Asymptotic behavior of regularized scattering phases for long range perturbations

Jean-Marc Bouclet
2002 Journées Équations aux dérivées partielles  
We define scattering phases for Schrödinger operators on R d as limit of arguments of relative determinants. These phases can be defined for long range perturbations of the Laplacian and therefore they can replace the usual spectral shift function (SSF) of Birman-Krein's theory, which can be defined for only special short range perturbations (relatively trace class perturbations). We prove the existence of asymptotic expansions for these phases, which generalize results on the SSF.
doi:10.5802/jedp.600 fatcat:ov3j5f6zqnaolo532s6vnwd6im