A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
A Deep Gaussian Process-Based Flight Trajectory Prediction Approach and Its Application on Conflict Detection
2020
Algorithms
In this work, a deep Gaussian process (DGP) based framework is proposed to improve the accuracy of predicting flight trajectory in air traffic research, which is further applied to implement a probabilistic conflict detection algorithm. The Gaussian distribution is applied to serve as the probabilistic representation for illustrating the transition patterns of the flight trajectory, based on which a stochastic process is generated to build the temporal correlations among flight positions, i.e.,
doi:10.3390/a13110293
fatcat:67iwwiua65fr7c3doozo5bkvci