Smartphone imaging technology and its applications

Vladan Blahnik, Oliver Schindelbeck
2021 Advanced Optical Technologies  
Thanks to their portability, connectivity, and their image performance – which is constantly improving – smartphone cameras (SPCs) have been people's loyal companions for quite a while now. In the past few years, multicamera systems have become well and truly established, alongside 3D acquisition systems such as time-of-flight (ToF) sensors. This article looks at the evolution and status of SPC imaging technology. After a brief assessment of the SPC market and supply chain, the camera system
more » ... optical image formation is described in more detail. Subsequently, the basic requirements and physical limitations of smartphone imaging are examined, and the optical design of state-of-the-art multicameras is reviewed alongside their optical technology and manufacturing process. The evolution of complementary metal oxide semiconductor (CMOS) image sensors and basic image processing is then briefly summarized. Advanced functions such as a zoom, shallow depth-of-field portrait mode, high dynamic range (HDR), and fast focusing are enabled by computational imaging. Optical image stabilization has greatly improved image performance, enabled as it is by built-in sensors such as a gyroscope and accelerometer. Finally, SPCs' connection interface with telescopes, microscopes, and other auxiliary optical systems is reviewed.
doi:10.1515/aot-2021-0023 fatcat:sr4hssk7zbbuhhj532mqngh424