Doped Graphene Nanoribbons: Electronic Structure and Raman Fingerprint [component]

unpublished
We investigate the electronic and vibrational properties of bottom-up synthesized aligned armchair graphene nanoribbons of N = 7 carbon atoms width periodically doped by substitutional boron atoms (B-7AGNRs). Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations, we find that the dopant-derived valence and conduction band states are notably hybridized with electronic states of Au substrate and spread in energy. The interaction with the
more » ... leaves the bands with pure carbon character rather unperturbed. This results in an identical effective mass of ∼ 0.2 m 0 for the next highest valence band compared to pristine 7AGNRs. We probe the phonons of B-7AGNRs in situ by Raman spectroscopy and reveal the existence of characteristic splittings and red-shifts of Raman modes due to the presence of substitutional boron atoms. Comparing the Raman spectra for three visible lasers (red, green and blue) we find that interaction with gold suppresses the Raman signal from B-7AGNRs and the energy of a green laser (2.33 eV) is closer to the resonant E 22 transition. The hybridized electronic structure of the B-7AGNR/Au interface is expected to improve electrical characteristics of contacts between graphene nanoribbon and Au. The Raman fingerprint allows easy identification of B-7AGNRs, that is particularly useful for device fabrication.
doi:10.1021/acsnano.8b04125.s001 fatcat:pqbej5xfm5gzzhqzbolbe2nowu