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Abstract

Esophageal cancer is the sixth leading cause of death from
cancer and one of the least studied cancers worldwide. The
global microRNA expression profile of esophageal cancer has
not been reported previously. Here, for the first time, we have
investigated expressed microRNAs in cryopreserved esopha-
geal cancer tissues using advanced microRNA microarray
techniques. Our microarray analyses identified seven micro-
RNAs that could distinguish malignant esophageal cancer
lesions from adjacent normal tissues. Some microRNAs could
be correlated with the different clinicopathologic classifica-
tions. High expression of hsa-miR-103/107 correlated with
poor survival by univariate analysis as well as by multivariate
analysis. These results indicate that microRNA expression
profiles are important diagnostic and prognostic markers of
esophageal cancer, which might be analyzed simply using
economical approaches such as reverse transcription-PCR.
[Cancer Res 2008;68(1):26–34]

Introduction

Human esophageal cancer occurs worldwide with a variable
geographic distribution and ranks eighth in order of occurrence
and sixth as the leading cause of cancer mortality, affecting men
more than women (1). A 20-fold variation is observed in its
incidence between low-risk western Africa and high-risk northern
China where it exceeds 100 in 100,000 individuals. It has two main
forms, each with distinct etiologic and pathologic characteristics,
esophageal squamous cell carcinoma (ESCC) and adenocarcinoma.
ESCC is the most frequent subtype of esophageal cancer, although
the incidence of adenocarcinoma in the western world is increasing
faster than other esophageal malignancies. At diagnosis, nearly
50% of patients have cancer that extends beyond the primary
locoregional confines, and f75% of patients requiring surgery have
proximal lymph node metastases. Although tumor-node-metastasis
(TNM) classification allows diagnosis of the tumor, it provides little
therapeutic biological information, such as the metastatic potential

or the sensitivity or resistance of the tumor to radiotherapy and
chemotherapy. There is an urgent need for accurate prognostic
indicators to distinguish high-risk patients from other patients, so
that optimal treatments can be designed. Research over the last
20 years has identified a number of oncogenic and tumor-suppressor
proteins that are associated with induction of ESCC (2–8), yet
molecular indicators of the origin of cellular deregulation in ESCC
have not been identified.

MicroRNAs (miRNAs) are a species of small noncoding single-
stranded RNA of about 21 to 23 nucleotides that through partial
sequence homology may interact with the 3¶-untranslated region of
target mRNA molecules (9). Growing evidence has indicated
important roles for different miRNA species in the development
of different cancers (10–17). Recently, genome-wide expression of
miRNAs has been able to be examined by microarray (18–23) and
on a more limited miRNA set by microbead hybridization (24) or
reverse transcription-PCR (RT-PCR; ref 25). These miRNA expres-
sion studies have confirmed the initially observed deregulation of
individual miRNAs and have identified changes in the pattern of
expression of a large number of miRNAs in individual cancers.
Notwithstanding the keen interest in miRNA expression in cancers,
the global expression of miRNA in human esophageal cancer has
not been determined previously.

Extensive collections of archived tissue biopsies and paired
samples exist in hospital laboratories and biobanks, frequently
with extensive clinicopathologic information and disease out-
comes. However, archived samples may have a variable quality
of preserved biomolecules, often displaying poor RNA preser-
vation (26). Despite these constraints, the development of
methods to investigate stored samples has proved essential as
molecular analysis can provide initial indications of altered
biochemical pathways and provide biomarkers that correlate
with patient survival and other clinical variables and, thus, aid
the diagnosis of cancer and the prognosis for management of
the disease (27, 28).

Here, we present the results of a genome-wide miRNA
expression profiling in paired sets of frozen archival tissues from
the esophageal tumors and corresponding adjacent normal tissues.
We observed unique miRNA expression signatures that could
distinguish malignant from adjacent normal esophageal tissues.
We found that the expression of particular miRNAs was altered in
human esophageal cancer and determined that particular miRNA
profiles correlate closely with patient survival and with several
clinicopathologic indicators. We have also compared the miRNA
profiles of the stored tissues to a set of fresh tissues and could
show a similarity in the miRNA profiles of archival and fresh
materials.

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).
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Materials and Methods

Patients and samples. Thirty-one pairs of primary esophageal

squamous cell cancer tissues and corresponding adjacent normal
esophageal tissues were used as a training group. These specimens were

obtained from patients in the Cancer Institute and Hospital, Chinese

Academy of Medical Sciences (CAMS) from 1999 to 2001 with informed

consent and agreement. All tissue samples were from untreated patients
undergoing surgery and were snap frozen in liquid nitrogen and stored

(minimum of 5 years) at �80jC until the extraction of RNA. A second

independent set of fresh tissues from 24 paired samples and 1 unpaired
cancer sample was used as an independent validation data set, collected

from the same hospital in 2006, and stored for <6 months. Samples from a

further 22 cases of ESCC with follow-up information (minimum of 5 years)

were used for an independent validation of survival analysis. Peripheral
portions of the resected esophageal samples were paraffin embedded,

sectioned, and H&E stained using routine methods. The tumor cell

concentrations were evaluated, and the tumor histology was independently

confirmed by two pathologists. Follow-up information was extracted from
the follow-up registry of the Cancer Institute and Hospital, CAMS. For all

the samples, clinicopathologic information (age, gender, pathology,

differentiation, TNM classification, tumor stage, and survival time after

surgery) was available. The study was approved by the medical ethics
committee of Cancer Institute and Hospital, CAMS.

Fabrication of the miRNA microarray. Altogether, 509 mature miRNA

sequences were assembled and integrated into our miRNA microarray
design. These comprised 435 human miRNAs including a further 122

predicted miRNA sequences from published references (29) and some 196

rat and 261 mouse mature miRNAs from the miRNA Registry.7 In addition,

we designed eight short oligonucleotides that possessed no homology to
any known RNA sequence and generated their corresponding synthetic

miRNAs by in vitro transcription using the Ambion miRNA Probe

Construction kit (Cat. No.1550). Various amounts of these synthetic

miRNAs were added into the human miRNA samples before analysis to
act as external controls.

All of the miRNA probe sequences was designed to be fully

complementary to their cognate mature miRNA. To facilitate probe
immobilization onto the aldehyde-modified surface of the glass slides

(CapitalBio), the probe sequences were concatenated up to a length of 40 nt

(3¶-end miRNA probe plus 5¶-end polyT) and attached to the activated slide

surface via a C6 5¶-amino-modifier. Oligonucleotide probes were synthe-
sized at MWG Biotech and dissolved in EasyArray spotting solution

(CapitalBio) at a concentration of 40 Amol/L. Each probe was printed in

triplicate using a SmartArray-136 microarrayer (CapitalBio).

Labeling of target RNAs. Total RNA was extracted with TRIZOL reagent
(Invitrogen), and the low-molecular-weight RNA was isolated using a PEG

solution precipitation method (30). The low-molecular-weight RNA was

labeled using the T4 RNA ligase labeling method described by Thomson
et al. (19). In brief, 4 Ag of low-molecular-weight RNA were labeled with

500 ng of 5¶-phosphate-cytidyl-uridyl-cy3-3¶ (Dharmacon) with 2 units of T4

RNA ligase (New England Biolabs). The labeling reaction was performed at

4jC for 2 h. Labeled RNA was precipitated with 0.3 mol/L sodium acetate
and 2.5 volumes ethanol, and after washing with ethanol and drying, it was

resuspended in 15 AL of hybridization buffer containing 3 � SSC, 0.2% SDS,

and 15% formamide.

Slide hybridization. Hybridization was performed at 42jC under
LifterSlip (Erie) in a hybridization cassette which was placed in a three-

dimensional–tilting agitator BioMixer II (CapitalBio) to provide continuous

mixing of the hybridization buffer and more uniform hybridization across

the entire slide surface, preventing edge effects and giving improved signal
intensity. The efficiency of these measures has been shown previously in

genome-wide mRNA expression profiling studies (31). The array was then

washed with two consecutive washing solutions of 0.2% SDS, 2 � SSC at
42jC for 5 min, and 0.2% SSC for 5 min at room temperature. Arrays were

scanned with a LuxScan 10K-A laser confocal scanner, and the images
obtained were then analyzed using LuxScan 3.0 software (both from

CapitalBio).

Computational analysis. For all samples, after average values of the

replicate spots of each miRNA were background subtracted, faint spots
were filtered out if the expression signal was <800. Signals were normalized

using the median center tool for genes in the Cluster 3.0 software before

performing the unsupervised clustering with complete linkage and

uncentered Pearson correlation to reveal the underlying structure of the
miRNA expression (32). Differentially expressed miRNAs were identified by

significance analysis of microarrays (SAM; ref. 33).8 We progressively

eliminated the miRNA with the lowest score(d) deduced by SAM (in the

previous cycle) and used the remaining miRNAs to build a model and
estimate its accuracy, until all miRNAs were eliminated. The miRNA set

with highest accuracy was considered as the sufficient minimum marker

set. To establish a classifier, we used seven strategies for dimensionality
reduction [no extraction; first and second; first and third; first, second, and

third components by principal component analysis (PCA); first and second;

first and third; first, second, and third components by partial least squares

method analyses; ref. 34] and six strategies for model building [linear
support vector machine (SVM), one neighbor k-nearest neighbors (KNN),

three neighbors KNN, five neighbors KNN, linear discriminate analysis, and

quadratic discriminate analysis; ref. 35]. The 632 Bootstrap method was

used to estimate the accuracy of each predicted model for the original
training set (31 paired samples) by using random resampling with

replacement >1,000 independent analyses (36). The accuracy was calculated

using the formula, accboot ¼ 1
n
f
i ¼ 1

n

ð0:368� accitrain þ 0:632� accitestÞ, where

n is the number of repeats, acctrain is the i-th experiment train accuracy
and acctrain

i is the i-th experiment test accuracy.

The most significant predicted miRNA targets were analyzed by using

four publicly available algorithms, i.e., miRBase,9 MIRANDA,10 TARGETS-

CAN,11 and PICTAR.12 To reduce the number of false positives, only putative
target genes predicted by at least three of the programs were accepted.

Patient survival curves were estimated by the Kaplan-Meier method. The

joint effect of covariables was examined by using the Cox proportional

hazard regression model. The gene functions were annotated by using the
Gene Ontology, Biocarta, KEGG, and GenMAPP databases. All miRNA

expression data have been submitted to the Gene Expression Omnibus13

with the series accession number GSE 6188.

Quantitative RT-PCR analysis. For verification of miRNA expression
profiles, total cellular RNAs were subjected to quantitative RT-PCR (qRT-

PCR) with microRNA specific primers. Reverse transcriptase reactions

contained 2.5 ng/AL total RNA, 25 nmol/L stem-loop reverse transcription
(RT) primer, 1� RT buffer, 0.25 mmol/L each of deoxynucleotide

triphosphates, 200 units M-MLV reverse transcriptase, and 0.25 units/mL

RNase inhibitor (Invitrogen). The 7.5-AL reactions were incubated in an MJ

Research PTC-225 Thermocycler for 30 min at 16jC, 30 min at 42jC, 5 min
at 85jC, and then held at 4jC. All reverse transcriptase reactions, including

no-template controls, were run in duplicate. qRT-PCRs were performed as

previously described (25) with the following modifications. A FastStart DNA

Master SYBR green I kit and a LightCycler (both from Roche Diagnostics)
were used, following the manufacturer’s protocols. The 10-AL PCR reaction

contained 1 AL RT product, 1� PCR Master Mix, 15 nmol/L forward primer,

and 15 nmol/L reverse primer. The reactions were incubated at 95jC for
10 min, followed by 40 cycles of 95jC for 15 s, 60jC for 35 s, and 72jC for

3 s. All quantitative PCR reactions, including no-template controls, were

performed in triplicate. The relative expression ratios of miRNAs were

determined with the crossing point as the cycle number. The highly
conserved and universally expressed small nRNA U6 was used as an

7 http://microrna.sanger.ac.uk, miRBase release 7.0, accessed Sept. 2005.

8 http://www-stat.stanford.edu/~tibs/SAM/index.html
9 http://microrna.sanger.ac.uk/sequences/
10 http://www.microrna.org/
11 http://www.targetscan.org/
12 http://pictar.bio.nyu.edu/
13 http://www.ncbi.nlm.nih.gov/geo
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endogenous control in the qRT-PCR. The results were analyzed using

LightCycler software version 3.5 (Roche Diagnostics). The qRT-PCR

amplification products were analyzed by melting curve analysis and

confirmed by agarose gel electrophoresis.

Results

Altered miRNA expression in esophageal cancers and the
identification of miRNAs associated with clinical features and
disease progression. We analyzed the miRNA expression in 31
pairs of esophageal cancers and their corresponding adjacent
normal tissues collected a minimum of 5 cm from the tumor. These
tissues were initially snap frozen in liquid nitrogen and then stored

frozen at �80jC for a minimum of 5 years until analysis. It was
observed by formaldehyde gel electrophoresis analysis that the
total RNA extracted from the cryoarchive-preserved tissues was
extensively degraded, whereas the total RNA extracted from fresh
tissues showed no such degradation. The expression signals of
miRNAs from the fresh and archival tissues were compared and
found to have nearly identical signal profiles (data not shown). We
initially compared the expression intensity of the 191 miRNAs with
signals detected above our defined signal threshold from all frozen
samples. Comparison between all individual cancers and adjacent
normal samples by complete linkage and uncentered Pearson
correlation generated a hierarchical clustering of the samples on

Figure 1. Unsupervised hierarchical clustering of miRNA expression. miRNA profiles of 31 paired samples from esophagus tissues were clustered using Cluster 3.0.
The 31 paired samples are in columns and the 191 miRNAs are in rows. C, cancerous tissue; P, adjacent normal tissue. Nearly all cancerous and adjacent normal
tissues were separated into two groups, except for C212086, P206219, P211526, P204939, P212623, and P192884. The samples labeled with # were wrongly
classified pathologically.
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the basis of similarity in the expression of any pairs of sample
(Fig. 1). This initial unsupervised clustering successfully separated
the 62 samples of cancerous tissues and adjacent normal tissues
into 2 discrete groups, with the exception of 1 cancer sample and
5 adjacent normal samples.

Next, we asked whether the microarray data revealed specific
molecular signatures for subsets of ESCC that differ in clinico-
pathologic classifications. We compared the miRNA expression of
seven group pairs, including age, gender, gross pathologic
classification, differentiation classification, different tumor stage
classifications, and the entire cohort of pairs, as listed in Table 1.
We used methods based on SAM tools for the two analyses, the first
based directly on the miRNA signal strength in cancer tissues and
the second on the ratio of the miRNA signals of cancer tissues
versus paired adjacent normal tissues. Typically, many more
miRNA genes were identified by direct signal strength than by
ratio, yet several miRNAs were identified by both methods, with
five miRNAs (hsa-miR-335, hsa-miR-181d, hsa-miR-25, hsa-miR-7,
and hsa-miR-495) correlating with gross pathologic classification
( fungating versus medullary) and two miRNAs (hsa-miR-25 and
hsa-miR-130b) correlating with differentiation classification (high
versus middle versus low). Tobacco and alcohol consumption are
very strong risk factors for ESCC (37), yet when we compared the
miRNA expression of pair groups, we found no miRNA related with
either of these risk factors. Similarly, no miRNA expression
correlated with age classification in our data set.
Establishment of a classifier to distinguish malignant

esophageal tissues from normal tissues. First, 46 miRNAs were

chosen from the training data (31 paired samples) by SAM with
false discovery rate (FDR) is equals to 0. Subsequently, two steps
were used to create a model: feature extraction and model building.
As described in Materials and Methods, seven component-
extraction strategies and six model-building methods were used.
In total, 42 strategies were used to analyze the 46 miRNAs, and the
best result of 96.97% was observed when the PCA1,3-SVM strategy
was used with a set of 7 miRNAs with the highest scored values
(Fig. 2A), providing the definition of a classifier. Among the seven
miRNAs, three miRNAs (hsa-miR-25, hsa-miR-424, and hsa-
miR-151) showed up-regulation and four miRNAs (hsa-miR-100,
hsa-miR-99a, hsa-miR-29c, and mmu-miR-140*) showed reduction
in cancer versus normal tissue. After establishing the classifier, we
used this model to assess the original training set (31 paired
samples) along with an independent validation cohort (24 paired
fresh samples and 1 unpaired fresh cancer sample) to confirm this
modeling strategy. These analyses resulted in an accuracy of 98.38%
with one misclassified sample in the original training set and an
accuracy of 93.89% with a misclassification of three samples in the
validation cohort (Fig. 2B). Overall, the results indicate that our
strategy of model building was efficient and could readily
distinguish malignant from normal esophageal tissues with as
few as seven markers.
Correlation between miRNA expression profiles and prog-

nosis of esophageal cancer patients. The median miRNA
intensity value of the initial set of 31 patient samples (training
cohort) was used as the cut-point in Kaplan-Meier survival analysis.
The two mature forms of hsa-miR-103 and hsa-miR-107 are nearly

Table 1. Comparative analysis of clinicopathologic classifications

Classification (number) miRNA selection based

on signal strength*

miRNA selection based on

signal ratio of cancer/normal
c

FDR

Age classification

Age < 49 (4) versus 49 V Age z 67 (20)

versus Age > 67 (7)

0 0 0

Gender classification

Male (23) versus female (8) 4 (hsa-miR-20a, -106a, 17.5p, 19b) 0 0

Gross pathologic classification

Fungating (6) versus medullary (22) 28 (hsa-miR-375, 188, 95, 451, 7 , 200a, 429,
141, 19b, 19a, 495 , 10b, 148a, 15a, 335 ,

130b, 25 , 186, 181c, 181d , 491, and 146a;

hsa-let-7i, predicted-mir88, 112, and 206;
rno-miR-7 and mmu-miR-291.5p)

5 (hsa-miR-335, 181d, 25, 7 , and 495) 0

Differentiation classification

High (10) versus middle (15) versus low (5) 5 (hsa-miR-335, 25, 130b , 130a, 10a) 3 (hsa-miR-25, 130b , 181d,) 0

Tumor stage (T) classification
T1 (2) versus T2 (3) versus T3 (26) 0 1 (predicted miR-144) 0

Tumor stage (N) classification

N0 (16) versus N1 (15) 13 (hsa-miR-199a*, 199a, 29b, 365, 146b, 155,

193a, 126, 23a, 195, 29a, 1, and 125a)

1 (has-miR-92) 0

Tumor stage (TNM) classification

I (2) versus II (18) versus III (11) 23 (hsa-miR-146b, 193a, 130a, 106b, 142.5p, 19b,

30d, 30a.5p, 320, 195, 28, 125, 1, 26a, 126,
30c, 30b, 26b, and 23b; hsa-let-7a and 7d)

2 (predicted-mir144; rno-miR-347) 0.16/0

NOTE: The miRNAs selected by both methods are italicized.

*Each miRNA was selected based on miRNA signal strength in cancer tissues.
cmiRNA selection based on signal ratio of cancer/normal: Each miRNA was selected based on the ratio of the miRNA signal in cancer tissues versus the
signal in paired adjacent normal tissues.
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identical. The high similarity of the signals detected for both
miRNAs is strongly suggestive of cross detection. For analysis
purposes, they are treated here as a composite of both miRNAs.
Here, hsa-miR-103/107 showed a strong correlation between low
expression and high overall survival period (Fig. 3A). An additional
22 cases (test cohort) were analyzed for independent validation
(Fig. 3B). The difference in the overall survival was statistically
significant for hsa-miR-103/107 (P = 0.013, for training cohort;

P = 0.041, for test cohort; log-rank test). Kaplan-Meier survival
analysis of the disease-free survival of patients in the training
cohort gave a similar result (Supplementary Fig. S1). The disease-
free survival analysis in the test cohort was not performed,
because the disease-free information for most of these new cases
was not available. Univariate Cox analysis in training and test
cohorts (Supplementary Table S1) and in all 52 investigated
patients (training set plus test set) with hsa-miR-103/107 and

Figure 3. Kaplan-Meier overall survival curves for esophageal cancer patients. The survival curves are shown for patient samples from the training cohort (A ) and the
test cohort (B). Low expression of hsa-miR-103/107 correlated with a high overall survival rate and high expression correlated with a low overall survival rate.

Figure 2. Establishment of a classifier to distinguish malignant esophageal tissues from normal tissues. A, estimated classifier accuracy versus number of miRNAs
for different modeling strategies. A total of 42 combined strategies were performed, including some 7 strategies for feature extraction and 6 strategies for model
building. The best result was gained by PCA1, 3-SVM (dimensionality reduction using first and third component by PCA, model building using SVM) and is indicated in
red. B, PCA1, 3-SVM analysis. Black line, hyper plane built by SVM. Red symbols, cancer samples; blue symbols, adjacent normal samples. Dot points, training data
set (31 paired long-preserved samples); crosses, represent the independent test data (24 paired fresh samples and 1 unpaired fresh cancer sample). One cancer
sample was misclassified in the training data and three adjacent normal samples were misclassified in the test data. Training sample C212086 displayed significant
error (circled dot ) in the training data.

Cancer Research
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clinicopathologic factors (age, gender, tobacco, alcohol, T, N, and
TNM) revealed prognostic significance for N, TNM, and hsa-miR-
103/107. These three significant variables (P < 0.05) were further
entered into a multivariate Cox model, which indicated that both
high hsa-miR-103/107 expression (P = 0.047) and TNM (P = 0.002)
were strongly associated with a poor patient outcome (Table 2).
Validation of microarray data by quantitative RT-PCR

analysis. Our oligonucleotide microarray-based miRNA detection
platform was constructed by CapitalBio, and we undertook miRNA
expression analysis according to their instructions. Several previous
in depth comparative studies between microarray platforms and
analysis procedures have indicated the very high reproducibility,
sensitivity, and specificity of similar expression microarrays using
their recommended procedures (38, 39). Further validation of the
hsa-miR-103/107 expression trends were determined by quantita-
tive RT-PCR in 11 cases. The miRNAs were found to have the same
expression trends as seen by microarray analysis, with a reasonable
correlation between the quantities of the transcripts measured by
both microarray and quantitative RT-PCR analysis methods
(Supplementary Fig. S2).

Discussion

Although a number of different microarray platforms have been
developed for the quantitative assay of miRNA expression (18–23),
we used a newly designed microarray platform specific for the
analysis of the expression of some 509 mammalian miRNAs. The
platform and assay are similar in many respect to other spotted
oligonucleotide microarray designs (19) but have several important
differences in application. A modified spotting buffer and an
advanced hybridization system were used in this study. These
measures have both previously shown large improvements in the
local signal intensity and global signal uniformity as well as
elimination of the doughnut spots commonly seen on spotted
oligonucleotide arrays. These improvements are believed to be due
to better blocking of the slide surface chemistry (31). A detailed
assessment of the quality control and reproducibility of this new
miRNA microarray platform has been published recently (40).

Recently, Nelson and colleagues (20) reported the first analysis of
miRNA from formalin-preserved paraffin-embedded tissues by use
of a RNA-primed, array-based Klenow enzyme assay, allowing for

analysis from archival human tissue with known clinical and
pathologic information. Here, we report the analysis of miRNA
from frozen esophageal tissues that have been preserved for
>5 years. It was notable that the RNA moieties (total RNA)
extracted from the cryoarchive-preserved tissues stored for such
long periods of time were extensively degraded (evidencing periods
of nonideal preservation), whereas total RNA extracted from fresh
tissues showed no such degradation. Although such nonideal tissue
preservation is not lauded, obtaining intact clinical tissues from
archives is a problem that has been noted previously (26).
Nonetheless, our analysis of these tissues indicated that the short
miRNA species were relatively stable during this cryostorage,
compared with long mRNA and rRNA molecules. Further
independent validation has also revealed the miRNA expression
correlation coefficient (R2 value) among fresh intact RNA and
extensively degraded total RNA preparations was at least 0.924
after examining total RNA extracted from HepG2 and HEK293 cell
lines and mouse liver tissue (data not shown). It is important to be
able to perform accurate and informative analysis long after the
patient surgery, as both survival time and other clinical data have
accumulated, allowing prognostic analysis, and new resections
from potentially recurrent conditions can also be compared with
initially preserved tissues. The clinical information allowed us
post hoc to analyze the potential influence of each miRNA on the
disease prognosis of the cancer patient. Here, low expression of
hsa-miR-103/107 was found to correlate strongly with long overall
patient survival periods, and thus, these miRNAs might constitute a
useful diagnostic tool or a potential drug target for esophageal
cancer management.

Several other recent studies have reported the relevance of
particular miRNAs to the progression of particular tumors. Calin
et al. (27) reported that a unique 13-miRNA expression signature
(hsa-miR-15a, hsa-miR-195, hsa-miR-221, miR-23b, miR-155, miR-
223, miR-29a-2, miR-24-1, miR-29b-2, miR-146, miR-16-1, miR-16-2,
and miR-29c) was a prognostic indicator of chronic lymphocytic
leukemia. Yanaihara et al. (28) found that expression levels of the
five miRNAs (hsa-mir-155, hsa-mir-17-3p, hsa-mir-let-7a-2, hsa-mir-
145, and hsa-mir-21) were statistically altered in lung cancers, and
these also had a prognostic effect on patient survival. Roldo et al.
(41) showed that the expression of has-miR-103 and has-miR-107
and lack of expression of has-miR-155 could discriminate

Table 2. Postoperative survival of patients with ESCC in relation to clinicopathologic characteristics and miRNA expression
analyzed by the Cox proportional hazard regression model in all 52 cases

Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P Hazard ratio (95% CI) P

Gender Male/female 1.473 (0.438–4.960) 0.532

Age f49f67f 1.106 (0.581–2.106) 0.760
Tobacco Y/N 1.599 (0.634–4.033) 0.320

Alcohol Y/N 1.293 (0.578–2.899) 0.532

T T1/T2/T3 1.917 (0.836–4.396) 0.124

N N1/N0 5.015 (2.126–11.826) <0.001 1.235 (0.245–6.219) 0.798
TNM I/II/III 4.663 (2.104–10.337) <0.001 3.466 (1.555–7.728) 0.002

miRNA-103/107 High/low 3.621 (1.531–8.565) 0.003 2.604 (1.013–6.692) 0.047

Abbreviation: 95% CI, 95% confidence interval.
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pancreatic tumors from normal. Here, for the first time, we
identified that high expression of hsa-miR-103/107 has a negative
prognostic effect on the esophageal cancer patient survival.
Recently Sugito et al. (42) reported that the miRNA processing
enzyme (RNASEN) was elevated in a proportion of ESCC and high
RNASEN expression correlates with poor prognosis in ESCC. These
findings, together with our evidence of distinctive miRNA profiles
in esophageal cancers, suggest strongly that altered metabolism of
particular miRNAs plays a role in esophageal cancer development.

MicroRNAs are a class of regulatory RNAs that function
primarily by targeting specific mRNAs for degradation or inhibition
of translation and, thus, decrease the expression of the resulting
protein, and their role in tumor development would presumably
be through the regulation of their target protein genes (10, 11).
For some miRNAs however, their altered expression profile is not
causal and might simply indicate a changed transcriptional
coregulation of the miRNA and the mRNAs of cancer-related
genes (43). The target genes of these causal miRNAs may be tumor
suppressor genes or other genes related to oncogenes, such as
growth factors, growth factor receptors, signal transducers,
transcription factors, programmed cell death regulators, genes
that control cell division, or genes that repair DNA. Several
publications have presented algorithms with which to identify
putative targets for miRNA (44–47). We used all of these algorithms
to predict the putative target genes (listed in Supplementary
Table S2) of the survival-related miRNAs (hsa-miR-103/107). We
also conducted a bioinformatics analysis grouping the predicted
targets of hsa-mir-103/107 by using the Gene Ontology, Biocarta,
KEGG, and GenMAPP databases. Among the putative target genes,
YWHAH is a tumor suppressor and regulates the cell cycle, TGFBR3
is involved in the transforming growth factor h signaling pathway,
AXIN2 is involved in the Wnt signaling pathway, TAF5 is a
transcription factor and CAPZA2 is involved in cell motility, and
several may be involved in esophageal cancer development via
different mechanisms. For example, YWHAH gene is known to
interact with tumor suppressors and to regulate the cell cycle (48).
Other reports have shown that miR-107 is up-regulated in tumors

of the gastroenterological system, such as the colon, pancreas, and
stomach (41, 49). The cancer tissue we investigated also belongs
to the digestive system, and our results also indicate that high
expression of miR-103/miR-107 in esophageal cancer can be
associated with a poor prognosis. In contrast, Garzon and
colleagues (50) reported that the up-regulation of miR-107 could
induce promyelocytic differentiation, suggesting that miR-107 is a
‘‘protective’’ miRNA in these promyelocytic cells. Importantly, these
observations for different gastroenterological tissues and promye-
locytic tumors suggest that the functions of miR-103/107 need to
be further explored in particular tumors. The current report may
also provide impetus toward identifying more genes associated
with ESCC.

In summary, we have investigated the miRNA expression profile
of esophageal cancers with cryopreserved archival tissues stored for
the periods of 5 years or more. Our microarray analyses revealed
that 46 miRNAs are differently expressed between the cancerous
and adjacent normal tissues and that a minimal set of 7 of them can
distinguish malignant from normal esophageal tissues. Some
miRNAs showed correlation with several different clinicopathologic
classifications. Here, hsa-miR-103/107 showed a strong correlation
between low expression levels and a high overall and disease-free
survival periods for esophageal cancer patients by univariate
analysis, as well as by multivariate analysis. These results should
provide impetus to examine new molecular mechanisms that may
lead to development of esophageal cancers, and hsa-miR-103/107
might prove useful for the diagnostic analysis of esophageal cancers
using a simple, fast, and economical approach such as RT-PCR.
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