Fourier-reflexive partitions and MacWilliams identities for additive codes

Heide Gluesing-Luerssen
<span title="2014-02-22">2014</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="" style="color: black;">Designs, Codes and Cryptography</a> </i> &nbsp;
A partition of a finite abelian group gives rise to a dual partition on the character group via the Fourier transform. Properties of the dual partitions are investigated and a convenient test is given for the case that the bidual partition coincides the primal partition. Such partitions permit MacWilliams identities for the partition enumerators of additive codes. It is shown that dualization commutes with taking products and symmetrized products of partitions on cartesian powers of the given
more &raquo; ... oup. After translating the results to Frobenius rings, which are identified with their character module, the approach is applied to partitions that arise from poset structures.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1007/s10623-014-9940-x</a> <a target="_blank" rel="external noopener" href="">fatcat:xhd2hohd2nev5jme6mloj5rxjm</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a>