PVDF/PVDF-TrFE BLENDS LOADED WITH BATIO3: From processing to performance testing

Martin CVEK, Miroslav MRLÍK, Josef OSIČKA, Danila GORGOL, Pavel TOFEL
2021 NANOCON 2021 Conference Proeedings   unpublished
Concerns surrounding the limited supply of fossil fuels have been the subject of much debate. As of promising solutions, polymers like poly(vinylidene fluoride) (PVDF) have gained attention due to their ability to generate electrical energy from the waste mechanical vibrations. The energy harvesting and vibration sensing potential of PVDF is however limited due to its low content of electroactive β-phase, which has to be increased by indirect post-processing. Recently, a synergistic effect was
more » ... ound in PVDF directly blended with its trifluoroethylene copolymer (PVDF-TrFE) due to strong interfacial polarization. In this study, we aim to further increment the piezoelectric performance of PVDF/PVDF-TrFE blends by incorporating a small amount of BaTiO3 nanocrystals via a facile and scalable processing route. The β-phase content was monitored using FTIR and XRD. Melt rheology experiments showed that co-blending of PVDF-TrFE as well as the addition of BaTiO3 slightly increased melt viscosity and complex modulus. Despite that, rheological data suggested that developed formulations can be processed by conventional techniques intended for a large-scale production. More importantly, PVDF/PVDF-TrFE binary blends supplemented with BaTiO3 are expected to exhibit superior d33 compared to conventional neat blends, which could make them highly promising for modern energy harvesting and sensor-related applications.
doi:10.37904/nanocon.2021.4327 fatcat:gmrqbgqahzhjpiiiua7bmtzzbi