Structural Design and Analysis of the Upper Pressure Shell Section of a Composite Crew Module

David W. Sleight, David Paddock, John Hudeck
2008 Earth & Space 2008   unpublished
This paper presents the results of the structural design and analysis of the upper pressure shell section of a carbon composite demonstration structure for the Composite Crew Module (CCM) Project. The project is managed by the NASA Engineering and Safety Center with participants from eight NASA Centers, the Air Force Research Laboratory, and multiple aerospace contractors including ATK/Swales, Northrop Grumman, Lockheed Martin, Collier Research Corporation, Genesis Engineering, and Janicki
more » ... tries. The paper discusses details of the upper pressure shell section design of the CCM and presents the structural analysis results using the HyperSizer ® structural sizing software and the MSC Nastran ® finite element analysis software. The HyperSizer ® results showed that the controlling load case driving most of the sizing in the upper pressure shell section was the internal pressure load case. The regions around the cutouts were controlled by internal pressure and the main parachute load cases. The global finite element analysis results showed that the majority of the elements of the CCM had a positive margin of safety with the exception of a few hot spots around the cutouts. These hot spots are currently being investigated with a more detailed analysis. Local finite element models of the Low Impact Docking System (LIDS) interface ring and the forward bay gussets with greater mesh fidelity were created for local sizing and analysis. The sizing of the LIDS interface ring was driven by the drogue parachute loads, Trans-Lunar Insertion (TLI) loads, and internal pressure. The drogue parachute loads controlled the sizing of the gusset cap on the drogue gusset and TLI loads controlled the sizing of the other five gusset caps. The main parachute loads controlled the sizing of the lower ends of the gusset caps on the main parachute fittings. The results showed that the gusset web/pressure shell and gusset web/gusset cap interfaces bonded using Pi-preform joints had local hot spots in the Pi-preform termination regions. These regions require a detailed three-dimensional analysis, which is currently being performed, to accurately address the load distribution near the Pi-preform termination in the upper and lower gusset caps.
doi:10.1061/40988(323)24 fatcat:qzlt4nwflvgwnaj5holggjsbii