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We propose a method of iterative phase retrieval that uses measured intensities in the diffraction
plane to solve the phase problem in a way that bypasses the problem of lens aberration, leading to
greatly improved spatial resolution. This method is stable, easy to implement experimentally, and
can be used to view a large area of the specimen when that is desired. ©2004 American Institute
of Physics. [DOI: 10.1063/1.1823034]

Short wavelength transmission microscopy(electron and
x-ray) may well be revolutionized by recent advances in dif-
fractive imaging. If we dispose of the lens, but instead ar-
range for the object to be small, then the diffracted intensity
in the far-field can be used to solve for the phase of the
scattered radiation via iterative methods.1–5 In this way, reso-
lution is no longer limited by the transfer function of the
lens. Unfortunately, the requirement of an isolated object
function is hard to arrange experimentally. In this letter we
consider the scattering geometry shown in Fig. 1. Part of an
extended object is illuminated by a substantially confined
illumination function, formed using a poor or aberrated lens.
We model specifically a defocused beam crossover(i.e., a
probe) as might be found in a scanning transmission electron
microscope(STEM). Under these conditions, we have found
that conventional iterative methods do not work, because
curved wave fronts incident upon on the object lead to an
ambiguity in the defocus value of the reconstruction.

The geometry in Fig. 1 has the key advantage that the
illumination (or object) can be moved laterally to many po-
sitions, and so we can record diffraction patterns that contain
varying sets of information about the object. This shifting
process itself leads to a solution of the diffraction phase
problem using a method called ptychography.6,7 This letter
presents an iterative method for solving for the object func-
tion at high resolution(predicated by the angular size of the
detector) using only a few diffraction patterns, recorded with
the illumination beam in overlapping positions. The algo-
rithm can be extended to any number of probe positions,
which can span a very large field of view, and can be updated
in real time. In this way, the lens is used merely to define a
current area of interest in the object, whereas the high reso-
lution data are being extracted from the diffraction plane.
The method is therefore a hybrid of low-resolution scanning
imaging and very high resolution diffractive imaging. The
algorithm is applicable to solving a number of different
phase retrieval problems where a known multiplicative func-
tion can be moved relative to an unknown function of inter-
est.

We now describe the phase retrieval algorithm. LetOsr d
andPsr d represent two-dimensional complex functions.Osr d
is the transmission function of the specimen.Psr d is the il-
lumination function, which in this case is the complex STEM
probe at the entry surface of the specimen. We assume that

Osr d or Psr d can be moved relative to one another by various
distancesR. We refer herein to movingPsr d, althoughOsr d
can equally well be moved.

We now form the product ofOsr d with Psr −Rd to pro-
duce the exit wave function ofcsr d, i.e.,

csr ,Rd = Osr dPsr − Rd. s1d

This will generally be accurate for a thin object.
The algorithm works to find the phase and modulus of

the complex functionOsr d. It assumes knowledge of the
function Psr −Rd. In some situations this will be known to
high accuracy already, because the parameters that effect the
formation of the incident beam are known. In other situations
it will be necessary to determine the phase of the beam using
methods such as the iterative through focal series algorithm,8

or to use some other method of accurately characterizing the
incident probe. If the incident beam is inaccurately known,
the phase retrieval algorithm will still work effectively,
though with a less accurate end result.9

Several measurements of the intensity of the wave func-
tion in some plane other than that containing the specimen
are also required. We usually use the diffraction plane, which
is related to the specimen plane by the Fourier transform. In
that case the measured input data are the intensities of the
diffraction patterns at the different probe positions. Using
diffraction data has several advantages, including ease of
collection, no requirement for focusing the exit wave func-
tion into an image, and the increase of resolution achieved by
measuring data at high angles. In this letter we will therefore
use the Fourier example. However it is important to note that
the algorithm is not restricted to use of the Fourier transform.
One of many possible alternative transforms is the Fresnel
propagator.

The algorithm proceeds as follows.

a)Electronic mail: h.faulkner@sheffield.ac.uk FIG. 1. STEM probe incident onto a specimen.
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(1) Start with a guess at the object functionOg,nsr d,
where the subscriptg,n represents a guessed function at the
nth iteration of the algorithm. This function is in real space.

(2) Multiply the current guess at the object function by
the illumination function at the current positionR, Psr −Rd.
This produces the guessed exit wave function for positionR,

cg,nsr ,Rd = Og,nsr dPsr − Rd. s2d

(3) Transform cg,nsr ,Rd to obtain the corresponding
wave function in the diffraction space plane, for that position
R,

Cg,nsk,Rd = Ffcg,nsr ,Rdg. s3d

k is the usual reciprocal space coordinate. It is important to
note thatCg,nsk ,Rd is a “guessed” version of the actual
wave function in diffraction space, since it has been pro-
duced by the guessed object functionOg,nsr d. Successive it-
erations of the algorithm will produce increasingly accurate
versions ofCg,nsk ,Rd. We can of course writeCg,nsk ,Rd as

Cg,nsk,Rd = uCg,nsk,Rdueiug,nsk,Rd, s4d

where uCg,nsk ,Rdu is the (guessed—probably incorrect)
wave function amplitude andug,nsk ,Rd is the (guessed—
probably incorrect) phase in diffraction space at iterationn,
for positionR.

(4) Correct the intensities of the guessed diffraction
space wave function to the known values,

Cc,nsk,Rd = uCsk,Rdueiug,nsk,Rd, s5d

whereuCsk ,Rdu is the known diffraction space modulus.
(5) Inverse transform back to real space to obtain a new

and improved guess at the exit wave function

cc,nsr ,Rd = F−1fCc,nsk,Rdg. s6d

(6) Update the guessed object wave function in the area
covered by the aperture or probe, using the update function

Og,n+1sr d = Og,nsr d +
uPsr − Rdu

uPmaxsr − Rdu
P * sr − Rd

suPsr − Rdu2 + ad

3 bscc,nsr ,Rd − cg,nsr ,Rdd, s7d

where the parametersb anda are appropriately chosen, and
uPmaxsr −Rdu is the maximum value of the amplitude ofPsr d.

(7) Move to the next positionR, for which the illumina-
tion in part overlaps that of a previous position.

(8) Repeat(2)–(7) until the sum squared error(SSE) is
sufficiently small. The SSE is measured in the diffraction
plane as

SSE =
suCsk,Rdu2 − uCg,nsk,Rdu2d2

N
, s8d

whereN is the number of pixels in the array representing the
wave function.

The update function used in step(6) is crucial to the
success of the algorithm, since it makes the effective decon-
volution that occurs possible. The valuea is used to prevent
a divide-by-zero occurring ifuPsr −Rdu=0. This is effectively
a Wiener filter. The constantb controls the amount of feed-
back in the algorithm, and may be varied between roughly
0.5 and 1. Lower values ofb increase the importance of the

newest estimate of the object function, whereas higher values
increase the importance of the previous estimate. The expres-
sion

uPsr − Rdu
uPmaxsr − Rdu

s9d

maximizes the effect of regions whereuPsr −Rdu is large. The
function favors the influence of those areas of the specimen
which have been strongly illuminated and attenuates the high
errors which otherwise arise where the illumination was
weak.

The algorithm clearly works in a similar way to other
iterative phase retrieval algorithms. For the situation where
b=1, anda=0, and the functionPsr −Rd is a mask, or sup-
port function, the algorithm is very similar to the well-known
Fienup algorithm. If in this situation, only one positionR is
used, then the algorithm reduces to being mathematically
identical to the basic Fienup algorithm. However where more
than one positionR is used, the algorithm has considerable
advantages over the Fienup method, including the fact that it
does not suffer from problems with uniqueness, since the use
of multiple probe positions effectively breaks the symmetry,
which can result in a nonunique solution. Another advantage
is that a wider field of view may be imaged. The end reso-
lution achieved by the algorithm will depend on the sampling
frequency in diffraction space. In cases where the diffraction

FIG. 2. Simulation of new phase retrieval method for STEM.
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patterns may be measured to high angles, the algorithm will
achieve higher resolution results than algorithms which de-
pend on the use of images.

We have found that the algorithm works for a large va-
riety of simulated objects. As an example, Fig. 2 shows the
result of a simulated phase retrieval using the moving beam
algorithm. The object transmission function phase[Fig. 2(a)]
and intensity[Fig. 2(b)] are two unrelated data sets, creating
a difficult problem where a complicated complex wave func-
tion must be retrieved. The STEM probe used is shown in
Figs. 2(c) and 2(d). The probe was moved to four different
positions, which together cover the input data in the region
highlighted in Fig. 2(e), which is therefore the region we
expect to be recovered accurately. At each position, a diffrac-
tion pattern such as that shown in Fig. 2(f) is produced. The
bright disc seen is an electron Ronchigram, caused by the
illuminating aperture of the lens. These diffraction patterns
form the input data for the algorithm.

The algorithm was run using the parametersb=1 and
a=0.0001. After 200 iterations the object was retrieved as
shown in Figs. 2(g) and 2(h), with a SSE of 1.105310−5.
Clearly, the phase and intensity have been recovered accu-
rately in the region covered by the four probe positions. The
rest of the object has been recovered less well, especially in
the intensity, as is expected since the probe positions used do
not cover that region.

In conclusion, we have defined and demonstrated an al-
gorithm for phase retrieval that relies only on measurements

taken in diffraction space, and which is successful when the
incident wave field is highly curved. In this letter we have
not commented on the effect of noise and other errors on the
data, although initial tests imply that the algorithm is robust
in most situations. More detailed calculations will be pre-
sented elsewhere. The main benefit of the method is that the
range of possible experimental implementations is large. By
allowing the use of a moving illumination function, instead
of a well-defined support, iterative methods can be applied to
extended to objects, yet still achieve wavelength-limited
resolution.
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