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The importance of the block or band Lanczos method for many-body Green’s function calculations
of atomic and molecular systems is discussed. The usual computation schemes for determining the
Green’s function involve the diagonalization of Hermitian secular matrices. Considerable numerical
difficulties arise, on the one hand, from the size of these matrices and, on the other hand, from the
large number of eigenvalues and eigenvectors which often need to be computed in practice. In the
case of the one-particle Green’s function it is shown how the computational effort of the
diagonalization process can be substantially reduced using block Lanczos. The proposed procedure
which consists of a block Lanczos ‘‘prediagonalization’’ and a subsequent diagonalization of the
resulting smaller secular matrices quite naturally exploits the specific structure of the secular
problems encountered. Its computational performance is demonstrated in a model application to the
benzene molecule. The calculation of the complete valence-shell ionization spectra of the systems
BeF4

22 , BeF3
2 , and BeF2 is devised as a further application of the method in the particular case

where the treatment of the full secular problem is computationally prohibitively expensive.
© 1996 American Institute of Physics.@S0021-9606~96!01817-8#

I. INTRODUCTION

In the framework of many-body theory the Green’s func-
tion formalism1–4 constitutes a powerful and elegant theo-
retical tool for investigating properties and excitation pro-
cesses in many-particle systems. The Green’s function
provides direct access to important physical quantities as, for
example, ionization energies and spectral intensities by the
one-particle Green’s function without the need to resort to
separate~approximate! solutions of the Schro¨dinger equation
for the ~initial! ground state and the~final! ionic states.
Hereby the method accounts from the outset for a balanced
consideration of both the ground and ionic correlation which
is difficult within conventional wave function approaches
such as the configuration interaction~CI! method. Another
inherent advantage of the Green’s function approach, being
essential for the treatment of larger systems is the occurence
of ‘‘size-consistent’’ approximation schemes which have the
correct scaling behavior with respect to the number of elec-
trons.

The essential numerical elements associated with the
computation of the Green’s function involve the evaluation
of matrix elements and the diagonalization of Hermitian ma-
trices defined in the space of a special class of ionic configu-
rations. One source of problems one has to cope with in
realistic applications results from the size of the configura-
tion space. Depending on the size of the molecule, the orbital
basis set, and the approximation scheme used, the configu-
ration space can become extremely large preventing the de-
termination of the relevant eigenvalues and eigenvectors
from the corresponding secular matrix with reasonable ex-
pense. Another drawback arises from the large number of

eigenstates which often need to be computed in order to en-
sure a conclusive assignment of the observed structures in
the experimental spectrum.

Though large-scale eigenelement computations represent
a standard task in computational quantum chemistry and
physics, the specific problem to be solved often permits
some reasonable simplifications. A particular interesting situ-
ation is encountered in the case of the one-particle Green’s
function. Here, one may resort to the well-known Dyson
equation relating the one-particle Green’s function to the so-
called self-energy which is an effective energy-dependent
one-particle potential. When solving the Dyson equation one
usually makes use of the well-established equivalence of this
equation to the evaluation of the eigenvalues and eigenvec-
tors of Hermitian secular matrices possessing a specific
structure. The secular matrices to be diagonalized consist of
three submatrices~blocks!: the one-particle block, the~N
11!-particle block, and the~N21!-particle block. The sizes
of the configuration spaces defining these submatrices are,
however, very different. Whereas the one-particle block cor-
responds to the space of single-particle and single-hole con-
figurations and is small, the~N21!-particle block and, in
particular, the~N11!-particle block, which are associated
with physical excitations ofN21 andN11 particles, respec-
tively, are usually of high dimension. The fact that the~N
11!-particle and~N21!-particle blocks can be treated inde-
pendently and that these blocks are energetically far apart
from each other is of crucial importance. Therefore, provided
that one is only interested in the eigenvalues and eigenvector
components corresponding to the ionization energies and
spectral intensities of a molecule, one may ‘‘replace’’ the
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usually very large ~N11!-particle block, which is expected
to have only minor influence on the desired cationic solu-
tions, by amuch smallermatrix which approximates the~N
11!-particle block well in the region of ionization.

An obvious way of truncating the~N11!-particle block
is to perform a selection in the configuration space, e.g., by
including the most important configurations in the calcula-
tions and excluding the others. This may, however, largely
affect the accuracy of the final results. Another and appar-
ently more promising way of approximating the~N11!-
particle block is to rely on projection methods. These tech-
niques consist of generating an increasing subspace onto
which the~N11!-particle block—or, in general, a large sym-
metric or Hermitian matrixH—is restricted. The choice of
basis vectors spanning the subspace is, however, crucial and
depends on the specific problem under consideration. The
probably most prominent projection method which has found
widespread application is the single-vector~simple! Lanczos
algorithm.5–7 Using the Lanczos recurrence, the algorithm
iteratively builds an orthonormal basis from the Krylov sub-
space, i.e., from the sequence of iterates$q1,Hq1,...,H

j21q1%,
whereq1 is an initial vector called the starting vector. In this
basis spanned by the Lanczos vectors the representation of
the matrixH is particularly simple. It reduces to a tridiagonal
matrix which is easy to diagonalize or to invert.

The natural extension of the simple scheme is the block
or band Lanczos method.6–8 In exact arithmetic both variants
are equivalent. Though being computationally more demand-
ing than the single-vector Lanczos method, the block Lanc-
zos method is, as we shall see, particularly well adapted to
the present purposes. The major~formal! differences with the
simple scheme are that the block algorithm generates asetof
orthonormal vectors at once in time instead ofoneas does
the simple scheme and that the matrices resulting from pro-
jection are now no longer tridiagonal but block tridiagonal or
banded. Originally the block Lanczos algorithm was con-
ceived to identify the multiplicity of degenerate eigenvalues
for which the single-vector algorithm does not account for.
However, as mentioned, owing to its greater complexity the
block Lanczos method has been rarely used. It is just re-
cently that its efficiency has been demonstrated in calculat-
ing matrix elements of a resolvent.9,10

It is one of the inherent advantages of both the simple
and block Lanczos methods that they permit the computation
of a few of the eigenvalues and eigenvectors of a matrixH
without the need to perform a complete~similarity! transfor-
mation ofH. This is due to the iterative nature of the pro-
cess, providing at each iteration a tridiagonal or block tridi-
agonal matrix. From the numerical side the simple structure
of these matrices is also important. Indeed, many applica-
tions use the Lanczos algorithm as a diagonalization method
for large matrices. Another insight into the convergence be-
havior of the Lanczos method results from its close relation-
ship to the methods of moments.11,12 It is well-known that
the moments of a matrixH are intimately related to the ma-
trix elements of the tridiagonal or block tridiagonal represen-
tation ofH with respect to the Lanczos basis. This implies
that the Lanczos spectra converge in a global sense towards

the exact eigenspectrum ofH. In general, the first few mo-
ments usually already allow a reasonable description of the
global features ofH’s spectrum~position, width, shape, etc.!,
whereas the higher moments account for more refined details
of the spectrum leaving, however, its crude structure un-
changed. Because of this significant feature, the block Lanc-
zos method offers new possibilities for applications to many-
body Green’s functions.

The objective of this article is to analyze the capability
of the block Lanczos method for many-body Green’s func-
tion calculations. In the particular case of the one-particle
Green’s function we shall demonstrate how, due to the spe-
cific structure of the secular matrices encountered, the block
Lanczos method is quite naturally applied allowing for an
effective reduction of the size of the diagonalization prob-
lem. In Sec. II we briefly outline the theory of the one-
particle Green’s function and the particular approximation
scheme employed here. In Sec. III we survey two of the
probably most widely used diagonalization methods for large
matrices in quantum chemistry and physics: the Lanczos and
the Davidson algorithms. The new proposed procedure for
the numerical calculation of the one-particle Green’s func-
tion is then described in Sec. IV. The discussions in Secs. V
and VI are devoted to provide model applications demon-
strating the performance of the proposed method. Finally,
concluding remarks are presented in Sec. VII.

II. THE ONE-PARTICLE GREEN’S FUNCTION AND ITS
EVALUATION

The one-particle Green’s functionG~v! is the simplest
member in the hierarchy of Green’s functions. Consider an
N-particle system~atom or molecule! with a nondegenerate
~closed-shell! ground stateuc0

N& and energyE0
N. In a basis

spanned by the discrete set of one-particle states
ufp&—usually chosen as the ground state Hartree–Fock~HF!
orbitals—the matrix elements ofG~v! in energy representa-
tion are defined as1,4

Gpq~v!5^c0
Nucp~v1E0

N2Ĥ1 ih!21cq
†uc0

N&

1^c0
Nucq

†~v2E0
N1Ĥ2 ih!21cpuc0

N&. ~1!

Here,cp
†(cp) labels the creation~annihilation! operator for an

electron in the one-particle stateufp& obeying the usual anti-
commutation relations,Ĥ is the~full ! electronic Hamiltonian
of the system, andh is a positive infinitesimal introduced to
ensure the convergence of the Fourier transform between the
time and energy representations ofG~v!. The physical con-
tent of the one-particle Green’s function becomes more ap-
parent in its spectral representation1,4

Gpq~v!5(
n

^c0
Nucpucn

N11&^cn
N11ucq

†uc0
N&

v1E0
N2En

N111 ih

1(
n

^c0
Nucq

†ucn
N21&^cn

N21ucpuc0
N&

v1En
N212E0

N2 ih
~2!

which readily results from Eq.~1! by inserting complete sets
of ~N61!-particle eigenstatesucn

N61& of Ĥ with energies
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En
N61. The first ~advanced! and second~retarded! parts of

G~v! bear important information on the electron attachment
~or scattering! and ionization processes, respectively. The
~vertical-electronic! ionization energies

I n5En
N212E0

N ~3!

and electron affinities

An5E0
N2En

N11 ~4!

are derived from the location of the poles ofG~v! in the
upper and lower half, respectively, of the complex energy
plane. The residue corresponding to a polen is obtained as
the product of the transition~or spectroscopic! amplitudes

xp
~n!5H ^c0

Nucpucn
N11& nP$N11%

^cn
N21ucpuc0

N& nP$N21%
. ~5!

The amplitudesxp
(n) are closely related to the spectral inten-

sities of the experiment. Consider the case of an ionization
experiment where the kinetic energyEe of the ejected elec-
tron is sufficiently high~‘‘sudden limit’’ !. The intensity with
which a final ionic staten in the spectrum emerges is given
by13

P~n!~Ee!5(
e

U(
p

tepxp
~n!U2d~Ee1I n2v0!. ~6!

Here,tep denotes the dipole matrix element for the~bound!
one-particle stateufp& and the continuum~scattering! one-
particle stateuce& andv0 is the energy of the incident photon.
Often only one orbitalp has appreciable contribution to
P(n)(Ee). In this case Eq.~6! simplifies to

P~n!~Ee!5Ppn(
e

utepu2d~Ee1I n2v0!, ~7!

where

Ppn5uxp
~n!u2. ~8!

The quantityPpn is called pole strength or spectroscopic
factor and provides a measure for the relative spectral inten-
sities of the ionic statesn associated with the orbitalp. For a
more thorough discussion of the intensity problem we refer
to Refs. 14 and 15.

To evaluate the one-particle Green’s functionG~v! one
usually starts from the Dyson equation1,4

G~v!5G0~v!1G0~v!S~v!G~v! ~9!

relating G~v! to the so-called self-energyS~v!. The free
Green’s functionG0~v! appearing in Eq.~9! is defined with
respect to the noninteracting HF particles. Its matrix ele-
ments in energy space read

Gpq
0 ~v!5dpqS np

v2ep2 ih
1

n̄p
v2ep1 ih D , ~10!

whereep are the HF orbital energies andnp512n̄p denote
the HF ground state occupation numbers. As forG~v! there
exists a direct perturbation expansion forS~v! in terms of
the famous Feynman diagrams. The self-energyS~v! con-

sists of a static~energy-independent! part S~`! discussed
further below ~see Sec. IV B! and a dynamic~energy-
dependent! partM ~v!:

S~v!5S~`!1M ~v!. ~11!

The dynamic self-energy is further split into two parts ac-
cording to

M ~v!5M I~v!1M II~v! ~12!

each possessing a spectral representation16–18

Mpq
I,II~v!5 (

mP$N61%

mp
~m!mq

~m!*

v2vm1 ihs I,II
~13!

similar to that for the one-particle Green’s function. Depend-
ing on the sign ofs, the polesvm are located either in the
lower ~sI511! or the upper half~sII521! of the complex
energy plane. The residue corresponding to a polem is given
as the product of the coupling~Dyson! amplitudesmp

(m). The
decomposition of the dynamic self-energy into the parts
M I~v! andM II~v! implies that each of these parts can be
calculated independently, for instance, from their respective
diagrammatic perturbation expansions. There areno mixed
terms between the parts I and II. Physically these parts are
associated with excitations of the~N61!-particle systems.

Using the relations~10!–~13!, the solution of the Dyson
equation can be cast as an eigenvalue problem of a Hermitian
matrix.19 In practical applications one, of course, uses an
approximation of the self-energy and hence of this Hermitian
matrix. Various approximation schemes have been proposed
to evaluate the self-energy and Green’s functions in general.
An important class of approximation schemes are the dia-
grammatical methods. Here, one makes use of the Feynman
diagrams to represent the perturbation series of the Green’s
function or propagator under consideration. Among the dia-
grammatical methods the algebraic diagrammatic construc-
tion ~ADC!20–23has proven to be of particular success for the
treatment of finite electronic systems. This scheme, which
provides access to the entire energy scale of the valence-shell
ionization regime, reformulates the diagrammatic perturba-
tion expansion for the Green’s function in a simple algebraic
form representing infinite partial summations of certain types
of Feynman diagrams. Thenth-order scheme, ADC(n), is
complete through finite ordern perturbation theory, i.e., it
includes all Feynman diagrams up tonth order as well as
higher order contributions in an appropriate manner. The
method is quite general and applies to any Green’s function
or single component of it. The present applications comprise
the particle–hole~polarization! propagator,20 the self-energy
of the one-particle Green’s function,21 the particle–particle
propagator,22,23 and, more recently, the three-particle
propagator.24

To be specific we concentrate here without loss of gen-
erality on the ADC scheme. The ADC is a generalization of
the special~diagonal! representation~13!. It is based on the
observation that the dynamic self-energy can be represented
in the algebraic form
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Mpq~v!5Up
†~v12K2C!21Uq . ~14!

Here, the superscripts I and II have been dropped. The matrix
K introduced in Eq.~14! is diagonal and collects the zero-
order~HF! excitation energies,C denotes a constant~energy-
independent! Hermitian matrix referred to as the modified
~effective! interaction matrix, andUp is a constant vector of
modified ~effective! coupling amplitudes. The configuration
space defining these quantities comprises all physical~N
61!-particle excitations with respect to the basis of the
N-particle ground state HF orbitals excluding, however, the
single-particle (1p) and single-hole (1h) configurations. In
the usual classification scheme the electronic configurations
are denoted as two-particle one-hole (2p1h), three-particle
two-hole (3p2h),..., configurations~for block I! and as two-
hole one-particle (2h1p), three-hole two-particle (3h2p),...,
configurations~for block II!.

In the ADC scheme both the vectorsUp and the matrix
C possess perturbation expansions

Up5Up
~1!1Up

~2! ..., ~15!

C5C~1!1C~2!..., ~16!

each series beginning in first order. Upon expanding the ma-
trix ~v12K2C!21 into powers of~v12K !21C and inserting
the expansions~15! and ~16! into Eq. ~14! one arrives at

Mpq~v!5Up
~1!†~v12K !21Uq

~1!1Up
~1!†~v12K !21C~1!

3~v12K !21Uq
~1!1Up

~2!†~v12K !21Uq
~1!

1Up
~1!†~v12K !21Uq

~2!1..., ~17!

where all terms up to third order are shown. The matrix
elements ofC andUp are obtained by comparing the ADC
expansion of Eq.~17! with the original diagrammatic pertur-
bation series for the dynamic self-energy partsM I~v! and
M II~v!. By construction, the ADC(n) scheme sums up all
diagrams completely throughnth order and includes, more-
over, infinitely many diagrams of higher orders. In the
ADC~2! approximation, also referred to as two-particle–hole
Tamm–Dancoff approximation~2ph-TDA!, one employs
the first-order expansions for the elements ofC andUp . The
ADC~3! approximation~extended 2ph-TDA! is obtained by
replacing the first-order expansions for the coupling ampli-
tudesUp with the second-order expansions. The explicit ex-
pressions of the ADC equations forC andUp up to fourth
order are given in Ref. 21.

It is worthwhile mentioning that the ADC scheme com-
bines perturbation theory~for the N-electron ground state!
and matrix diagonalization~variational principle! which has
no analogue within the conventional wave function picture.
An essential property of the ADC scheme, being important
in numerical applications, concerns the size of the configu-
ration space. As is well-known~see, e.g., Ref. 21!, the con-
figuration space required by thenth-order scheme, ADC(n),
is substantially smaller than that of comparable configuration
interaction~CI! expansions for calculating the energies and
transition moments consistent throughnth order. Theexplicit
ADC(n) space increases with each even ordern. Hence, for

n52 and 3 the space is spanned by the 2p1h and 2h1p
configurations and forn54 and 5, in addition, by the 3p2h
and 3h2p configurations ofN11 andN21 particles, respec-
tively. On the other hand, multiple products of two-particle
interaction~Coulomb! matrix elements appear in the expres-
sions of the ADC equations. This is in contrast to the famil-
iar CI treatment where the Coulomb matrix elements enter
the CI expansions exclusively in linear form, however, to the
price of much larger configuration spaces.

Once the vectorsUp and the matrixC have been deter-
mined the Dyson equation~9! can be cast into the following
eigenvalue problem:

BX85X8E, X8X8†51, ~18!

where

B5S e1S~`!

UI

UII

~UI!†

K I1CI

0

~UII !†

0
K II1CII

D . ~19!

Here, e denotes the diagonal matrix of HF orbital energies
andU is the matrix of~column! vectorsUp representing the
coupling of the one-particle blocke1S~`! and the matrices
K1C of the blocks I and II. The one-particle Green’s func-
tionG~v! is obtained as the upper left block of the inverse of
the matrixv12B,

Gpq~v!5@v12B#pq
21, ~20!

or, explicitly,

Gpq~v!5(
n

xp
~n!xq

~n!*

v2en
, ~21!

where the poles and residue amplitudes ofG~v! derive from
the eigenvaluesen5Enn and the corresponding eigenvector
componentsxp

(n) 5 Xpn8 , respectively, of the matrixB.
Instead of this one-step ‘‘direct’’ diagonalization ofB

one may alternatively first diagonalize the ADC matrices
K1C independently for the blocks I and II:

~K1C!Y5YV, YY†51. ~22!

In a subsequent step the Dyson equation is then solved via
the diagonalization problem

AX5XE, XX†51, ~23!

where

A5S e1S~`!

~mI!†

~mII !†

mI

VI

0

mII

0
VII

D . ~24!

The subblocksVI,II andmI,II of the matrixA are the diagonal
matrices of eigenvaluesvm of Eq. ~22! representing the poles
of the dynamic self-energy partsM I,II~v! and the matrices of
coupling ~Dyson! amplitudesmp

(m) @see Eqs.~12! and ~13!#,
respectively, the latter being obtained according to

mp
~m!5Up

†Y~m! ~25!

7125Weikert et al.: Block Lanczos and many-body theory

J. Chem. Phys., Vol. 104, No. 18, 8 May 1996



as the scalar product ofUp and the eigenvectorY~m! of Eq.
~22! associated with themth eigenvalue. The one-particle
Green’s functionG~v! is again given in the form of Eqs.
~20! and ~21!.

III. DIAGONALIZATION METHODS FOR LARGE
MATRICES

The diagonalization of large symmetric or Hermitian
matricesH is a key problem in computational quantum
chemistry and physics. The usual way of calculating the
eigenspectrum ofH is to transform the matrixH into a tridi-
agonal one which is easy to diagonalize or to invert. How-
ever, standard diagonalization procedures such as the Givens
and Householder methods25 are not suitable for large matri-
ces, since they have storage demands that depend on the
square of the orderN of the matrixH and require a number
of arithmetic operations that scale as the cube of the matrix
order~N3 algorithms!. Therefore, alternative procedures have
to be considered in order to compute at least part of the
eigenspectrum ofH.

In this section we review two diagonalization methods
which have found widespread application: the Lanczos and
the Davidson algorithms. Particular emphasis is placed on
their respective block extensions. Both methods can be ap-
plied to calculate the eigenspectrum of a given matrixH.
However, while the Lanczos method is particularly suited to
problems where information on the whole eigenspectrum of
the matrixH is desired, the Davidson method offers the po-
tential of a more efficient computation of a few selected~tar-
geted! eigenvalues and eigenvectors ofH.

The common idea of both the Lanczos and the Davidson
algorithms is to iteratively generate from an initial vector,
called the starting vector, an increasing basis of orthonormal
vectors

Q~ j !5~q1 ,q2 ,...,qj ! ~26!

onto which the matrixH is projected:

S5Q~ j !†HQ~ j !. ~27!

The eigenvalues of thej3 j matrix S, called the Ritzvalues,
represent approximations to certain eigenvalues of the matrix
H. Accompanying approximate eigenvectorsYm

( j ) of H,
called the Ritzvectors, are obtained via the transformation

Ym
~ j !5Q~ j !Xm

~ j ! , ~28!

whereXm
( j ) denotes the eigenvector corresponding to themth

eigenvalue ofS. Formally, the Lanczos and Davidson meth-
ods differ from each other essentially in the choice of the
expansion vectorsqi .

A. Block or band Lanczos algorithm

The single-vector~simple! Lanczos algorithm is de-
scribed in several textbooks and articles~see, e.g., Refs. 5–7
for textbooks and Refs. 26–33 for applications and further
developments!. The classical Lanczos procedure was origi-
nally conceived to reduce the eigenvalue problem of a large
symmetric matrix to that of the simpler Lanczos matrices.
The simple Lanczos method realizes an orthogonal projec-

tion process onto the Krylov space, i.e., the space spanned by
the sequence of iterates$q1,Hq1,...,H

j21q1%. Starting with an
initial ~orthonormalized! vectorq1 with a nonzero projection
on each eigenvector ofH, the algorithm builds an orthonor-
mal basis$q1 ,q2 ,...,qj% from the Krylov space, leading to a
tridiagonal matrixT( j ). The computation of both the Lanczos
vectors qi and the matrix elements ofT( j ) is extremely
cheap. This is based upon the three-term recurrence

Ti ,i11qi115Hqi2Tii qi2Ti ,i21qi21 , ~29!

where

Tii5qi
†Hqi and Ti ,i115Ti11,i* 5qi11

† Hqi ~30!

denote the diagonal and offdiagonal entries, respectively, of
the tridiagonal matrixT( j ) and, by definition,Ti050 and
q050. Convergence is best6 for the extreme eigenelements of
T( j ) which usually contain most of the desired information.

It is an essential drawback of the simple Lanczos algo-
rithm that it does not account for multiplicities of the eigen-
values which it computes. This suggests to consider a block
or band extension of the simple scheme. The block
algorithm6,7 is readily derived from the simple algorithm by
replacing the Lanczos vectorsqi and the numbersTi j in the
recursion ~29! by their corresponding matrix analogues,
yielding a block tridiagonal representation of the matrixH.
Alternatively, one may resort to a band formulation of the
algorithm.8 In the context of exact arithmetic both variants
are equivalent. In the following, we consider the band algo-
rithm rather than its block analog but shall use both names
synonymously.

The band Lanczos algorithm starts by supplyingn ortho-
normal vectorsq1 ,q2 ,...,qn . The recursion relation then
reads

Ti ,i1nqi1n5Hqi2 (
j5 i2n

i1n21

Ti j qj , ~31!

where

Ti j5Tji*5qi
†Hqj ~32!

and, by definition,Ti j50 andqi50, if j<0. In the basisQ( j )

spanned by the Lanczos vectorsqi generated the projection
of the matrixH becomes banded the bandwidth of which is
2n11:

T~ j !5Q~ j !†HQ~ j !

5S T11 T12 ••• T1n

T21 T22 � �

A � � � �

Tn1 � � � T* j

� � � � A

� � � A

Tj* ••• ••• Tj j

D . ~33!

In practice, the algorithm is performed as
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r :5Hqi2 (
j5 i2n

i21

Ti j qj

For j5 i ,...,i1n21

Ti j :5r †qj

r :5r2Ti j qj

end do

Ti ,i1n :5ir i

qi1n :5r /Ti ,i1n . ~34!

Here, i•i denotes the Euclidean norm. Note that the single-
vector algorithm is readily recovered forn51. The band
Lanczos algorithm iterates each starting vector at least

J5@ j /n# ~35!

times, where [m] is the entire part ofm and J denotes the
number of block iterations. We mention that in the block
version the iteration numberj is restricted to be an integer
multiple of n.

As with the simple Lanczos method, the block Lanczos
method is particularly attractive for the diagonalization of
large matrices. This is due to the following reasons. First, the
matrix H only enters the recurrence relation in form of the
matrix3vector termsHqi . Second, only the 2n most re-
cently generated Lanczos vectorsqi are required in order to
compute the nextn Lanczos vectors. Third, the block tridi-
agonal or band matrices generated by the block or band
Lanczos method are easy to diagonalize. This allows, in prin-
ciple, the computation of all the eigenvaluesand eigenvec-
tors of the matrixH. In practice, however, the efficiency of
the method diminishes due to numerical instabilities. As the
iteration proceeds, the Lanczos vectors tend to lose their or-
thogonality and the process starts to produce copies of al-
ready converged eigenvalues. These instabilities can be rem-
edied either by a complete or selective~partial!
reorthonormalization of the Lanczos vectors~see, e.g., Ref.
6! which is, however, computationally expensive.

There is a certain range of problems in theoretical phys-
ics and chemistry where one is not interested in the indi-
vidual eigenvalues and eigenvectors of the matrixH, but
rather in the global feature of its eigenspectrum. As an ex-
ample we mention the evaluation of matrix elements of op-
erator functions,̂cpuF(Ĥ)ucq&, to which the block Lanczos
method is ideally adapted.10 Here, ucp& denote some refer-
ence vectors. To be more specific we recall from Ref. 10 the
following remarkable properties of the block Lanczos
method:

~H~ j !!kuqm&5Hkuqm& for 1<m<n, 0<k<J21 ~36!

and

^qm8u~H
~ j !!kuqm&

5^qm8uH
kuqm&

for 1<m,m8<n
for 0<k<2J21, J5odd
for 0<k<2J22, J5even

, ~37!

where the matrix

H~ j !5Q~ j !Q~ j !†HQ~ j !Q~ j !†5Q~ j !T~ j !Q~ j !† ~38!

denotes the projection ofH onto thej -dimensional Lanczos
space. These relations state that the first 2J22 or 2J21
moments ofH( j ) with respect to the starting vectors are ex-
act. Moreover, it can be shown that there exists no approxi-
mation of rankj which gives more exact moments than the
block Lanczos approximationH( j ). Hence, the block Lanc-
zos method provides access to the desired global conver-
gence in the sense of Eqs.~36! and ~37!. It permits, in par-
ticular, the fast computation of the elements^cpuF(Ĥ)ucq&
of any operator functionF(Ĥ) provided that this function is
analytic in a circle which contains the eigenvalues ofH. As
has been demonstrated in Ref. 10 for the case of the resol-
ventF~H!5~v2H!21 ~here,H is a matrix representation of
the operatorĤ! one observes an exponential convergence of
^cpuF(Ĥ

( j ))ucq& towards^cpuF(Ĥ)ucq& with the number of
block iterationsJ times the ‘‘distance’’ from the spectrum,
i.e., withJ•minmuEm2vu, whereEm denote the eigenvalues of
H. This convergence is extremely fast ifv is far apart, i.e.,
below or above, from the spectrum. It is this outstanding
global convergence property of the block Lanczos method
which establishes its relevance for applications within the
many-body framework.

B. Block Davidson algorithm

The Davidson algorithm34 has a long tradition in com-
putational ab initio quantum chemistry. It is a standard
method for finding the lowest eigenvalues and eigenvectors
of large CI matrices.35 A block extension of this method36,37

has successfully been applied to the computation of valence-
shell double ionization~Auger! spectra using the Green’s
function method.38 For a recent discussion of the Davidson
method see Ref. 39. Here, we give a brief account of the
block Davidson method as implemented in the present cal-
culations which is an extension of Ref. 37.

The idea behind the Davidson procedure is best illus-
trated by starting with a simple perturbation theory analysis.
Upon partitioning a given matrixH as

H5H01HI ~39!

into a dominant partH0—usually, and for the sake of sim-
plicity, H05diag~H! @diagonal preconditioning#—and a
‘‘perturbation’’ HI , one is immediately led to a simple itera-
tion scheme for improving a given trial eigenvectorc( j ) by a
correction vector

j~ j !5@E~ j !12H0#
21r ~ j !. ~40!

Here, j denotes the iteration number,E( j ) is the Rayleigh
quotient forc( j ) defined by

E~ j !5c~ j !†Hc~ j !/c~ j !†c~ j ! ~41!

and

r ~ j !5~H2E~ j !1!c~ j ! ~42!

its residual vector. The iteration scheme implied by Eq.~40!
can also be regarded as the first-order approximation to the
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method of ‘‘coordinate relaxation’’40 applied simultaneously
along all coordinates. While this simple scheme exhibits gen-
erally poor convergence properties,34 the idea behind the
Davidson method is not just to add the correction vectorj( j )

to c( j ), but rather to progressively collect the correction vec-
tors $j( j )% to form a basis set~after suitable reorthonormal-
ization! in which the trial eigenvector is expanded. Thus the
Davidson method also represents one particular implementa-
tion among the subspace iteration techniques. In general, we
then write the trial eigenvector at cyclej as

c~ j !5Q~ j !v ~ j !, ~43!

whereQ( j ) is a matrix of~column! orthonormal basis vectors
andv ( j ) is the vector of expansion coefficients. For ease of
notation we shall now drop the superscript indicating itera-
tion number.

The matrixQ comprises any initial set of starting basis
vectors—e.g., chosen to span a subspace of interest or the
presumed dominant character of the sought eigenvectors—
plus the successively collected and reorthonormalized cor-
rection vectors computed via Eq.~40!. Specific criteria of
choice for the initialQ used in the present work will be
discussed later. At each iteration the vectorv is chosen as
usual by making the Rayleigh quotient stationary in the sub-
space spanned byQ, i.e., among the eigenvectors of the ma-
trix S5Q†Z, with Z5HQ. This choice may easily be driven
by any one of a number of criteria such as: eigenvalue mini-
mization or restriction in a given range; eigenvector overlap
maximization from one iteration to the next; magnitude of
the eigenvector projection onto a specific subspace, and so
on.

When more than one eigensolution of the matrixH is
sought, two possible alternative procedures may obviously
be conceived: The desired eigenpairs can be iterated inde-
pendently and in succession, one after convergence of the
other; or they can be refined simultaneously, at each cycle
one new basis vector being computed and added toQ for
each sought solution. The latter approach~‘‘block David-
son’’! is clearly characterized by a faster growth rate of the
basis set, but this disadvantage is usually more than compen-
sated by a much better convergence rate, especially in dense
regions of the spectrum ofH. In addition, the block David-
son approach affords greater computational efficiency, in
that a number of vector operations are naturally replaced by
their matrix analogues, and the matrixH needs be computed
or read from slow storage fewer times.

In practice, the algorithm is outlined in the following
major steps:

~1! Supply and store an initial basis set matrixQ spanning a
chosen subspace selected by some criteria. The basis
vectors can also be chosen to be a subset of Ritzvectors
from a previous run, thus implementing a restart mecha-
nism. Form and storeZ5HQ andS5Q†Z.

~2! DiagonalizeS and select the desired eigenpairs (Ei ,v i)
which have not yet converged. The vectors$v i% are col-
lected in a matrixV.

~3! Compute the residual matrix
R5ZV2QVE, ~44!
whereE5diag(Ei).

~4! Test for convergence of the eigenvectors~e.g., ir i i less
than a prescribed threshold!. For each computed vector,
store ci5Qv i . For each unconverged vector, compute
ji5@Ei12H0#

21r i .
~5! Orthogonalize the$ji% vectors among themselves and to

Q. Normalize to form the new basis vectorsQ8, which
are appended to theQ file.

~6! FormZ85HQ8 and append it to theZ file.
~7! Update theSmatrix by computingQ8†Z8 andQ†Z8.
~8! Repeat from step~2! until all selected vectors have con-

verged or the subspace size has reached the allowed
maximum.

The procedure lends itself to being automatically and dy-
namically implemented in virtually any amount of available
fast storage, provided this is large enough to hold a few
vectors. The vectors$zi% and $qi% ~matricesZ andQ! are
kept on disk and read in groups of adjustable size. All the
necessary matrix operations are also easily stripmined if
needed to generate and handle only a suitable subset of cor-
rection and converged vectors at once. The amount of avail-
able storage also determines the maximum reachable size of
theQ subspace, but, as outlined in step~1! above, the whole
procedure is straightforwardly restartable by jumping from
any step to step~1! and replacing the initial set of basis
vectors with an appropriate subset of the current trial~and
converged! eigenvectors. In this way the procedure automati-
cally monitors and controls the growth rate of the subspace
size and, if required, can truncate the subspace according to
available resources.

In practice, convergence is usually achieved within a
few iterations, in particular when the matrixH is diagonally
dominant. As in the block Lanczos method, the time-
consuming step is the formation of theZ matrix @step~6!#.
On the other hand, the expansion vectors in the Davidson
method do not obey a three-term recursion and theSmatrix
is not tridiagonal. This restricts the algorithm to handling
generally smaller subspaces and to applications where a
smaller number of selected roots are sought.

IV. NUMERICAL COMPUTATION OF THE ONE-
PARTICLE GREEN’S FUNCTION

As has been discussed in Sec. II the determination of the
one-particle Green’s function requires

~i! The solution of the Dyson equation in form of either
the ‘‘direct’’ diagonalization of the secular matrixB
or the two-step procedure which comprises the diago-
nalization of the matrices~K1C!I,II according to Eq.
~22! and the subsequent diagonalization of the matrix
A specified in Eq.~24!;

~ii ! The evaluation of the static self-energy matrixS~`!.

Matrices possessing a structure as doesA are called ‘‘ar-
row’’ matrices. They are characterized to consist of a sub-
matrix of small dimension and of a large diagonal ‘‘tail’’
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coupled to the former submatrix via coupling matrices. A
very efficient and numerically stable procedure for the diago-
nalization ofA that takes advantage of its particular ‘‘arrow
type’’ structure has been described in Refs. 41 and 42. This
method, referred to as the pole search algorithm~PSA!, en-
ables the calculation ofall the eigenvalues and eigenvectors
of A within a certain range of its eigenspectrum. The draw-
back of the method, however, is that it requires the separate
full diagonalization of the matrices~K1C!I,II prior to the
construction ofA. This clearly represents a formidable ob-
stacle in view of the usually very large configuration spaces
which define~K1C!I,II . Therefore, in order to reduce the size
of these matrices various possibilities such as, e.g., the trun-
cation of the one-particle~orbital! space and/or the selection
of important configurations have been considered. Neverthe-
less, in particular for the treatment of larger systems and
basis sets, one soon approaches the limitations where the
reliability of the final results, ionization energies and spec-
troscopic factors, is seriously affected.

An alternative access to the computation of the one-
particle Green’s function is to resort to the direct diagonal-
ization ofB. Here, one may make use of the well-established
block Davidson procedure as described in Sec. III B for cal-
culating a few selected roots. This one-step diagonalization
is especially useful if the matrixB is large. On the other
hand, the numerical effort grows very rapidly with the num-
ber of eigenstates being sought. Here, one meets again a
situation where additional approximations or truncations be-
come necessary in order to cope with the high-dimensional
secular matrices.

In the ensuing Sec. IV A we discuss a new numerical
procedure for the efficient calculation of the one-particle
Green’s function. The proposed procedure consists of the
two major steps: a block Lanczos ‘‘prediagonalization’’ of
the block ~K1C!I and a subsequent diagonalization of the
resulting smaller eigenvalue problem of the Hermitian secu-
lar matrix B ~Dyson equation!. This method makes quite
naturally use of the specific structure ofB. The evaluation of
the static self-energy matrixS~`! and its numerical calcula-
tion is then discussed in Sec. IV B.

A. Block Lanczos transformation of the large ( N11)-
block

To make contact with Sec. II we briefly recall the struc-
ture of the matrixB. It consists of three submatrices~blocks!:
the one-particle blocke1S~`! and the blocks~K1C!I and
~K1C!II coupled to the one-particle block via the matrices of
modified~effective! coupling amplitudesUI andUII . The su-
perscripts I and II refer to the spaces of physical excitations
of the ~N11!-particle and~N21!-particle systems, respec-
tively. In the ADC~2! approximation~2ph-TDA! as well as
the ADC~3! approximation~extended 2ph-TDA! the spaces
I and II are confined to the 2p1h and 2h1p configurations,
respectively. In the case of the fourth-order scheme, ADC~4!,
the 3p2h and 3h2p configurations are additionally required.
The one-particle blocke1S~`! corresponds to the space of
1p and 1h configurations. Without loss of generality we

concentrate in the following on ADC~3!. The structure of the
Hermitian matrixB in the ADC~3! approach is shown in Fig.
1.

Though considerably smaller than comparable CI expan-
sions, distinctive numerical difficulties arise from the size of
the 2p1h and 2h1p configuration spaces defining the di-
mension of the ADC~3! matrices~K1C!I,II . In particular, the
size of the joint matrixB is essentially determined by that of
the 2p1h block. As an example consider the ADC~3! calcu-
lation for the benzene molecule which is discussed below
~see Sec. V!. Here, the dimension is 20 746 for the 2p1h
block and 3 254 for the 2h1p block in 2A1g symmetry~D2h
point group notation!. Together with the one-particle block
~dimension 24! the size of the matrixB amounts to 24 024. It
is apparent that the diagonalization ofB represents a serious
obstacle in view of the large number of ionic states~typically
50–100! which are usually required in practice.

The above considerations indicate that a huge amount of
computational effort can be avoided if one succeeds in trun-
cating or approximating the very large 2p1h block in-
genously. Here, the special structure of the secular matrixB
comes into play. The fact that no direct coupling exists be-
tween the 2p1h and 2h1p blocks and that these blocks are
energetically well separated from each other is of crucial
importance. This suggests to approximate the 2p1h block in
an appropriate manner and to investigate the influence of this
approximation on the desired eigenvalues and eigenvector
components associated with the ionization energies and spec-
tral intensity coefficients, respectively, of the~N21!-particle
eigenstates.

Now the question arises as to how a useful approxima-
tion of the 2p1h block is obtained. An obvious possibility is
to select out of the full 2p1h matrix a submatrix of fixed
dimension~500 or 1000, say!. The selection may be con-
trolled, e.g., by the magnitude of coupling of the 2p1h and
1h configurations. However, in particular if the 2p1h block
is very large, an enormous number of 2p1h configurations
are possibly to be included in order to ensure a desired ac-
curacy of the final results. Another and more effective way
for reducing the dimension of the 2p1h block is to ‘‘re-
place’’ this block by a much smaller matrix which maintains
the global information of the full 2p1h block. A very prac-

FIG. 1. Structure of the eigenvalue problem for the Hermitian matrixB.
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tical mathematical procedure which is ideally suited for this
purpose is the block Lanczos algorithm. By means of this
method the very large 2p1h block, i.e., the matrix~K1C!I is
projected onto the subspace spanned by the Lanczos vectors
generated leading to a block tridiagonal or band representa-
tion of ~K1C!I. The particular importance of the block
Lanczos method as employed here is that it leads to an ap-
proximation of the 2p1h block, the first moments of which
are exact~see Sec. III A!.

The proposed method for calculating the one-particle
Green’s function proceeds as follows. The first step consists
of supplying a set of orthonormal vectors to begin with. A
particularly convenient choice of starting vectors is provided
by theN3n matrix U built by the vectors of modified~ef-
fective! coupling amplitudesUp wheren, the number of col-
umns ofU, equals the number of~occupied and unoccupied!
HF orbitals andN equals the number of 2p1h configurations
of block I. A set of orthonormal starting vectors
Q(n)5(q1 ,q2 ,...,qn) is then obtained by applying the modi-
fied Gram–Schmidt orthonormalization procedure to the col-
umns ofU. This yields theQ–R factorization

U5Q~n!R, ~45!

whereR is an upper triangularn3n matrix. We now assume
that we run the band Lanczos recursion untilj5N, the di-
mensionN of the matrixK1C of block I. In this case the
generated band matrix

T~N!5Q~N!†~K1C!Q~N! ~46!

simply represents an orthogonal similarity transformation of
K1C. The coupling matrixU transforms to

R̃5SR0D ~47!

which readily results from Eqs.~45! and ~46!. Applying the
outlined block Lanczos transformation to~K1C!I and defin-
ing the block diagonal matrix

Q̃5S 11p1h0
0

0
Q
0

0
0
1II
D ~48!

one arrives at the eigenvalue problem

B̃X̃5X̃Ẽ, X̃X̃†51, ~49!

where

B̃5Q̃†BQ̃5S e1S~`!

R̃
UII

~R̃!†

T
0

~UII !†

0
K II1CII

D ~50!

which is equivalent to Eqs.~18! and~19!. Figure 2 provides
an illustration of the structure of the Hermitian matrixB̃.

Now observe that inB̃, due to the particular structure of
the coupling matrixR̃, only the firstn elements of the band
matrixT, i.e., the firstn3n block ofT couple directly to the
one-particle blocke1S~`!. There is no direct coupling of
the ‘‘higher’’ matrix elements ofT to the one-particle block
e1S~`!. Furthermore, it is important to note that because of

its band structure the coupling of the higher elements of the
matrix T to the firstn3n block of T becomes successively
weaker. Remember that the moments of the ‘‘spectra’’ are
conserved. This obviously allows severe truncations of theT
matrix to dimensionsj much smaller than that of the full
2p1h block.

The eigenvalues and eigenvector components ofB̃ after
truncation ofT corresponding to the energies and transition
amplitudes, respectively, of the~N21!-particle states repre-
sent approximations to those of the full secular problemB.
Numerical examples which demonstrate the efficiency and
computational advantages of this proposed procedure are dis-
cussed in Secs. V and VI.

B. Evaluation of the static self-energy

In the following we consider the static self-energy ma-
trix S~`! which appears as a part of the small 1p/1h block in
the matricesA andB, respectively. This quantity enters very
sensitively the Dyson equation and an error inS~`! may
seriously affect the reliability of the results for the single-
hole main ionic states.

The basic relation for evaluating the components of
S~`! reads14

Spq~`!5(
k,l

Vpk@ql#H 2dklnk1
1

2p i R Glk~v!dvJ ,
~51!

where the contour integration is closed in the upper complex
energy plane. Here, the notationVpk[ql]5Vpkql2Vpklq is
used for the antisymmetrized Coulomb matrix elements. To-
gether with the Dyson equation~9! and Eq.~11! the above
relation establishes an iterative procedure for the consistent
calculation of both the static self-energyS~`! and the one-
particle Green’s functionG~v!, once the dynamic self-
energyM ~v! or an approximation of it is given.

In practice, however, the self-consistent procedure is ex-
pensive since the residues ofall ~N21!-particle eigenstates

FIG. 2. Structure of the eigenvalue problem for the Hermitian matrixB̃ after
application of the block Lanczos algorithm. Because of moments conserva-
tion ~see Sec. III A! one can in practical applications truncate the matrixT
after several block Lanczos iterations.
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are to be determined from the secular matricesA or B. Re-
placingG~v! in Eq. ~51! by the first two terms of the Dyson
expansion

G~v!5G0~v!1G0~v!S~v!G0~v!1••• ~52!

and considering Eq.~11! one arrives at

Spq~`!5(
k,l

Vpk@ql#

1

2p i R dv Gll
0 ~v!@S lk~`!

1Mlk~v!#Gkk
0 ~v!, ~53!

which in general represents an excellent approximation to
the fully iterated result of Eq.~51!. After performing part of
the contour integrations the problem of determiningS~`!
reduces to the single matrix inversion

Spq~`!2(
k,l

Vpk@ql#F n̄lnk
ek2e l

1
nln̄k

e l2ek
GS lk~`!5bpq

~54!

entirely defined in the space of the one-particle and one-hole
configurations. The inhomogeneitiesbpq are given by

bpq5(
k,l

Vpk@ql#

1

2p i R dv Gll
0 ~v!Mlk~v!Gkk

0 ~v!,

~55!

where the contour integral closes in the upper half of the
complex energy plane. The error introduced by the trunca-
tion of the Dyson expansion~52! is of fifth order perturba-
tion theory, i.e.,S~`! is complete through fourth order if the
third-order approximation, ADC~3!, for the dynamic self-
energyM ~v! is employed. The major numerical obstacle is
concealed in the inhomogeneitiesbpq requiring the contour
integrations

Qkl5
1

2p i R dv Gll
0 ~v!Mlk~v!Gkk

0 ~v!. ~56!

For an explicit spectral representation ofM ~v!, see Eqs.~12!
and ~13!, the result is

Qkl5Qkl
I 1Qkl

II , ~57!

Qkl
I 5 (

mP$N11%
ml

~m!mk
~m!* F 2nlnk

~ek2vm!~e l2vm!

1
nkn̄l

~ek2e l !~ek2vm!
2

nln̄k
~ek2e l !~e l2vm!G , ~58!

Qkl
II 5 (

mP~N21!
ml

~m!mk
~m!* F n̄l n̄k

~ek2vm!~e l2vm!

2
nln̄k

~ek2e l !~ek2vm!
1

n̄lnk
~ek2e l !~e l2vm!G . ~59!

The evaluation of these quantities requires, in principle, the
separatefull diagonalization of the secular matricesK1C of
the blocks I and II. This poses considerable numerical diffi-
culties due to the large dimension of these matrices. Numeri-
cal strategies which avoid or circumvent the full diagonaliza-
tion of K1C have been discussed in Ref. 43. There, two

alternative methods, namely an inversion method~Jacobi
iteration44! and a single-vector Lanczos diagonalization
method, have been considered for the efficient calculation of
the integralsQkl . Here, we complement these investigations
by introducing a block or band Lanczos diagonalization pro-
cedure which also allows for a direct and efficient access to
the integralsQkl .

As with the single-vector Lanczos method for diagonal-
izing K1C described in Ref. 43, the block Lanczos method
operates by generating an increasing basis of Lanczos vec-
tors and computing the projection ofK1C onto this basis.
Upon performing the algorithm~34! outlined in Sec. III A
one arrives afterj band~i.e.,J5[ j /n] block! iterations at the
band~block tridiagonal! matrix T( j ) of Eq. ~33!. The diago-
nalization ofT( j ) yields a set ofj eigenvaluesṽm represent-
ing approximations to the exact eigenvalues ofK1C.

The Dyson amplitudemp
(m) is the overlap of the modified

coupling amplitudeUp—i.e., thepth column vector of the
coupling matrixU—with the mth eigenvector ofK1C. As
starting vectors one hence has to choose the~Gram–Schmidt
orthonormalized! coupling amplitudes. Thus starting the pro-
cess with the matrixUI of column vectorsUp

I , where the
number of columns equals the number of occupiedand un-
occupied orbitals, one may compute all the matrix elements
Qkl
I via a simple block Lanczos diagonalization ofK1C

associated with the larger block I. Similarly, employing the
starting matrixUII one obtains all matrix elementsQkl

II by
diagonalizing the secular matrixK1C of the smaller block
II. In practical applications convergence of the elements
Qkl
I,II to 1029 is usually achieved within 12 to 15 block itera-

tions.
The procedure just described has the practical advantage

that the pseudospectra obtained for the larger block I can be
reused to build the secular matrixB̃ of Eq. ~50!. A closer
inspection of Eqs.~58! and~59! reveals that it suffices to run
the algorithm with a smaller block size ofUI andUII com-
prising the occupiedor unoccupied orbitals only. This
clearly restricts the amount of multiplications of the matrix
K1C and the vectorsUp . Proceeding in this way one has to
evaluate and store the overlapsUp

†qi , i51,2,...,j , for each
occupied or unoccupied orbitalp. After j band Lanczos it-
erations are performed, diagonalizeT( j ) and compute itsfull
eigenvector matrixX( j ). The matrix of approximate Dyson
amplitudesm̃p

(m) is given by

m̃5U†Q~ j !X~ j !5R̃†X~ j !. ~60!

In substituting the exact spectral energiesvm and Dyson am-
plitudesmp

(m) in Eqs. ~58! and ~59! by those of the block
Lanczos pseudospectrum one obtains an approximation for
the matrix elementsQkl . The second part of Eq.~60! shows
that only the firstn components of the eigenvectors are
needed@cf. Eq. ~47!#, wheren denotes the dimension of the
1p/1h block. This property significantly reduces the numeri-
cal effort.10

It should be mentioned that the block Lanczos diagonal-
ization procedure becomes expensive when a large number
of band iterationsj is required. In contrast to the inversion
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method,43 however, both the single-vector and block Lanc-
zos methods guarantee the convergence of the integralsQkl .

V. AN ILLUSTRATIVE EXAMPLE: THE IONIZATION
SPECTRUM OF BENZENE

To illustrate the performance of the block Lanczos trans-
formation described above in realistic applications we have
calculated the vertical-electronic ionization energies and
spectral intensities~pole strengths! of the valence ionic states
in benzene using the ADC~3! approximation for the one-
particle Green’s function. The approximate values of these
quantities obtained via the diagonalization of the block Lanc-
zos ‘‘prediagonalized’’ secular matrixB̃ are compared to the
corresponding ‘‘exact’’ values resulting from the one-step
‘‘direct’’ diagonalization of the full secular problemB. The
computations have been performed on an IBM 3090 com-
puter.

The required input data for the Green’s function
calculations,45 molecular orbital energies and Coulomb inte-
grals, were generated fromab initio Hartree–Fock self-
consistent field ~HF-SCF! calculations at the neutral-
molecule ground state geometry employing the experimental
equilibrium distancesRC2C51.397 Å andRC2H51.084 Å.46

A contracted double-zeta plus polarization~DZP! basis set
was used consisting of 4s,2p,1d Cartesian Gaussians on
each carbon and 2s,1p on each hydrogen.47,48The exponents
for the d-type polarization functions on carbon and for the
p-type polarization functions on hydrogen are 0.6 and 0.75,
respectively. The ground state HF total energy thus resulting
is 2230.728 603 a.u. The total number of molecular orbitals
is 126.

In the Green’s function calculations the orbital space has
almost completely been exhausted. Only theC1s core occu-
pied orbitals and their unoccupied~virtual! counterparts have
been left out of consideration. This leaves a total of 114~15
occupied and 99 virtual! valence orbitals to be included
when constructing the configuration spaces of the blocks I
and II. To introduce from the outset ana priori reduction of
the size of the secular problem both the spin and spatial
symmetries have been exploited. The spin-free expressions
for the elements of the ADC~3! matricesK1C andU em-
ployed here are given in Ref. 21. The spatial symmetry has
been exploited to the extent of the largest one-dimensional
~Abelian! subgroup of the full symmetry group, i.e.,D2h in
the case of benzene. The construction of symmetry-adapted
configurations is then trivial. Thus for each irreducible rep-
resentation there results a decoupled eigenvalue problem for
the matrixB. The dimensions of the subblocks ofB and ofB
itself as arising within theD2h point group are listed in Table
I. Here, we shall confine ourselves to the2A1g symmetry
only. For this symmetry the dimension was 20 746 for
~K1C!I and 3 254 for~K1C!II . These matrices are sparse
with 6.6% and 22.3% nonzero elements, respectively. To-
gether with the one-particle block 1p/1h whose dimension is
24 ~equal to the number of occupied and unoccupied orbitals
of a1g symmetry! the size of the joint matrixB amounts to
24 024. We note that the solutions of the eigenvalue problem

for B of 2A1g symmetry inD2h are readily reclassified with
respect to the full symmetry point group of benzene,D6h,
yielding the eigenstates of2E2g and

2A1g symmetry.
The static self-energy matrixS~`! appearing in the one-

particle block was determined via the free one-particle
Green’s function~direct! approach as described in Sec. IV B
~see also Refs. 41 and 43!. The ADC~3! expressions for
K1C andU were employed. This allows for an approxima-
tion of S~`! that is complete through fourth-order perturba-
tion theory and that includes partial contributions of certain
perturbation terms in all higher orders. The block Lanczos
algorithm was used to calculate the integralsQkl of Eqs.
~57!–~59!. On average about15 block iterations per symme-
try were required to achieve convergence of the elementsQkl

to 1029. Within this convergence threshold an accuracy of
about 1026 eV for the matrix elementsSkl~`! is obtained.

Next we have generated the elements of the band matrix
T of the 2p1h block using the block Lanczos algorithm.
Starting with matrixUI of column vectorsUp

I where the
number of columns equals the number of HF orbitals ina1g
symmetry,five block iterations were performed leading to a
T matrix of dimension 120. This defines our pseudospectrum
1. To study convergence further five block iterations were
appended to the previous run thus yielding a total often
block iterations. In this case the dimension of the resultingT
matrix is 240~pseudospectrum 2!. Note that the dimensions
of these projection matrices are substantially smaller than
that of the full secular matrix~K1C!I ~dimension 20 746!. In
the realization of the calculations both the coupling matrixR
and theT matrices were kept in fast memory. This was no
longer possible for the matrix~K1C!I which was therefore
held on disk.

Once the block Lanczos pseudospectrum of the 2p1h
block has been computed the matrixB̃ was then diagonalized
using the block Davidson procedure. The calculations were
performed as described in Sec. III B. The results obtained on
the valence ionic states of2E2g and

2A1g symmetry are col-
lected in Tables II and III~here and in the following the
symmetry labels of the full spatial point group of benzene,
D6h, are used!. In the tables the notationsI n

(J) andPpn
(J) are

employed for the ionization energies and pole strengths after
theJth block Lanczos iteration, respectively. For comparison
the corresponding ‘‘exact’’ values,I n andPpn , of the direct
diagonalization of the full problemB are also shown. We
mention that a detailed discussion of the present results on

TABLE I. Dimensions of the ADC~3! secular problemsB for benzene as
arising for the different symmetry species within theD2h point group.

Symmetry p h 2p1h 2h1p Joint dimension

2A1g 20 4 20 746 3254 24 024
2A1u 6 0 16 014 2316 18 336
2B1g 16 2 20 564 3226 23 808
2B1u 8 1 16 183 2342 18 534
2B2g 5 1 16 021 2309 18 336
2B2u 21 3 20 739 3261 24 024
2B3g 8 1 16 177 2348 18 534
2B3u 15 3 20 571 3219 23 808
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the satellite states has been published recently.49 There, the
results of a more extensive ADC~3! calculation based on a
triple-zeta-valence plus polarization~TZVP! basis set built
up of 5s,3p,1d Cartesian Gaussians on each carbon and
3s,1p on each hydrogen47,50 are also included. The expo-
nents chosen for the polarization functions in the TZVP basis
set are the same as those used in the DZP basis set.

Let us now discuss the outcome of the calculations. Us-
ing pseudospectrum 1, quite a good agreement with the re-
sults of the direct diagonalization of the full problemB is
already obtained. It is generally recognized that the absolute
error in the ionization energies, i.e., the differenceuI n2I n

(5)u
decreases upon going from the outer-valence energy regime
to the inner-valence energy regime of the ionization spec-
trum. This is easily understood since, due to the larger en-
ergy gap, the approximated 2p1h block has much less influ-

ence on the inner-valence ionic levels than on the outer-
valence ionic levels which are comparatively close to the
2p1h block. More specifically, for the lowest2E2g state the
discrepancy between the computed approximate ionization
energyI n

(5) and the corresponding ‘‘exact’’ valueI n , where
B was diagonalized by the block Davidson procedure alone,
is 6.6031024 eV. The absolute error in the corresponding
pole strength,uPpn2Ppn

(5)u, is also small~8.7031025!. For
the deeper-lying valence ionic states of2E2g symmetry the
calculations yield a maximum error of 1.0631024 eV for the
ionization energy and of 1.0131024 for the pole strength. A
similar trend is observed for the valence ionic states of2A1g
symmetry. As can be seen from Table III, the ionization
energy and pole strength of the2A1g state lowest in energy
are reproduced to within 3.3831024 eV and 5.5031025, re-
spectively, of the corresponding ‘‘exact’’ values. The largest

TABLE II. Approximate ionization energiesI n
(J) up to 30 eV with major pole strengths@Ppn

(J)>0.01# of the valence ionic states with2E2g symmetry of benzene
obtained via the diagonalization of the prediagonalized secular matrixB̃. The superscriptJ denotes the number of block Lanczos iterations performed in
calculating the pseudospectrum of the 2p1h block. The corresponding ‘‘exact’’ values of the direct diagonalization of the full secular problemB are denoted
as I n and Ppn . Also shown are the absolute errors in the ionization energies,uI n2I n

(J)u, as well as in the pole strengths,uPpn2Ppn
(J)u. The numbers in

parentheses are the powers of ten with which the entries are to be multiplied. All energies in eV.

Orbital
p In

(5) uI n2I n
(5)u Ppn

(5) uPpn2Ppn
(5)u I n

(10) uI n2I n
(10)u Ppn

(10) uPpn2Ppn
(10)u I n Ppn

3e2g 12.226 974 6.60~24! 0.896 694 8.70~25! 12.227 632 2.00~26! 0.896 613 6.00~26! 12.227 634 0.896 607

2e2g 18.980 895 6.00~26! 0.017 309 2.10~25! 18.980 901 ,1.00~26! 0.017 288 ,1.00~26! 18.980 901 0.017 288
19.106 338 3.80~25! 0.105 199 7.40~25! 19.106 376 ,1.00~26! 0.105 127 2.00~26! 19.106 376 0.105 125
19.536 669 1.06~24! 0.305 460 8.90~25! 19.536 775 ,1.00~26! 0.305 372 1.00~26! 19 536 775 0.305 371
19.909 481 6.80~25! 0.200 367 1.01~24! 19.909 549 ,1.00~26! 0.200 471 3.00~26! 19.909 549 0.200 468
20.583 741 9.00~26! 0.029 338 9.00~26! 20.583 750 ,1.00~26! 0.029 347 ,1.00~26! 20.583 750 0.029 347
20.857 246 6.00~26! 0.017 761 3.00~26! 20.857 252 ,1.00~26! 0.017 764 ,1.00~26! 20.857 252 0.017 764
21.217 717 2.30~25! 0.079 763 1.90~25! 21.217 740 ,1.00~26! 0.079 783 1.00~26! 21.217 740 0.079 782
21.883 285 1.10~25! 0.039 131 9.00~26! 21.883 296 ,1.00~26! 0.039 140 ,1.00~26! 21.883 296 0.039 140
25.687 004 3.00~26! 0.017 801 1.00~26! 25.687 007 ,1.00~26! 0.017 802 ,1.00~26! 25.687 007 0.017 802
27.786 274 3.00~26! 0.013 791 1.00~26! 27.786 277 ,1.00~26! 0.013 791 1.00~26! 27.786 277 0.013 790

TABLE III. Approximate ionization energiesI n
(J) up to 30 eV with major pole strengths@Ppn

(J)>0.01# of the valence ionic states with2A1g symmetry of
benzene obtained via the diagonalization of the prediagonalized secular matrixB̃. The superscriptJ denotes the number of block Lanczos iterations performed
in calculating the pseudospectrum of the 2p1h block. The corresponding ‘‘exact’’ values of the direct diagonalization of the full secular problemB are
denoted asI n andPpn . Also shown are the absolute errors in the ionization energies,uI n2I n

(J)u, as well as in the pole strengths,uPpn2Ppn
(J)u. The numbers in

parentheses are the powers of ten with which the entries are to be multiplied. All energies in eV.

Orbital
p In

(5) uI n2I n
(5)u Ppn

(5) uPpn2Ppn
(5)u I n

(10) uI n2I n
(10)u Ppn

(10) uPpn2Ppn
(10)u I n Ppn

3a1g 17.353 573 3.38~24! 0.797 029 5.50~25! 17.353 910 1.00~26! 0.796 977 3.00~26! 17.353 911 0.796 974
19.959 252 7.00~26! 0.019 585 4.00~26! 19.959 259 ,1.00~26! 0.019 589 ,1.00~26! 19.959 259 0.019 589
21.814 986 1.10~25! 0.043 152 3.00~26! 21.814 997 ,1.00~26! 0.043 155 ,1.00~26! 21.814 997 0.043 155
25.794 423 3.00~26! 0.018 421 ,1.00~26! 25.794 426 ,1.00~26! 0.018 421 ,1.00~26! 25.794 426 0.018 421

2a1g 25.886 852 4.00~26! 0.029 751 5.00~26! 25.886 856 ,1.00~26! 0.029 745 1.00~26! 25.886 856 0.029 746
26.134 281 2.00~26! 0.009 600 2.00~26! 26.134 283 ,1.00~26! 0.009 597 1.00~26! 26.134 283 0.009 598
26.781 181 1.30~25! 0.095 064 1.01~24! 26.781 194 ,1.00~26! 0.094 965 2.00~26! 26.781 194 0.094 963
26.849 326 2.60~25! 0.189 995 2.00~26! 26.849 352 ,1.00~26! 0.189 987 6.00~26! 26.849 352 0.189 993
26.992 161 2.40~25! 0.177 282 7.40~25! 26.992 185 ,1.00~26! 0.177 356 ,1.00~26! 26.992 185 0.177 356
27.378 993 1.40~25! 0.094 335 2.10~25! 27.379 007 ,1.00~26! 0.094 358 2.00~26! 27.379 007 0.094 356
28.836 113 1.00~26! 0.014 475 1.00~26! 28.836 114 ,1.00~26! 0.014 473 3.00~26! 28.836 114 0.014 476
29.048 785 0.064 144 29.048 792 0.064 151 a
29.349 252 0.010 598 29.349 253 0.010 599 a
29.649 414 0.013 971 29.649 416 0.013 971 a

aThe diagonalization procedure for these high-energy roots ofB did not converge.
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deviations in the energies and pole strengths found for the
other ionic states of2A1g symmetry are 2.6031025 eV and
1.0131024, respectively. We mention that similar results
have been obtained for the other symmetry species not dis-
cussed here.

Using pseudospectrum 2, a considerable improvement
over the previous results is obtained. As is made available by
Tables II and III, both the ionization energies and pole
strengths of all the valence ionic states of2E2g and 2A1g
symmetry are more or less reproduced to within about 6
‘‘exact’’ digits. As a remarkable outcome of our investiga-
tions we would like to emphasize that we did not achieve
convergence for the three states of2A1g symmetry highest in
energy when directly diagonalizing the full secular problem
B. This further underlines the excellent performance of the
block Lanczos method as employed here; the secular matri-
ces B̃ to be finally diagonalized are smaller and hence the
diagonalization process is numerically more stable than for
the matricesB.

The above discussion of efficiency essentially compares
the error in the final results, i.e., in the ionization energies
and pole strengths. A further relevant aspect concerns the
gain in computation time by the two-step diagonalization
procedure with respect to the direct diagonalization of full
secular problem. The time-determining step in the block
Lanczos algorithm is the multiplication of the matricesK1C
andU. The other operations have negligible cost and will not
be considered here. The characteristic CPU time forone
block iteration was 250 s on an IBM 3090 computer. Thus
about 1250 and 2500 s were used up in generating the pseu-
dospectra 1 and 2, respectively, considered here. The subse-
quent diagonalization of the matrixB̃ took about 900 s. For
comparison, the diagonalization time of the full problemB
was approximately 8000 s. Hence, we find that the two-step
procedure is betweenfour and two times faster than the di-
rect diagonalization ofB. It should be mentioned that these
efficiency factors substantially increase with the size of the
molecule, the orbital basis set employed, and the number of
roots to be computed. Moreover, one may expect that a more
efficient ~vectorized! computer code for the block Lanczos
algorithm will further increase the performance of the pro-
posed procedure.

VI. COMPLETE VALENCE-SHELL IONIZATION
SPECTRA OF BeF4

22 , BeF3
2 , AND BeF2

The diagonalization of the full secular matrixB ~Dyson
equation! whose eigenvalues and eigenvectors determine the
one-particle Green’s function is generally expensive. The
proposed procedure introduced in Sec. IV uses the block
Lanczos algorithm as a natural and convenient tool for re-
ducing the dimension of the secular problem, leading to an
enhanced numerical stability of the diagonalization process.
This reduction of the size of the secular problem is particu-
larly important in applications where the treatment of the full
problem B becomes computationally extremely cumber-
some. In cases where a large number of very closely lying
states in the inner-valence ionization region are present, the

diagonalization ofB ~via block Davidson! cannot be carried
out in this part of the spectrum. In this section we describe an
application for such a case.

In recent articles~see Refs. 51 and 52! the existence and
properties of thefree doubly negative molecular systems
MF4

22 ~M5Be, Mg, and Ca! have been discussed. These di-
anions were found to be stable with respect to both fragmen-
tation into MF3

2 and F2 and to electron loss. The stability to
electron loss has been established by computing the vertical-
electronic ionization energies of the outer-valence~main! an-
ionic states of the MF4

22 dianions using the one-particle
Green’s function approach. In the following we give an ac-
count of the computational details of the calculations that we
have performed on the complete valence-shell ionization re-
gime of the above dianions. In addition, we also report on the
calculated ionization spectra of the corresponding anions and
neutral systems. As representative examples of these systems
we discuss the results obtained for BeF4

22 , BeF3
2 , and BeF2.

The computed spectra of the homologous systems MF4
22 ,

MF3
2 , and MF2 ~M5Mg and Ca! are similar to those of the

beryllium fluorides. They are discussed in Ref. 53.
The valence-shell ionization spectra of BeF4

22 , BeF3
2 ,

and BeF2 have been calculated using the ADC~3! approxi-
mation for the one-particle Green’s function. The orbital en-
ergies and Coulomb integrals required for the Green’s func-
tion calculations were obtained from ground state HF-SCF
calculations using the respective optimized CI geometries of
the above systems. Details on the geometry optimization cal-
culations and the basis sets employed are given in Refs. 51
and 52. As for benzene, the spatial symmetry has been ex-
ploited to the extent of the respective largest one-
dimensional subgroups of the full point group, i.e.,D2, C2v,
andD2h in the case of BeF4

22 , BeF3
2 , and BeF2, respectively.

The orbital space has essentially been exhausted. With the
exception of theF1s core occupied orbitals and their unoc-
cupied counterparts all the remaining orbitals have been
maintained. For the largest system considered here, BeF4

22 ,
the resulting configuration spaces of the blocks I and II with
largest dimensions are 23 913 and 5 421, respectively~2A1 in
D2 point group symmetry!. The various computational steps
of the ADC~3! calculations proceeded as described in the
preceding section for benzene. For each beryllium fluoride
system, the total number of block iterations performed in
generating the respective pseudospectra wasten. In the case
of BeF4

22 , the largest eigenvalue problem for the prediago-
nalized secular matrixB̃ was of dimension 5707~2A1, D2
notation!. By contrast, the corresponding full secular prob-
lem B is of dimension 29 360.

The results, ionization energies and spectral intensities
~pole strengths!, obtained for BeF4

22 , BeF3
2 , and BeF2 are

collected in Table IV. In addition, the calculated ionization
spectra are displayed in Fig. 3 in the shape of a line spec-
trum. The position and height of each line are given by the
computed ionization energy and pole strength, respectively.
The number above each line indicates the orbital out of
which ionization takes place.

Before discussing the results let us first describe the
most critical problems arising in the calculations of the ion-
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ization spectra of the systems BeF4
22 and BeF3

2 . Whereas the
block Davidson algorithm could be straightforwardly applied
to the matrix B̃ to extract the desired information on the
outer-valence part of the spectrum, serious computational
difficulties emerged in calculating inner-valence ionic states.
The convergence problems of the block Davidson method
encountered in the inner-valence ionization region are due to
the large number of closely lying states in that part of the
spectrum. To overcome these problems a modification of the
initial subspace selection for the block Davidson iterations
was adopted. In the usual procedure the starting subspace
vectors are simply selected as anN3n ‘‘unit’’ matrix Q(n)

with elementsQim5d im , wheren is equal to the number of
occupied orbitals andN denotes the dimension of the predi-
agonalized matrixB̃. In the problematic cases we augmented
this starting basis set by additional unit vectors selected us-
ing a second-order perturbation theory criterion as follows.
The full list of 2h1p and 2p1h configurations is ordered
according to their summed second-order contribution to the
1h inner-valence states and a suitable number of the largest
contributing ones is then added to the starting basis. Out of
the thus obtained basis vectors a maximum number of 600
basis vectors has been considered. In the block Davidson
diagonalization ofB̃ the large number of about 70 block
iteration cycles were required to achieve convergence for all
inner-valence ionic states, leading toSmatrices with dimen-
sions around 1100. Without the reduction of dimension when

going fromB to B̃, the diagonalization of all inner-valence
states is hardly possible.

We now turn to the discussion of the computed ioniza-
tion spectra of BeF4

22 , BeF3
2 , and BeF2. In its ground state

the BeF4
22 dianion is well described by theTd electronic

configuration ~core!10(3a1)
2(2t2)

6(4a1)
2(3t2)

6(1e)4~4t2!
6

3(1t1)
6. As can be seen in Fig. 3 the spectrum of BeF4

22

consists of two groups of closely spaced lines which are
separated by a large energy gap~;20 eV!. The first group of
lines at lowest ionization energy results from the removal of
electrons out of the outer-valence orbitals 1t1, 4t2, 1e, 3t2,
and 4a1. These orbitals essentially derive from the 2p levels
of fluorine ~F2p lone pairs!, the highest occupied of which,
1t1, is nonbonding with respect to the central beryllium
atom. The second group of lines at higher binding energy
arises from the ionization out of the inner-valence orbitals
2t2 and 3a1 which are mainly of fluorine 2s character. These
lines are satellite lines and correspond to 2h1p configura-
tions involving electron excitations from the outer-valence
occupied to low-lying unoccupied~virtual! orbitals accompa-
nying the ionization of an electron out of an outer-valence
orbital. They acquire their intensity by borrowing it from the
2s main states. According to the classification scheme pre-
sented in Ref. 15 these satellites are final-state or correlation
satellites. The present calculation yields a total of nine satel-
lite lines of 2T2 symmetry and a total of seven satellite lines
of 2A1 symmetry with pole strengths greater or equal to

TABLE IV. Vertical-electronic ionization energiesI n and spectral intensity coefficientsPpn of BeF4
22 , BeF3

2 , and BeF2 calculated using the ADC~3! Green’s
function approach. Ten block Lanczos iterations have been performed on~K1C!I and subsequently the resulting matrixB̃ has been diagonalized using the
block Davidson procedure. The states withPpn>0.01 are shown. All energies in eV.

BeF4
22 BeF3

2 BeF2

Orbital
p

Hartree–Fock
2ep

Green’s function
Orbital
p

Hartree–Fock
2ep

Green’s function
Orbital
p

Hartree–Fock
2ep

Green’s function

I n Ppn I n Ppn I n Ppn

1t1 3.47 1.88 0.92 1a28 9.47 7.86 0.92 1pg 17.26 15.85 0.93
4t2 3.89 2.38 0.92 1e9 9.97 8.46 0.92 1pu 17.86 16.57 0.93
1e 4.47 2.93 0.92 4e8 10.14 8.61 0.92 4sg 18.89 17.62 0.93
3t2 5.53 4.10 0.92 1a29 10.90 9.52 0.92 3su 19.27 17.89 0.92
4a1 6.40 5.01 0.92 3e8 11.81 10.35 0.92

4a18 12.22 10.81 0.92

2t2 28.69 24.78 0.04 2e8 35.01 30.80 0.01 3sg 42.51 38.90 0.81
24.84 0.02 31.08 0.01 41.95 0.06
24.92 0.04 31.23 0.16 45.15 0.02
24.96 0.06 31.33 0.32 2su 42.73 39.09 0.79
24.99 0.22 31.39 0.05 41.95 0.07
25.11 0.23 31.45 0.16 45.16 0.02
25.22 0.02 31.52 0.03
25.31 0.06 31.54 0.01
25.40 0.06 31.68 0.02

3a1 29.20 25.46 0.05 35.45 0.01
25.52 0.20 38.00 0.01
25.58 0.31 3a18 35.33 31.19 0.01
25.67 0.14 31.54 0.01
25.84 0.07 31.55 0.04
26.03 0.01 31.66 0.03
28.38 0.02 31.73 0.72

35.45 0.02
38.04 0.01
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0.01. The most intense2T2 satellites are predicted to appear
at 24.99 and 25.11 eV and to possess pole strengths of 0.22
and 0.23, respectively. The most intense2A1 satellites are
predicted to lie at 25.52 and 25.58 eV and to have pole
strengths of 0.20 and 0.31, respectively. As one can see from
the figure, 2t2 and 3a1 main states cannot be identified, their
intensity has spread over many lines. One encounters the
phenomenon of the breakdown of the orbital picture of
ionization.15

The ionization spectrum of BeF3
2 shown in Fig. 3 is

similar to that of BeF4
22 discussed above. In the outer-

valence energy regime the spectrum exhibits six main ion-
ization lines all possessing a pole strength of 0.92. In the
order of increasing ionization energy these lines are associ-
ated with the ejection of electrons out of the orbitals 1a28 ,
1e9, 4e8, 1a29 , 3e8, and 4a18 in accordance with theD3h

ground state electronic configuration (core)8(3a18)
2(2e8)4

3 (4a18)
2(3e8)4(1a29)

2(4e8)4(1e9)4(1a28)
2 of the BeF3

2 an-
ion. As for the outer-valence orbitals of BeF4

22 , these orbitals
are essentially built up of fluorine 2p components, the high-
est occupied orbital, 1a28 , is nonbonding with respect to be-
ryllium. The rich satellite structure at about 31 eV binding
energy originates from the ionization out of the inner-
valence orbitals 3a18 and 2e8 which have mainly fluorine 2s

character. Further weak satellite lines of2A18 and
2E8 sym-

metry are predicted to appear at somewhat higher energy. As
for the BeF4

22 dianion these satellite lines arise due to corre-
lation effects in the final states and thus can be classified as
correlation satellites. The major portion of the pole strength
~0.72! available for the 3a18 orbital is confined in the ‘‘main’’
state at 31.73 eV; the most intense lines emerging from the
ionization of the 2e8 orbital are the ones at 31.23, 31.33, and
31.45 eV having pole strengths of 0.16, 0.32, and 0.16, re-
spectively.

Finally, we briefly discuss the results for BeF2. The cal-
culated ionization spectrum in Fig. 3 of this molecule which
possesses theD`h ground state electronic configuration
~core!6(2su)

2(3sg)
2(3su)

2(4sg)
2(1pu)

4(1pg)
4 is rather

simple. It consists of four outer-valence main ionization lines
originating from the removal of electrons out of the orbitals
1pg , 1pu , 4sg , and 3su . The ionization of the inner-valence
orbital 3sg is predicted by the present calculation to result in
a ‘‘main’’ line at 38.90 eV with a pole strength of 0.81 and
in two satellite lines at 41.95 and 45.15 eV ionization energy
with pole strengths of 0.06 and 0.02, respectively. Similarly,
the 2su ionization leads to the appearance of a ‘‘main’’ line
at 39.09 eV with a pole strength of 0.79 accompanied by two
satellite lines at 41.95 and 45.16 eV possessing the pole
strengths of 0.07 and 0.02, respectively. The less pronounced
satellite structure and the absence of the breakdown of the
orbital picture of ionization predicted for this molecule is
partly due to the smaller number of electrons.

To make a simple characterization of the computed main
and satellite ionic states for BeF4

22 , BeF3
2 , and BeF2 we

recall the peculiar spatial electron distribution present in
these systems. As has been discussed in Ref. 52 the bonding
in these systems, in particular in the dianion, is highly ionic
with the outer-valence electron density predominantly resid-
ing on the symmetry equivalent fluorine ligands and the cen-
tral beryllium atom being positively charged. Therefore, we
may expect the vacancies created upon ionization and exci-
tation to be essentially localized on the fluorine sites. The
virtual orbitals are somewhat more difficult to characterize
since these orbitals represent—apart from a few
exceptions—admixtures of components deriving from both
the fluorine ligands and the central beryllium atom. How-
ever, as a closer analysis reveals, the metallic character of
almost all of these orbitals is obvious.

Owing to the above characterization of the orbitals and
the localization of the electronic charge density we may de-
note the single-hole configurations corresponding to the
outer-valence orbitals as F2p21 which simply implies that
the hole created upon ionization is essentially localized on
one of the fluorine atoms. The 2h1p configurations associ-
ated with the satellite states may be divided into two groups
which we collectively denote as F2p21 F82p21 M81 and
F2p22 M81. The F2p21 F82p21 M81 configuration indicates
that one electron is excited from one of the fluorine ligands
to the central beryllium upon ionization of a further electron
which stems from a fluorine atom other than the excited one
~‘‘two-site configuration’’!. Likewise, the F2p22 M81 con-

FIG. 3. Valence-shell ionization spectra of BeF2, BeF3
2 , and BeF4

22 calcu-
lated using the ADC~3! Green’s function approach. The states with pole
strengths greater or equal to 0.01 are shown. The number above each line
specifies the orbital out of which ionization takes place. The assignment is
as follows: 151pg , 251pu , 354sg , 453su , 553sg , and 652su ~BeF2!;
1 5 1a28 , 251e9, 354e8, 45 1a29 , 553e8, 65 4a18 , 752e8, and 85 3a18
~BeF3

2!; 151t1, 254t2, 351e, 453t2, 554a1, 652t2, and 753a1
~BeF4

22!.
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figuration implies that both the ionized and excited electrons
stem from the same fluorine atom~‘‘one-site configura-
tion’’ !. Physically, the above 2h1p configurations describe a
charge transfer of negative charge from fluorine to the cen-
tral, almost positive, beryllium. The increasing many-body
effects in the inner-valence energy region when going from
BeF2 to BeF4

22 is related to the growing ionicity and hence to
the growing efficiency of the charge transfer in these sys-
tems.

VII. CONCLUSIONS AND OUTLOOK

In the present work we have discussed the relevance of
the block or band Lanczos method for calculating the one-
particle Green’s function. The usual way for determining this
function is to resort to the Dyson equation whose solution
reduces to the diagonalization of large-dimensional Hermit-
ian secular matrices. We have shown that the block Lanczos
method quite naturally applies to the emerging secular prob-
lems allowing for their efficient computation.

To make transparent the importance of the block Lanc-
zos method within the one-particle Green’s function frame-
work we recall that its applicability heavily depends on the
specific structure of the secular problem. As we have pointed
out, in the secular matrix~Dyson equation! to be diagonal-
ized a block of small dimension~the 1p/1h block! is coupled
to two larger blocks which do not couple with each other.
Without loss of generality we have explicitly discussed the
ADC~3! Dyson equation as a specific example. There, the
latter two blocks are the 2p1h and 2h1p blocks. Based on
the major prerequisite that the 2p1h and 2h1p blocks can be
treated independently and that the 2p1h block is energeti-
cally well separated from the 2h1p block and thus has minor
influence on the cationic solutions being sought, we have
transformed thevery large2p1h block using block Lanczos.
In this way a rather reliable approximation of the 2p1h
block in the region of ionization is obtained. As a result the
dimension of the secular matrix which is subject to subse-
quent diagonalization is substantially reduced.

The computational performance of the proposed proce-
dure has been tested in calculating the vertical ionization
energies and accompanying spectral intensity coefficients of
the valence ionic states in benzene. The approximate values
of these quantities obtained by the prediagonalized Dyson
equation have been compared to the corresponding ‘‘exact’’
values of the full secular problem. The results for the valence
ionic states of2E2g and

2A1g symmetry have been discussed
in detail. It has been demonstrated that a rather crude pseu-
dospectrum of the 2p1h block already suffices to reproduce
all the valence ionic levels to a sufficient degree of accuracy.
The results further show the expected tendency of a faster
convergence of the outer-valence states than is observed for
the inner-valence states.

As a further model application of the procedure we have
calculated the valence-shell ionization spectra of BeF4

22 ,
BeF3

2 , and BeF2 using the ADC~3! Green’s function ap-
proach. The diagonalization of the secular matrices arising
for the BeF4

22 and BeF3
2 systems has proven to be a particu-

lar delicate problem in view of the large number of closely
lying states to be determined in the inner-valence regime of
their ionization spectra. Here, the block Lanczos transforma-
tion has substantially reduced the computational effort as one
has now to cope with smaller secular matrices. We have
discussed the electronic structure of the computed spectral
profiles of the above beryllium fluorides in relation to the
peculiar bonding properties present in these systems.

The efficiency of applying the block Lanczos prediago-
nalization grows, on the one hand, with the size of the con-
figuration spaces defining the dimension of the secular ma-
trices to be diagonalized and, on the other hand, with the
number of roots being sought. As we have pointed out, the
dimension of the secular problem is substantially determined
by the size of the 2h1p block and, in particular, by that of
the 2p1h block. For a molecule under consideration the size
of the configuration spaces of these blocks crucially depends
on the orbital basis set employed, i.e., on the number of
occupied and unoccupied~virtual! orbitals. Enlarging the ba-
sis set the 2p1h block grows much faster with the basis set
than does the 2h1p block, hence facilitating the application
of the block Lanczos prediagonalization. The second impor-
tant aspect concerns the number of eigensolutions wanted.
As far as one is only interested in a few selected roots, e.g.,
in those corresponding to the outer-valence ionic states of a
molecule one may directly apply the block Davidson diago-
nalization procedure~or any other proper diagonalization
method! to generate the desired information from the secular
matrix. Considerable numerical difficulties, however, arise
when a multitude of solutions is required. In this situation,
especially when the density of cationic states is large, the
block Lanczos prediagonalization is advantageous.

The success in the ADC~3! applications for the one-
particle Green’s function renders the block Lanczos method
also a promising method for the treatment of the next higher
level of approximation, the fourth-order scheme, ADC~4!.
From the numerical point of view the ADC~4! approximation
poses two major bottlenecks. One drawback opposing actual
applications is the calculation of special effective matrix el-
ements involving sums of Coulomb interactions running over
four one-particle quantum numbers. The other difficulty
originates from the size of the configuration spaces. In the
ADC~4! scheme, the next higher class of excitations, i.e.,
3p2h and 3h2p excitations is explicitly introduced leading
to secular matrices whose dimensions surmount those of the
ADC~3! scheme considerably. The essential mathematical
procedures now involve the diagonalization of Hermitian
secular matrices built up of the blocks 1p/1h, 2p1h/3p2h,
and 2h1p/3h2p, where the 3h2p block and, in particular,
the 3p2h block are very large. Here, we expect that the
block Lanczos prediagonalization will be extremely advanta-
geous in order to cope with the otherwise very demanding
full ADC ~4! matrices.

Finally, we briefly outline a further application of the
block Lanczos method within the many-body Green’s func-
tion framework. This application aims at the computation of
the particle–particle~p–p! propagator which is a component
of the two-particle Green’s function. The p–p propagator
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bears direct access to the energies and accompanying spec-
tral transitions of doubly ionized states in molecules. The
ADC~2! expansion of the spectral representation of the p–p
propagator leads to an eigenvalue problem in the space of
two-hole and three-hole one-particle configurations defined
with respect to theN-electron HF orbital basis. In practical
applications one often has to compute a multitude of states
~typically several hundreds! which obviously represents a
formidable task. On the other hand, it is useless to determine
all the states from the high-dimensional secular matrices
since the individual states cannot usually be resolved in the
experiment. In order to simulate the spectral profile of the
spectrum it is, therefore, reasonable only to reproduce its
collective or general features. In this respect the block Lanc-
zos method should prove to be a powerful tool in view of the
global convergence properties which it does account for.
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28H. Köppel, W. Domcke, and L. S. Cederbaum, Adv. Chem. Phys.57, 59

~1984!.
29A. Nauts and R. E. Wyatt, Phys. Rev. Lett.51, 2238~1983!.
30R. E. Wyatt, Chem. Phys. Lett.121, 301 ~1985!.
31C. Duneczky, R. E. Wyatt, D. Chatfield, K. Haug, D. W. Schwenke, D. G.
Truhlar, Y. Sun, and D. J. Kouri, Comput. Phys. Commun.53, 357
~1989!.

32T. J. Gil, C. L. Winstead, and P. W. Langhoff, Comput. Phys. Commun.
53, 123 ~1989!.

33N. Ben-Tal and N. Moiseyev, J. Phys. A24, 3593~1991!.
34E. R. Davidson, J. Comput. Phys.17, 87 ~1975!.
35W. Butscher and W. E. Kammer, J. Comput. Phys.20, 313 ~1976!.
36B. Liu, in Numerical Algorithms in Chemistry: Algebraic Methods, LBL-
8158 ~Lawrence Berkeley Laboratory, 1978!.

37F. Tarantelli~unpublished, 1985!.
38F. Tarantelli, A. Sgamellotti, L. S. Cederbaum, and J. Schirmer, J. Chem.
Phys.86, 2201~1987!.

39C. W. Murray, S. C. Racine, and E. R. Davidson, J. Comput. Phys.103,
382 ~1992!.

40D. K. Faddeev and V. N. Faddeeva,Computational Methods of Linear
Algebra ~Freeman, San Francisco, 1963!.

41W. von Niessen, J. Schirmer, and L. S. Cederbaum, Comput. Phys. Rep.1,
57 ~1984!.

42O. Walter, L. S. Cederbaum, and J. Schirmer, J. Math. Phys.25, 729
~1984!

43J. Schirmer and G. Angonoa, J. Chem. Phys.91, 1754~1989!. .
44F. B. Hildebrand,Introduction to Numerical Analysis~McGraw-Hill, New
York, 1974!.

45The computer program used is based on the original version written by O.
Walter and G. Angonoa in Heidelberg.

46G. Herzberg,Electronic Spectra of Polyatomic Molecules~Van Nostrand,
Princeton, 1966!.

47S. Huzinaga, J. Chem. Phys.42, 1293~1965!.
48T. H. Dunning, J. Chem. Phys.53, 2823~1970!.
49H.-G. Weikert and L. S. Cederbaum, Chem. Phys. Lett.237, 1 ~1995!.
50T. H. Dunning, J. Chem. Phys.55, 716 ~1971!.
51H.-G. Weikert, L. S. Cederbaum, F. Tarantelli, and A. I. Boldyrev, Z.
Phys. D18, 299 ~1991!.

52H.-G. Weikert and L. S. Cederbaum, J. Chem. Phys.99, 8877~1993!.
53H.-G. Weikert, Thesis, Universita¨t Heidelberg, 1993.

7138 Weikert et al.: Block Lanczos and many-body theory

J. Chem. Phys., Vol. 104, No. 18, 8 May 1996


