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The importance of the block or band Lanczos method for many-body Green’s function calculations
of atomic and molecular systems is discussed. The usual computation schemes for determining the
Green’s function involve the diagonalization of Hermitian secular matrices. Considerable numerical
difficulties arise, on the one hand, from the size of these matrices and, on the other hand, from the
large number of eigenvalues and eigenvectors which often need to be computed in practice. In the
case of the one-particle Green’s function it is shown how the computational effort of the
diagonalization process can be substantially reduced using block Lanczos. The proposed procedure
which consists of a block Lanczos “prediagonalization” and a subsequent diagonalization of the
resulting smaller secular matrices quite naturally exploits the specific structure of the secular
problems encountered. Its computational performance is demonstrated in a model application to the
benzene molecule. The calculation of the complete valence-shell ionization spectra of the systems
BeF,~, BeF;, and Bek is devised as a further application of the method in the particular case
where the treatment of the full secular problem is computationally prohibitively expensive.
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I. INTRODUCTION eigenstates which often need to be computed in order to en-

, sure a conclusive assignment of the observed structures in
_ In the f(amtixvork of many-body theory the Green'’s func—the experimental spectrum.
tion formalisrt= constitutes a powerful and elegant theo- Though large-scale eigenelement computations represent

retical tO.OI for mvestlgatlng properties and eXC|t:';1t|0n P-4 standard task in computational quantum chemistry and
cesses in many-particle systems. The Green’s function

: . . . o hysi th ific problem t Iv ften permit
provides direct access to important physical quantities as, f(ﬁ ysics, the specific problem to be solved often permits

. . . - some reasonable simplifications. A particular interesting situ-
example, ionization energies and spectral intensities by the. . . . ,

k , . . ation is encountered in the case of the one-particle Green'’s
one-particle Green’s function without the need to resort tq

separatéapproximatg solutions of the Schidinger equation functlgn. Herg, one may resprt 0 the,well-kr?own Dyson
for the (initial) ground state and théfinal) ionic states. equation relating the one-particle Green’s function to the so-

Hereby the method accounts from the outset for a balance%a"ed sglf—energy _Wh'Ch IS an (_effecnve energy-dependent
consideration of both the ground and ionic correlation which®n€-Particle potential. When solving the Dyson equation one
is difficult within conventional wave function approaches Usually makes use of the well-established equivalence of this
such as the configuration interactié@l) method. Another ~€duation to the evaluation of the eigenvalues and eigenvec-
inherent advantage of the Green’s function approach, beinfprs ©f Hermitian secular matrices possessing a specific
essential for the treatment of larger systems is the occuren&@ructure. The .secular matrices to be d|.agonal|zed consist of
of “size-consistent” approximation schemes which have thethree submatricegblocks: the one-particle block, théN
correct scaling behavior with respect to the number of elec-t1)-particle block, and théN—1)-particle block. The sizes
trons. of the configuration spaces defining these submatrices are,
The essential numerical elements associated with thBowever, very different. Whereas the one-particle block cor-
computation of the Green’s function involve the evaluationfésponds to the space of single-particle and single-hole con-
of matrix elements and the diagonalization of Hermitian mafigurations and is small, theN—1)-particle block and, in
trices defined in the space of a special class of ionic configuparticular, the(N+1)-particle block, which are associated
rations. One source of problems one has to cope with invith physical excitations ol —1 andN +1 particles, respec-
realistic applications results from the size of the configuradively, are usually of high dimension. The fact that tié
tion space. Depending on the size of the molecule, the orbitat 1)-particle and(N—1)-particle blocks can be treated inde-
basis set, and the approximation scheme used, the configpendently and that these blocks are energetically far apart
ration space can become extremely large preventing the dé-om each other is of crucial importance. Therefore, provided
termination of the relevant eigenvalues and eigenvectorthat one is only interested in the eigenvalues and eigenvector
from the corresponding secular matrix with reasonable exeomponents corresponding to the ionization energies and
pense. Another drawback arises from the large number dpectral intensities of a molecule, one may “replace” the
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usually very large (N+1)-particle block, which is expected the exact eigenspectrum 6f. In general, the first few mo-
to have only minor influence on the desired cationic solu-ments usually already allow a reasonable description of the
tions, by amuch smallematrix which approximates théN  global features oH’s spectrum(position, width, shape, elc.
+1)-particle block well in the region of ionization. whereas the higher moments account for more refined details
An obvious way of truncating théN+1)-particle block  of the spectrum leaving, however, its crude structure un-
is to perform a selection in the configuration space, e.g., bghanged. Because of this significant feature, the block Lanc-
including the most important configurations in the calcula-zos method offers new possibilities for applications to many-
tions and excluding the others. This may, however, largelyoody Green'’s functions.
affect the accuracy of the final results. Another and appar- The objective of this article is to analyze the capability
ently more promising way of approximating th@&l+1)-  of the block Lanczos method for many-body Green’s func-
particle block is to rely on projection methods. These techiion calculations. In the particular case of the one-particle
niques consist of generating an increasing subspace onfereen’s function we shall demonstrate how, due to the spe-
which the(N+1)-particle block—or, in general, a large sym- cific structure of the secular matrices encountered, the block
metric or Hermitian matrix4—is restricted. The choice of Lanczos method is quite naturally applied allowing for an
basis vectors spanning the subspace is, however, crucial agffective reduction of the size of the diagonalization prob-
depends on the specific problem under consideration. Thiém. In Sec. Il we briefly outline the theory of the one-
probably most prominent projection method which has foundoarticle Green’s function and the particular approximation
widespread application is the single-vectsimple Lanczos scheme employed here. In Sec. Il we survey two of the
algorithm®~’ Using the Lanczos recurrence, the algorithmprobably most widely used diagonalization methods for large
iteratively builds an orthonormal basis from the Krylov sub- matrices in quantum chemistry and physics: the Lanczos and
space, i.e., from the sequence of iterdtgsHq,,...H “'q,},  the Davidson algorithms. The new proposed procedure for
whereq is an initial vector called the starting vector. In this the numerical calculation of the one-particle Green’s func-
basis spanned by the Lanczos vectors the representation #®n is then described in Sec. IV. The discussions in Secs. V
the matrixH is particularly simple. It reduces to a tridiagonal and VI are devoted to provide model applications demon-
matrix which is easy to diagonalize or to invert. strating the performance of the proposed method. Finally,
The natural extension of the simple scheme is the blockoncluding remarks are presented in Sec. VII.
or band Lanczos methdd® In exact arithmetic both variants
are equivalent_. Though being computationally more demandl—l_ THE ONE-PARTICLE GREEN'S EUNCTION AND ITS
ing than the single-vector Lanczos method, the block Lancgy, | yaTION
zos method is, as we shall see, particularly well adapted to
the present purposes. The majfarmal) differences with the The one-particle Green’s functioB(w) is the simplest
simple scheme are that the block algorithm generateta  member in the hierarchy of Green’s functions. Consider an
orthonormal vectors at once in time insteadoofe as does N-particle systen{atom or moleculgewith a nondegenerate
the simple scheme and that the matrices resulting from proclosed-shejl ground stateyf)) and energyEg. In a basis
jection are now no longer tridiagonal but block tridiagonal orspanned by the discrete set of one-particle states
banded. Originally the block Lanczos algorithm was con-lq‘)p}—usually chosen as the ground state Hartree—FHEK
ceived to identify the multiplicity of degenerate eigenvaluesorbitals—the matrix elements @(w) in energy representa-
for which the single-vector algorithm does not account for.tion are defined &¢
However, as mentioned, owing to its greater complexity the /N N O s =14 N
block Lanczos method has been rarely used. It is just re- Gl @) =(olCp(w+Eg—H+i7)""cql dig)
_cently th_at its efficiency has been demonstrated in calculat- +(¢g‘|c(§(w—E§+|:|—i n)*lcp|¢//§>. (1)
ing matrix elements of a resolveht? ; _ o
It is one of the inherent advantages of both the simple1€re.Cp(Cy) labels the creatiotannihilation) operator for an
and block Lanczos methods that they permit the computatiofI€Ctron in the one-particle stdig,) obeying the usual anti-
of a few of the eigenvalues and eigenvectors of a matrix commutation relationdyl is the(full) electronic Hamiltonian

without the need to perform a complegimilarity) transfor- of the system, andy is a positive infinitesimal introduced to
mation of H. This is due to the iterative nature of the pro- €NSure the convergence of the Fourier transform between the

cess, providing at each iteration a tridiagonal or block tridi-ime and energy representations@fw). The physical con-
agonal matrix. From the numerical side the simple structurdent of the one-particle Green's function becomes more ap-
of these matrices is also important. Indeed, many applica@@rent in its spectral representafidn

tions use the !_anczos algorithr_n as a diagonalization method <¢’8||Cp| ¢y+1><¢r’:|+l|cg|¢g>
for large matrices. Another insight into the convergence be- qu(w)=2 EN_ENTI;

havior of the Lanczos method results from its close relation- : @+ Eo—En "7

ship to the methods of momerifs!? It is well-known that CUNICT NN el )
the moments of a matrikl are intimately related to the ma- +2 N—T =N
trix elements of the tridiagonal or block tridiagonal represen- : wtBy "Bl
tation of H with respect to the Lanczos basis. This implieswhich readily results from Eq1) by inserting complete sets
that the Lanczos spectra converge in a global sense toward$ (N+1)-particle eigenstatey/y=') of H with energies

2
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EN*1. The first (advancefl and secondretarded parts of sists of a staticlenergy-independentpart () discussed
G(w) bear important information on the electron attachmenfurther below (see Sec. IV B and a dynamic(energy-
(or scattering and ionization processes, respectively. Thedependentpart M (w):

(vertical-electronig ionization energies

3(w)=3(»)+M(w). (11
l,=EN"1—E} ()
and electron affinities The 'dynam|c self-energy is further split into two parts ac-
cording to
A,=Ey—EN? €)
noe M(w)=M"(w)+M"(w) (12)

are derived from the location of the poles G{w) in the
upper and lower half, respectively, of the complex energyeach possessing a spectral representstioh
plane. The residue corresponding to a polés obtained as

the product of the transitiofor spectroscopjcamplitudes M= S m(m{” 13
glw)= I
(uplcolyn ™) ne{N+1} P weliey @— o tigoy
(n— . . .
pn - _ : ) similar to that for the one-particle Green’s function. Depend-
X N-1 N
(¥ |Cp|¢0> ne{N—-1} ing on the sign ofo, the polesw, are located either in the

The amplitudex” are closely related to the spectral inten- Iower (o;=+1) or the upper halfo; =—1) of the complex
sities of the experiment. Consider the case of an ionizatio§Nergy plane. The residue .correspondlng. to a paiegiven
experiment where the kinetic energy of the ejected elec- as the product of the couplir@yson amplitudesn{/”). The
tron is sufficiently high(“sudden limit”). The intensity with ~ decomposition of the dynamic self-energy into the parts

. SR . y | PR
which a final ionic state in the spectrum emerges is given M («) and M"(«w) implies that each of these parts can be
by*? calculated independently, for instance, from their respective

) diagrammatic perturbation expansions. There ramemixed
S(E+1,— wp). 6) terms_betwee_n the par_ts I and II. Phy5|ca_lly these parts are
associated with excitations of thisl=1)-particle systems.
Using the relation$10)—(13), the solution of the Dyson
equation can be cast as an eigenvalue problem of a Hermitian
matrix!® In practical applications one, of course, uses an
approximation of the self-energy and hence of this Hermitian
matrix. Various approximation schemes have been proposed
to evaluate the self-energy and Green’s functions in general.
An important class of approximation schemes are the dia-

PME)=2 |2 7epXy”
€ | p

Here, 7., denotes the dipole matrix element for tteound
one-particle statg¢$,) and the continuuniscattering one-
particle statg,) andwy is the energy of the incident photon.
Often only one orbitalp has appreciable contribution to
PM(E,). In this case Eq(6) simplifies to

PM(E) = Ppnze | Tepl “A(Ect 17— o), (@) grammatical methods. Here, one makes use of the Feynman
diagrams to represent the perturbation series of the Green’s

where function or propagator under consideration. Among the dia-
Ppn=|Xf3n)|2- (8) grammatical methods the algebraic diagrammatic construc-

tion (ADC)?°~?*has proven to be of particular success for the
The quantityP,, is called pole strength or spectroscopic treatment of finite electronic systems. This scheme, which
factor and provides a measure for the relative spectral intenprovides access to the entire energy scale of the valence-shell
sities of the ionic states associated with the Orbltﬂ For a jonization regime' reformulates the diagramma’[ic perturba-
more thorough discussion of the intensity problem we refetjon expansion for the Green'’s function in a simple algebraic

to Refs. 14 and 15. . _ form representing infinite partial summations of certain types
To evaluate the one-particle Green’s functi®fw) one  of Feynman diagrams. Theth-order scheme, AD®Y), is

usually starts from the Dyson equatidh complete through finite ordem perturbation theory, i.e., it
G(w)=G%w)+G%)3(w)G(w) (9) includes all Feynman diagrams up méh order as well as

higher order contributions in an appropriate manner. The
relating G(w) to the so-called self-energ¥(w). The free  method is quite general and applies to any Green’s function
Green's functionG%(w) appearing in Eq(9) is defined with  or single component of it. The present applications comprise
reSpeCt to the nonintel’acting HF particles. Its matrix ele‘the partic'e_ho'dpo'arizatior) propagatoﬁo the Se'f-energy
ments in energy space read of the one-particle Green’s functidh,the particle—particle
o propagatof>?® and, more recently, the three-particle
(100  propagatof?

To be specific we concentrate here without loss of gen-
wheree, are the HF orbital energies amg= 1—n_p denote erality on the ADC scheme. The ADC is a generalization of
the HF ground state occupation numbers. As@dw) there  the specialdiagona) representatiori13). It is based on the
exists a direct perturbation expansion ®(w) in terms of  observation that the dynamic self-energy can be represented
the famous Feynman diagrams. The self-en€¥gy) con- in the algebraic form

Np

— + —,
—€—1ln w—etiy

0 =
Cpo(@)=pq|
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Mpq(w)zug(wl—K—C)‘luq. (14) n=2. and .3 the space is spanngd by tmzlﬁ and Zhlp
configurations and fon=4 and 5, in addition, by the@®h

Here, the superscripts | and Il have been dropped. The matrixnq 312p configurations oN+1 andN—1 particles, respec-
K introduced in Eq(14) is diagonal and collects the zero- tjyely, On the other hand, multiple products of two-particle
order(HF) excitation energie<; denotes a constaf#nergy- jnteraction(Couloml matrix elements appear in the expres-
independent Hermitian matrix referred to as the modified gjons of the ADC equations. This is in contrast to the famil-
(effective) interaction matrix, andJy is a constant vector of j5; C| treatment where the Coulomb matrix elements enter
modified (effective) coupling amplitudes. The configuration the C| expansions exclusively in linear form, however, to the
space defining these quantities comprises all physinal price of much larger configuration spaces.
*+1)-particle excitations with respect to the basis of the  gpce the vectort), and the matrixC have been deter-

N-particle ground state HF orbitals excluding, however, theyined the Dyson equatiof®) can be cast into the following
single-particle (p) and single-hole (k) configurations. In eigenvalue problem:

the usual classification scheme the electronic configurations
are denoted as two-particle one-holep(d), three-particle BX'=X'E, X'X'T=1, (18
two-hole (32h),..., configurationgfor block I) and as two-

hole one-particle (B1p), three-hole two-particle (®p),..., where
configurationgfor block II). e+3(x) (U (Ut

In the ADC scheme both the vectdds, and the matrix B= U K'+C 0 _ (19
C possess perturbation expansions U 0 Kl cl

1 2
UP_UE’ )+UE3 o (15 Here, € denotes the diagonal matrix of HF orbital energies
c=c+c®@, (16) andU is the matrix of(column vectorsU, representing the
coupling of the one-particle block+2 () and the matrices
each series beginning in first order. Upon expanding the mak +C of the blocks | and Il. The one-particle Green’s func-
trix (@1—K—C)~* into powers oflw1—K)~'C and inserting  tion G(w) is obtained as the upper left block of the inverse of

the expansion$l5) and(16) into Eq. (14) one arrives at the matrix w1—B,
Mpq(w)=Ué,m(wl—K)_lUgl)-FUE,l)T(wl—K)_lC(l) Gpq(@)=[w1— B]F;ql’ (20)
X(01-K) UL+ U (01-K) UL or, explicitly,
UL (@1-K) "R+, (17) XM

_ P "q
where all terms up to third order are shown. The matrix qu(“’)_g w—e, (22)

elements ofC andU, are obtained by comparing the ADC
expansion of Eq(17) with the original diagrammatic pertur- where the poles and residue amplitude&oé) derive from
bation series for the dynamic self-energy pavt§w) and the eigenvalueg,=E, and the corresponding eigenvector
M"(w). By construction, the ADQ{) scheme sums up all componentx{” = X/ . respectively, of the matrig.
diagrams completely througfth order and includes, more- Instead of this one-step “direct” diagonalization &f
over, infinitely many diagrams of higher orders. In theone may alternatively first diagonalize the ADC matrices
ADC(2) approximation, also referred to as two-particle—holeK +C independently for the blocks | and II:

Tamm-Dancoff approximatior2ph-TDA), one employs

the first-order expansions for the elementCadndU, . The (K+C)Y=YQ, YY'=1 (22)
ADC(3) approximation(extended ph-TDA) is obtained by |n 3 subsequent step the Dyson equation is then solved via
replacing the first-order expansions for the coupling amplihe diagonalization problem

tudesU, with the second-order expansions. The explicit ex-

pressions of the ADC equations f@r and U, up to fourth AX=XE, XX'=1, 23
order are given in Ref. 21.

It is worthwhile mentioning that the ADC scheme com- where
bines perturbation theor{for the N-electron ground state e+3(x) m m'
and matrix diagonalizatiofvariational principl¢ which has A= m) o' o], (24)
no analogue within the conventional wave function picture. (mht L

An essential property of the ADC scheme, being important

in numerical applications, concerns the size of the configuThe subblock€2"" andm"" of the matrixA are the diagonal
ration space. As is well-know(see, e.g., Ref. 31the con- matrices of eigenvalues, of Eq.(22) representing the poles
figuration space required by tmgh-order scheme, ADQY),  of the dynamic self-energy pard"" (w) and the matrices of
is substantially smaller than that of comparable configuratiorcoupling (Dyson amplitudesmg,“) [see Egs(12) and (13)],
interaction(Cl) expansions for calculating the energies andrespectively, the latter being obtained according to
transition moments consistent througth order. Theexplicit "

ADC(n) space increases with each even onderHence, for my*'= UpY<M> (25

J. Chem. Phys., Vol. 104, No. 18, 8 May 1996



7126 Weikert et al.: Block Lanczos and many-body theory

as the scalar product &, and the eigenvector ™ of Eq.  tion process onto the Krylov space, i.e., the space spanned by
(22) associated with theuith eigenvalue. The one-particle the sequence of iteratés; ,Hq;,...H! ~1q,}. Starting with an
Green'’s functionG(w) is again given in the form of Egs. initial (orthonormalizeglvectorg, with a nonzero projection

(20) and (21). on each eigenvector ¢, the algorithm builds an orthonor-
mal basis(q;,0,,...,9;} from the Krylov space, leading to a

Ill. DIAGONALIZATION METHODS FOR LARGE tridiagonal matrixT\. The computation of both the Lanczos

MATRICES vectors g; and the matrix elements of ) is extremely

The diagonalization of large symmetric or Hermitian Ch€ap- This is based upon the three-term recurrence

matricesH is a key problem in computational quantum
chemistry and physics. The usual way of calculating the
eigenspectrum off is to transform the matrikl into a tridi-  where
agonal one which is easy to diagonalize or to invert. How-
ever, standard diagonalization procedures such as the Givens

and Householder methdsare not sitable for large matri- genote the diagonal and offdiagonal entries, respectively, of
ces, since they have storage demands that depend on thg, tridiagonal matrixT!) and, by definition,T;,=0 and
square of the ordeN of the matrixH and require a number o —q_convergence is bédor the extreme eigenelements of
of arithmetic operations that scale as the cube of the matrix(j) which usually contain most of the desired information.
order(N3 algorithms. Therefore, alternative procedures have It is an essential drawback of the simple Lanczos algo-

to be considered in order to compute at least part of theynm that it does not account for multiplicities of the eigen-

eigenspgctrum _OH' ) ) o values which it computes. This suggests to consider a block
In this section we review two diagonalization methods . pand extension of the simple scheme. The block

which have found widespread application: the Lanczos and,qorithnf7 is readily derived from the simple algorithm by
the. Dawdson algorithms. Pa.rtlcular emphasis is placed OPeplacing the Lanczos vectogs and the numberg;; in the
their respective block extensions. Both methods can be aRzcursion (29) by their corresponding matrix analogues,

plied to calculate the eigenspectrum of a given maHix yio|ding a block tridiagonal representation of the matrix
However, while the Lanczos method is particularly suited t°AIternativer, one may resort to a band formulation of the

problems where information on the whole eigenspectrum of4rithm8 In the context of exact arithmetic both variants
the matrixH is desired, the Davidson method offers the po-5.¢ equivalent. In the following, we consider the band algo-

tential of a more efficient computation of a few select®d- it rather than its block analog but shall use both names
geted eigenvalues and eigenvectorshbf synonymously.

The common idea of both the Lanczos and the Davidson”  tha band Lanczos algorithm starts by supplyingrtho-

algorithms is to iteratively generate from an initial vector, oo vectorsq, ,d,,....q,. The recursion relation then
called the starting vector, an increasing basis of orthonormal,, 45 eren

Tiit10i+1=HAi = T;0i =T i-10i -1, (29

Ti=d/Ha; and T;;+,=T} ;=0 ;Hq; (30

vectors
0)_ 26 i+n—1
Q"'=(01.92,....9)) (26) Ti,i+nQi+n:Hqi__; Tijq;, (31)
onto which the matrix is projected: =i
S=QTHQW, (27) where
The eigenvalues of thgx j matrix S, called the Ritzvalues, T;j=T} =q/Hq; (32

represent approximations to certain eigenvalues of the matrix _ o (i

H. Accompanying approximate eigenvectoﬁéj) of H, and, by definition;T;; =0 andq; =0, if j<0. In the baSI:Q(J).

called the Ritzvectors, are obtained via the transformation spanned bY the Lanczos vectarsgenerated _the prOJec_tlon_
of the matrixH becomes banded the bandwidth of which is

Y =QUix(), (28 2n+1:

V\{herexﬂ) denotes the eigenvector corresponding tokte TH=QWtHQW

eigenvalue ofS. Formally, the Lanczos and Davidson meth-

ods differ from each other essentially in the choice of the Tin T o0 Tig
Xpansion Vi rg; .

expansion vectorg; Ty Ta

A. Block or band Lanczos algorithm

The single-vector(simple Lanczos algorithm is de- | T Ts
scribed in several textbooks and artic(ese, e.g., Refs. 5-7
for textbooks and Refs. 26—33 for applications and further
developments The classical Lanczos procedure was origi- . . .
nally conceived to reduce the eigenvalue problem of a large Toe oo o T
symmetric matrix to that of the simpler Lanczos matrices. :
The simple Lanczos method realizes an orthogonal projedn practice, the algorithm is performed as

il - (33

J. Chem. Phys., Vol. 104, No. 18, 8 May 1996
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-1 where the matrix

r:=Hg; ‘j:iE_n Tijaj HO = QUQIITHEIQW T = QUIThQMT (39)

For j=i,...i+n—1 denotes the projectipn &l onto thej —dimgnsional Lanczos
space. These relations state that the fir§t2 or 2J—-1

Tj; ZZFqu moments ofH{) with respect to the starting vectors are ex-

=T a act. Moreover, it can be shown that there exists no approxi-

T IRJ mation of rankj which gives more exact moments than the

end do block Lanczos approximatiokl!). Hence, the block Lanc-
zos method provides access to the desired global conver-

Tiien:=lrl gence in the sense of Eq86) and(37). It permits, in par-

Gian:=F/Tiisn. (34) ticular, the fast computation of the elemefits,|F(H)|yq)

of any operator functiofr(H) provided that this function is
Here, |-[| denotes the Euclidean norm. Note that the single-analytic in a circle which contains the eigenvalued-ofAs
vector algorithm is readily recovered for=1. The band has been demonstrated in Ref. 10 for the case of the resol-
Lanczos algorithm iterates each starting vector at least ventF(H):(go—H)‘l (here,H is a matrix representation of

T the operatoH) one observes an exponential convergence of
J=[j/n] (39 o10) ' -

(| F(HY) ) towards( | F(H)| i) with the number of
times, where fn] is the entire part ofn andJ denotes the block iterations) times the “distance” from the spectrum,
number of block iterations. We mention that in the blocki.e., WithJ~minM|EM—w|, whereE , denote the eigenvalues of
version the iteration numberis restricted to be an integer H. This convergence is extremely fastdfis far apart, i.e.,
multiple of n. below or above, from the spectrum. It is this outstanding

As with the simple Lanczos method, the block Lanczosglobal convergence property of the block Lanczos method
method is particularly attractive for the diagonalization of which establishes its relevance for applications within the
large matrices. This is due to the following reasons. First, thenany-body framework.
matrix H only enters the recurrence relation in form of the
matrixxvector termsHq;. Second, only the 12 most re- B, Block Davidson algorithm
cently generated Lanczos vectaysare required in order to . . e
compute the nexh Lanczos vectors. Third, the block tridi- The Davidson algorithif has a long tradition in com-

agonal or band matrices generated by the block or banam""tion"’1| ab_ iqitio quantum chemistry. It is a'standard
Lanczos method are easy to diagonalize. This allows, in prinmethOd for finding the lowest eigenvalues and eigenvectors

i35 ; ; 37
ciple, the computation of all the eigenvaluassd eigenvec- f‘f large Cl n’;aﬁncgi A blofik def[(tetrr:smn of thtlst_methfﬁﬁl |
tors of the matrixH. In practice, however, the efficiency of as successiully been applied to the computation ot valence-

the method diminishes due to numerical instabilities. As theSheII double ionization/Augen spectra using the Green's

iteration proceeds, the Lanczos vectors tend to lose their ofunction method For a recent discussion of the Davidson

thogonality and the process starts to produce copies of al-
ready converged eigenvalues. These instabilities can be re
edied either by a complete or selectivépartial)
reorthonormalization of the Lanczos vectdsee, e.g., Ref.
6) which is, however, computationally expensive.

There is a certain range of problems in theoretical phys
ics and chemistry where one is not interested in the indi- H=Hy+H, (39

vidual eigenvalues and eigenvectors of the matiix but into a dominant part—usually, and for the sake of sim-

rather in the glqbal feature of _|ts elgensp_ectrum. As an exblicity, Ho=diagH) [diagonal preconditionidg—and a
ample we mention the evaluation of matrix elements of op-, o L . - .
" perturbation” H;, one is immediately led to a simple itera-

erator functions{,|F(H)|,), to which the block Lanczos . . . . A
. P q tion scheme for improving a given trial eigenvectd? by a
method is ideally adapted.Here, |,) denote some refer- :
correction vector

ence vectors. To be more specific we recall from Ref. 10 the . ' ‘
following remarkable properties of the block Lanczos — &V=[EW1-Hy] 1r), (40)
method:

ethod see Ref. 39. Here, we give a brief account of the
lock Davidson method as implemented in the present cal-
culations which is an extension of Ref. 37.

The idea behind the Davidson procedure is best illus-
trated by starting with a simple perturbation theory analysis.
Upon partitioning a given matrik as

Here, j denotes the iteration numbeE!) is the Rayleigh
(HD)Xgmy=H¥ g for 1=smsn, O<k<J-1 (36  quotient forc!) defined by

(A [(HI) ¥ ) and
for 1=m,m’=n r=(H-EV1)c! (42
=(qm|H¥qm for 0<k=2J-1, J=odd, (37 its residual vector. The iteration scheme implied by &)
for 0s<k=2J-2, J=even can also be regarded as the first-order approximation to the
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method of “coordinate relaxatior?® applied simultaneously (3) Compute the residual matrix

along all coordinates. While this simple scheme exhibits gen- R=7V —QVE, (44)
erally poor convergence propertiésthe idea behind the whereE=diag(E,).

Davidson method is not just _to add the correction veﬁ@r (4) Test for convergence of the eigenvectéesy., [r|| less

to ¢\, but rather to progressively collect the correction vec-  than a prescribed threshgldFor each computed vector,
tors {é')} to form a basis setafter suitable reorthonormal- store ¢;=Qu; . For each unconverged vector, compute
ization) in which the trial eigenvector is expanded. Thus the ¢ —[E.1—H,] 1r, .

Davidson method also represents one particular implementgs) Orthogonalize thd&} vectors among themselves and to
tion among the subspace iteration techniques. In general, we o Normalize to form the new basis vecta®, which

then write the trial eigenvector at cycjeas are appended to th@ file.
(6) FormZ’'=HQ’ and append it to th& file.
¢ =Wy, (43)  (7) Update theS matrix by computingQ''Z’ andQ'z'.

(8) Repeat from steg2) until all selected vectors have con-
verged or the subspace size has reached the allowed

whereQ®) is a matrix of(column orthonormal basis vectors \
maximum.

andv () is the vector of expansion coefficients. For ease of
notation we shall now drop the superscript indicating itera-The procedure lends itself to being automatically and dy-
tion number. namically implemented in virtually any amount of available

The matrixQ comprises any initial set of starting basis fast storage, provided this is large enough to hold a few
vectors—e.g., chosen to span a subspace of interest or thectors. The vector$z} and{q;} (matricesZ and Q) are
presumed dominant character of the sought eigenvectorskept on disk and read in groups of adjustable size. All the
plus the successively collected and reorthonormalized comecessary matrix operations are also easily stripmined if
rection vectors computed via E¢0). Specific criteria of needed to generate and handle only a suitable subset of cor-
choice for the initialQ used in the present work will be rection and converged vectors at once. The amount of avail-
discussed later. At each iteration the veators chosen as able storage also determines the maximum reachable size of
usual by making the Rayleigh quotient stationary in the subthe Q subspace, but, as outlined in st@p above, the whole
space spanned [y, i.e., among the eigenvectors of the ma- procedure is straightforwardly restartable by jumping from
trix S=Q'Z, with Z=HQ. This choice may easily be driven any step to stefl) and replacing the initial set of basis
by any one of a number of criteria such as: eigenvalue minivectors with an appropriate subset of the current tfamid
mization or restriction in a given range; eigenvector overlapconvergedleigenvectors. In this way the procedure automati-
maximization from one iteration to the next; magnitude ofcally monitors and controls the growth rate of the subspace
the eigenvector projection onto a specific subspace, and size and, if required, can truncate the subspace according to
on. available resources.

When more than one eigensolution of the matrixis In practice, convergence is usually achieved within a
sought, two possible alternative procedures may obviouslyew iterations, in particular when the matrik is diagonally
be conceived: The desired eigenpairs can be iterated indéominant. As in the block Lanczos method, the time-
pendently and in succession, one after convergence of theonsuming step is the formation of tiZe matrix [step(6)].
other; or they can be refined simultaneously, at each cyclen the other hand, the expansion vectors in the Davidson
one new basis vector being computed and adde@ tiwr  method do not obey a three-term recursion andSmeatrix
each sought solution. The latter approgthblock David- s not tridiagonal. This restricts the algorithm to handling
son”) is clearly characterized by a faster growth rate of thegenerally smaller subspaces and to applications where a
basis set, but this disadvantage is usually more than compegmaller number of selected roots are sought.
sated by a much better convergence rate, especially in dense
regions of the spectrum df. In addition, the block David- |v. NUMERICAL COMPUTATION OF THE ONE-
son approach affords greater computational efficiency, iIlPARTICLE GREEN’S FUNCTION
tha.t a number of vector operations are naturally replaced by As has been discussed in Sec. Il the determination of the
their matrix analogues, and the matkixneeds be computed
or read from slow storage fewer times.

In practice, the algorithm is outlined in the following (i) The solution of the Dyson equation in form of either
major steps: the “direct” diagonalization of the secular matr&
or the two-step procedure which comprises the diago-
nalization of the matrice&< +C)"" according to Eq.
(22) and the subsequent diagonalization of the matrix
A specified in Eq(24);
The evaluation of the static self-energy mat®ixo).

one-particle Green’s function requires

(1) Supply and store an initial basis set maispanning a
chosen subspace selected by some criteria. The basis
vectors can also be chosen to be a subset of Ritzvectors
from a previous run, thus implementing a restart mecha-..
nism. Form and stor&=HQ andS=Q'Z. (i)

(2) DiagonalizeS and select the desired eigenpaib ({v;) Matrices possessing a structure as déeare called “ar-
which have not yet converged. The vectfos} are col- row” matrices. They are characterized to consist of a sub-
lected in a matrixVv. matrix of small dimension and of a large diagonal “tail”
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coupled to the former submatrix via coupling matrices. A
very efficient and numerically stable procedure for the diago-
nalization ofA that takes advantage of its particular “arrow e+ E(e0) (unt (umt
type” structure has been described in Refs. 41 and 42. This
method, referred to as the pole search algoritf8A), en-
ables the calculation dfll the eigenvalues and eigenvectors
of A within a certain range of its eigenspectrum. The draw- u (K +C) 0
back of the method, however, is that it requires the separate
full diagonalization of the matrice&k +C)""" prior to the
construction ofA. This clearly represents a formidable ob-
stacle in view of the usually very large configuration spaces ot 0 (K+C)t
which define(K +C)"". Therefore, in order to reduce the size
of these matrices various possibilities such as, e.g., the trun-
cation of the one-particléorbital) space and/or the selection FIG. 1. Structure of the eigenvalue problem for the Hermitian madarix
of important configurations have been considered. Neverthe-

less, in particular for the treatment of larger systems and

basis sets, one soon approaches the limitations where tig@ncentrate in the following on AD@). The structure of the
reliability of the final results, ionization energies and spec-Term't'an matrixB in the ADC(3) approach is shown in Fig.

troscopic factors, is seriously affected. )
An alternative access to the computation of the one-  1hough considerably smaller than comparable CI expan-

particle Green's function is to resort to the direct diagonaI-SiO”S’ distinctive numerical difficulties arise from the size of
&he 2p1h and 2h1p configuration spaces defining the di-
|mension of the ADC3) matrices(K +C)"". In particular, the

ize of the joint matrixB is essentially determined by that of
the 2p1h block. As an example consider the AR} calcu-
lation for the benzene molecule which is discussed below

1p/1h 2plh 2h1p

ization of B. Here, one may make use of the well-establishe
block Davidson procedure as described in Sec. Il B for cal
culating a few selected roots. This one-step diagonalizatio
is especially useful if the matriB is large. On the other

hand, the numerical effort grows very rapidly with the num- (see Sec. Y Here, the dimension is 20 746 for theh

bgr O.f eigenstates .b.elng sought_. nge, one meet§ aga'n_l:)?ock and 3 254 for the i21p block in 2Alg symmetry(Dy,
situation where additional approximations or truncations be oint group notation Together with the one-particle block
come hecessary in-order to cope with the high-dimension dimension 24the size of the matri amounts to 24 024. It
seClIJIarhmatr|ce§. S VA di . Iis apparent that the diagonalization®frepresents a serious

n the ensuing ec. We CISCUSS a New NUMErCalypia e in view of the large number of ionic statgpically
procedure for the efficient calculation of the one-part|cle50_100 which are usually required in practice
Green’s function. The proposed procedure consists of the g ahove considerations indicate that a huge amount of

two major stepsl: a block Lanczos “prediagonalization” of .o tational effort can be avoided if one succeeds in trun-
the block (K+C)' and a subsequent diagonalization of thecating or approximating the very largep2h block in-

resulting smaller eigenvalue problem of the Hermitian seCugenously. Here, the special structure of the secular mBitrix
lar matrix B (Dyson equation This method makes quite comes into play. The fact that no direct coupling exists be-
naturally use of the specific structure®f The evaluation of  yyeen the p1h and 2h1p blocks and that these blocks are
the static self-energy matriX() and its numerical calcula- energetically well separated from each other is of crucial

tion is then discussed in Sec. IV B. importance. This suggests to approximate tpé2 block in
A. Block Lanczos transformation of the large ( N+1)- an appropriate manner and to investigate the influence of this
block approximation on the desired eigenvalues and eigenvector

components associated with the ionization energies and spec-

To make contact with Sec. Il we briefly recall the struc- ) intensity coefficients, respectively, of thd—1)-particle
ture of the matrixXB. It consists of three submatricésocks: eigenstates.

the one-particle block+X(>) and the blocksK +C)' and Now the question arises as to how a useful approxima-
(K+C)" coupled to the one-particle block via the matrices oftion of the 201h block is obtained. An obvious possibility is
modified (effective) coupling amplitudes)' andU". The su- 1 select out of the full pLh matrix a submatrix of fixed
perscripts | and Il refer to the spaces of physical excitationgjimension (500 or 1000, say The selection may be con-
of the (N+1)-particle and(N—1)-particle systems, respec- trolled, e.g., by the magnitude of coupling of thpZh and
tively. In the ADQ2) approximation(2ph-TDA) as well as  1h configurations. However, in particular if thep2h block

the ADQ(3) approximation(extended ph-TDA) the spaces s very large, an enormous number gbth configurations

I and Il are confined to the@Lh and 2h1p configurations, are possibly to be included in order to ensure a desired ac-
respectively. In the case of the fourth-order scheme, MDC curacy of the final results. Another and more effective way
the 3p2h and 3h2p configurations are additionally required. for reducing the dimension of thep2h block is to “re-
The one-particle bloclk+3(») corresponds to the space of place” this block by a much smaller matrix which maintains
1p and 1h configurations. Without loss of generality we the global information of the full @1h block. A very prac-
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tical mathematical procedure which is ideally suited for this

. . . 1p/1h 2plh 2h1
purpose is the block Lanczos algorithm. By means of this il - a

method the very large2Lh block, i.e., the matrixK +C)' is (Ui
projected onto the subspace spanned by the Lanczos vectors

generated leading to a block tridiagonal or band representa-

tion of (K+C). The particular importance of the block

Lanczos method as employed here is that it leads to an ap- 0

proximation of the p1h block, the first moments of which
are exacisee Sec. Il A.

The proposed method for calculating the one-particle
Green'’s function proceeds as follows. The first step consists yl 0 (K+C)t
of supplying a set of orthonormal vectors to begin with. A
particularly convenient choice of starting vectors is provided
by the NXxXn matrix U built by the vectors of modifiedef- _
fective) coupling amplitude$Jp wheren, the number of col- FIG._2. _Structure of the eigenvalue prqblem for the Hermitian m&rafter

. . application of the block Lanczos algorithm. Because of moments conserva-
umns ofU, equals the number QbCCUpled and unOCCUpmd tion (see Sec. lll A one can in practical applications truncate the mafrix
HF orbitals andN equals the number off2Lh configurations  after several block Lanczos iterations.
of block I. A set of orthonormal starting vectors
Q™=(q;,0,,...,.9,) is then obtained by applying the modi-

fied Gram—Schmidt orthonormalization procedure to the col- : .
umns ofU. This yields theQ—R factorization its band structure the coupling of the higher elements of the

matrix T to the firstnXn block of T becomes successively
U=Q"R, (450  weaker. Remember that the moments of the “spectra” are

h . . | . conserved. This obviously allows severe truncations offthe
whereR is an upper triangulanxn matr.IX. W? NOW assUME  matrix to dimensiong much smaller than that of the full
that we run the band Lanczos recursion uptiN, the di- 2p1h block

mensionN of the matrixK +C of block I. In this case the
generated band matrix

The eigenvalues and eigenvector component8 after
truncation of T corresponding to the energies and transition
TN =QMNT(K+C)QMN (46)  amplitudes, respectively, of tH&l—1)-particle states repre-
) S ) sent approximations to those of the full secular probEBm
simply represents an orthogonal similarity transformation of\ymerical examples which demonstrate the efficiency and

K+C. The coupling matrixJ transforms to computational advantages of this proposed procedure are dis-
-~ IR cussed in Secs. V and VI.
= 0) (47)

which readily results from Eqg$45) and (46). Applying the g Evaluation of the static self-energy
outlined block Lanczos transformation ti§ +C)' and defin-

ing the block diagonal matrix In the following we consider the static self-energy ma-
trix 2(c0) which appears as a part of the smatl/1h block in

N 0 0 the matricesA andB, respectively. This quantity enters very
Q=|0 Q O (48)  sensitively the Dyson equation and an error3fe) may

0 o 1" seriously affect the reliability of the results for the single-

hole main ionic states.

one arrives at the eigenvalue problem The basic relation for evaluating the components of

BX=XE, XX'=1, (49) (=) reads’
1
where ~ qu(oo):% Vpk[ql][ — 5k|nk+ ﬁ § G|k(w)dw] y
et3(») (R)T (U ’ 51)
B=0'BO= R T 0 . o .
QBQ u o Kh+c! 50 where the contour integration is closed in the upper complex

energy plane. Here, the notatiof,q=Vpkq— Vpkig 1S

which is equivalent to Eq$18) and(19). Figure 2 provides used for the antisymmetrized Coulomb matrix elements. To-
an illustration of the structure of the Hermitian matBx gether with the Dyson equatid®) and Eg.(11) the above

Now observe that i8, due to the particular structure of relation establishes an iterative procedure for the consistent
the coupling matrixR, only the firstn elements of the band calculation of both the static self-enerdy«) and the one-
matrix T, i.e., the firstn X n block of T couple directly to the particle Green’s functionG(w), once the dynamic self-
one-particle blocke+2 (). There is no direct coupling of energyM(w) or an approximation of it is given.
the “higher” matrix elements off to the one-particle block In practice, however, the self-consistent procedure is ex-
e+ (). Furthermore, it is important to note that because ofpensive since the residues alf (N—1)-particle eigenstates
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are to be determined from the secular matriéesr B. Re-  alternative methods, namely an inversion methdecobi
placingG(w) in Eq. (51) by the first two terms of the Dyson iteratiorf¥) and a single-vector Lanczos diagonalization
expansion method, have been considered for the efficient calculation of
the integralQ,, . Here, we complement these investigations

G(w)=G(w)+G(@)X()C(w)+ (52) by introducing a block or band Lanczos diagonalization pro-
and considering Eq11) one arrives at cedure which also allows for a direct and efficient access to
1 the integralQ,, .
zpq(oo)zz Vokall 5= 3€ do G(0)[S k() As with the single-vector Lanczos method for diagonal-
k] 2mi izing K+C described in Ref. 43, the block Lanczos method
+Mlk(w)]G(k)k(w)- (53) operates by generating an increasing basis of Lanczos vec-

tors and computing the projection &+C onto this basis.
which in general represents an excellent approximation téJpon performing the algorithni34) outlined in Sec. IIl A
the fully iterated result of Eq51). After performing part of  one arrives aftej band(i.e., J=[j/n] block) iterations at the
the contour integrations the problem of determin®i¢e)  band(block tridiagonal matrix T of Eq. (33). The diago-
reduces to the single matrix inversion nalization of T yields a set of eigenvaluess, represent-
ing approximations to the exact eigenvalueof C.
S 3(%) =g The Dyson amplituden{/*) is the overlap of the modified
coupling amplitudeU,—i.e., the pth column vector of the
(54 coupling matrixtU—with the uth eigenvector oK +C. As

entirely defined in the space of the one-particle and one-holgtarting vectors one hence has to choose@ram-—Schmidt

configurations. The inhomogeneitibs, are given by orthonqrmalizehjcoqplilng amplitudes. Thus starting the pro-
cess with the matriJ’ of column vectorsU,, where the
number of columns equals the number of occumed un-
occupied orbitals, one may compute all the matrix elements
(55 Qi via a simple block Lanczos diagonalization kf+C

where the contour integral closes in the upper half of theassociated with the larger block I. Similarly, employing the
starting matrixU" one obtains all matrix elementd}, by

complex energy plane. The error introduced by the trunca=, .
tion of the Dyson expansiofb2) is of fifth order perturba- diagonalizing the secular matrit +C of the smaller block
tion theory, i.e. % () is complete through fourth order if the ”'”lln prafg".:al apphcauops convergence of the elgments
third-order approximation, AD@), for the dynamic self- Qq, to 107 is usually achieved within 12 to 15 block itera-

: : ; . tions.
energyM (w) is employed. The major numerical obstacle is _ . .
concealed in the inhomogeneitibg, requiring the contour The procedure just desc_rlbed has the practical advantage
that the pseudospectra obtained for the larger block | can be

ning ning

Zpa(*)— ; Voall

€k € €7 €

1
bpq:kE,l Vo] 5 f do Gj(0)M(®)GR(w),

integrations
g reused to build the secular matri& of Eq. (50). A closer
1 o 0 inspection of Eqs(58) and(59) reveals that it suffices to run
Qu=5— P do Gj(0)Mk(w)Gylw). 56 the algorithm with a smaller block size &f andU" com-

prising the occupiedor unoccupied orbitals only. This
clearly restricts the amount of multiplications of the matrix
K +C and the vector$,. Proceeding in this way one has to

For an explicit spectral representationf{w), see Eqs(12)
and(13), the result is

Qu=0Q4+ QM. (57)  evaluate and store the overIaU%Qi , 1=1.2,...§, for each
occupied or unoccupied orbital. After j band Lanczos it-
| () el 0)* —ning erations are performed, diagonali£€’ and compute itsull
Qu= > mm _ _ igenvector matrixX(). The matrix of approximate Dyson
pcien (ek—w,)(€—w,) eigenvector mat e matrix of approximate Dyso
_ _ amplitudesm{*) is given by
ngny ning (58)
(e—e)(e—0,) (e—e)e—w,)] f=UTQUX 1 =RTX(), (60)
= 3 mmme* NNk In substituting the exact spectral energigsand Dyson am-
pe(N-1) (ex—w,)(6—w,) plitudesm{*) in Egs. (58) and (59) by those of the block
NN N, Lanczos pseudospectrum one obtains an approximation for

R TP Sl ppps Y (59)  the matrix element®,,. The second part of E460) shows
ko SRSk ko SRS S that only the firstn components of the eigenvectors are
The evaluation of these quantities requires, in principle, theneededcf. Eq. (47)], wheren denotes the dimension of the
separatdull diagonalization of the secular matrickks-C of ~ 1p/1h block. This property significantly reduces the numeri-
the blocks | and Il. This poses considerable numerical diffical effort!°
culties due to the large dimension of these matrices. Numeri- It should be mentioned that the block Lanczos diagonal-
cal strategies which avoid or circumvent the full diagonaliza-ization procedure becomes expensive when a large number
tion of K+C have been discussed in Ref. 43. There, twoof band iterationg is required. In contrast to the inversion

J. Chem. Phys., Vol. 104, No. 18, 8 May 1996



7132 Weikert et al.: Block Lanczos and many-body theory

method‘,‘3 however, both the single-vector and block Lanc- TABLE I. Dimensions of the AD@) secular problem® for benzene as
z0s methods guarantee the convergence of the inte@[@ls arising for the different symmetry species within g, point group.

Symmetry p h 2plh 2hlp Joint dimension
V. AN ILLUSTRATIVE EXAMPLE: THE IONIZATION 2A1g 20 4 20 746 3254 24024
SPECTRUM OF BENZENE Auy 6 0 16014 2316 18 336
?Byq 16 2 20564 3226 23 808
To illustrate the performance of the block Lanczos trans#s,, 8 1 16 183 2342 18534
formation described above in realistic applications we havéBzg 5 1 16021 2309 18 336
calculated the vertical-electronic ionization energies andB 2t 3 20739 3261 24024
| intensitiegpole strengthsof the valence ionic states ,;>° 8 ! 1e1rr 2348 18534
spectra 9 Ba, 15 3 20571 3219 23808

in benzene using the AD@B) approximation for the one-
particle Green’s function. The approximate values of these
quantities obtained via the diagonalization of the block Lanc-
zos “prediagonalized” secular matri® are compared to the for B of 2A1g symmetry inD,,, are readily reclassified with
corresponding “exact” values resulting from the one-steprespect to the full symmetry point group of benzebg,,,
“direct” diagonalization of the full secular probleB. The vyielding the eigenstates GEzg andzA1g symmetry.
computations have been performed on an IBM 3090 com- The static self-energy matriX(«) appearing in the one-
puter. particle block was determined via the free one-particle

The required input data for the Green’s function Green'’s functiondirec) approach as described in Sec. IV B
calculationg'® molecular orbital energies and Coulomb inte- (see also Refs. 41 and ¥3The ADQ3) expressions for
grals, were generated frorab initio Hartree—Fock self- K+C andU were employed. This allows for an approxima-
consistent field (HF-SCH calculations at the neutral- tion of 2(«) that is complete through fourth-order perturba-
molecule ground state geometry employing the experimentalon theory and that includes partial contributions of certain
equilibrium distance®R._-=1.397 A andR._;,=1.084 A%  perturbation terms in all higher orders. The block Lanczos
A contracted double-zeta plus polarizati@ddZP) basis set algorithm was used to calculate the integrlg, of Egs.
was used consisting of s2p,1d Cartesian Gaussians on (57)—(59). On average about5 block iterations per symme-
each carbon and<21p on each hydrogef{**3 The exponents try were required to achieve convergence of the elem@pts
for the d-type polarization functions on carbon and for theto 10 °. Within this convergence threshold an accuracy of
p-type polarization functions on hydrogen are 0.6 and 0.75about 10° eV for the matrix element&,,() is obtained.
respectively. The ground state HF total energy thus resulting Next we have generated the elements of the band matrix
is —230.728 603 a.u. The total number of molecular orbitalsT of the 2p1h block using the block Lanczos algorithm.
is 126. Starting with matrixU' of column vec:torsU'p where the

In the Green'’s function calculations the orbital space hasiumber of columns equals the number of HF orbitalajp
almost completely been exhausted. Only @tks core occu-  symmetry,five block iterations were performed leading to a
pied orbitals and their unoccupigdrtual) counterparts have T matrix of dimension 120. This defines our pseudospectrum
been left out of consideration. This leaves a total of (18 1. To study convergence further five block iterations were
occupied and 99 virtualvalence orbitals to be included appended to the previous run thus yielding a totaltesf
when constructing the configuration spaces of the blocks block iterations. In this case the dimension of the resulling
and Il. To introduce from the outset anpriori reduction of  matrix is 240(pseudospectrum)2Note that the dimensions
the size of the secular problem both the spin and spatiadf these projection matrices are substantially smaller than
symmetries have been exploited. The spin-free expressiorikat of the full secular matrikk +C)' (dimension 20 746 In
for the elements of the AD@) matricesKk +C andU em-  the realization of the calculations both the coupling mafix
ployed here are given in Ref. 21. The spatial symmetry haand theT matrices were kept in fast memory. This was no
been exploited to the extent of the largest one-dimensiondbnger possible for the matrig +C)' which was therefore
(Abelian subgroup of the full symmetry group, i.®,}, in held on disk.
the case of benzene. The construction of symmetry-adapted Once the block Lanczos pseudospectrum of tipe 2
configurations is then trivial. Thus for each irreducible rep-block has been computed the matBxvas then diagonalized
resentation there results a decoupled eigenvalue problem foising the block Davidson procedure. The calculations were
the matrixB. The dimensions of the subblocksB®fand ofB performed as described in Sec. Il B. The results obtained on
itself as arising within th® ., point group are listed in Table the valence ionic states 6E29 andzAlg symmetry are col-
I. Here, we shall confine ourselves to tﬁélg symmetry lected in Tables Il and lli(here and in the following the
only. For this symmetry the dimension was 20 746 forsymmetry labels of the full spatial point group of benzene,
(K+C)" and 3 254 for(K+C)". These matrices are sparse D¢y, are usejl In the tables the notatiori§” and P§)) are
with 6.6% and 22.3% nonzero elements, respectively. Toemployed for the ionization energies and pole strengths after
gether with the one-particle blockpllh whose dimension is  the Jth block Lanczos iteration, respectively. For comparison
24 (equal to the number of occupied and unoccupied orbitalshe corresponding “exact” values, andP,,, of the direct
of a;4 symmetry the size of the joint matriB amounts to  diagonalization of the full problenB are also shown. We
24 024. We note that the solutions of the eigenvalue problermention that a detailed discussion of the present results on
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TABLE II. Approximate ionization energiei$” up to 30 eV with major pole strengtIﬁE'gJ,};O.Ol] of the valence ionic states Wii’iEzg symmetry of benzene
obtained via the diagonalization of the prediagonalized secular matrikhe superscripd denotes the number of block Lanczos iterations performed in
calculating the pseudospectrum of thelh block. The corresponding “exact” values of the direct diagonalization of the full secular prddlara denoted
asl, and P,,. Also shown are the absolute errors in the ionization energies; ||, as well as in the pole strengthd?,,— PE,J,H. The numbers in
parentheses are the powers of ten with which the entries are to be multiplied. All energies in eV.

Orbital
p I(ns) ||n_|£15)| PE)%) ‘Ppn_ Pgﬁ)‘ |£110) ||n_|£\10)‘ Pfjjho) |Ppn_ Pgho)‘ Iy Ppn

3ey 12.226 974 6.60-4) 0.896 694 8.70-5) 12.227 632 2.00-6) 0.896 613 6.00-6) 12.227 634  0.896 607

2ey4 18.980895 6.00-6) 0.017 309 2.10-5) 18.980901 <1.00—-6) 0.017288 <1.00—6) 18.980901 0.017 288
19.106 338  3.80-5  0.105199 7.40-5) 19.106 376 <1.00—6) 0.105 127 2.00-6) 19.106 376  0.105125
19.536 669 1.06-4) 0.305 460 8.90-5) 19.536 775 <1.00—6) 0.305372 1.00-6) 19536775 0.305371
19.909481 6.80-5  0.200 367 1.0¢-4) 19.909549 <1.00—-6) 0.200471 3.00-6) 19.909 549  0.200 468
20.583741 9.06-6) 0.029 338 9.00-6) 20.583750 <1.00-6) 0.029347 <1.00-6) 20.583 750  0.029 347
20.857246 6.00-6) 0.017 761 3.00-6) 20.857 252 <1.00-6) 0.017764 <1.00-6) 20.857 252  0.017 764
21.217717 2.30-5) 0.079763 1.90-5) 21.217740 <1.00-6) 0.079783 1.00-6) 21.217740 0.079782
21.883285 1.16-5 0.039131 9.00-6) 21.883296 <1.00-6) 0.039140 <1.00-6) 21.883296  0.039 140
25.687004 3.00-6) 0.017 801 1.00-6) 25.687 007 <1.00-6) 0.017802 <1.00-6) 25.687 007  0.017 802
27.786 274  3.00-6) 0.013791 1.00-6) 27.786 277 <1.00-6) 0.013791 1.00-6) 27.786 277  0.013 790

the satellite states has been published rec&htlhere, the ence on the inner-valence ionic levels than on the outer-
results of a more extensive AD®) calculation based on a valence ionic levels which are comparatively close to the
triple-zeta-valence plus polarizatidiZVP) basis set built 2p1h block. More specifically, for the Iowe§E2g state the
up of 5s,3p,1d Cartesian Gaussians on each carbon andliscrepancy between the computed approximate ionization
3s,1p on each hydrogéf® are also included. The expo- energy!® and the corresponding “exact” valug,, where
nents chosen for the polarization functions in the TZVP basi88 was diagonalized by the block Davidson procedure alone,
set are the same as those used in the DZP basis set. is 6.60<x10 4 eV. The absolute error in the corresponding
Let us now discuss the outcome of the calculations. Uspole strength,|Ppn— Pé?l, is also small(8.70x10°°). For
ing pseudospectrum 1, quite a good agreement with the rehe deeper-lying valence ionic statesza‘2g symmetry the
sults of the direct diagonalization of the full probleBhis  calculations yield a maximum error of 1.880 eV for the
already obtained. It is generally recognized that the absolut®nization energy and of 1.0410™* for the pole strength. A
error in the ionization energies, i.e., the differefite-1(%)| similar trend is observed for the valence ionic state%ﬁqf3
decreases upon going from the outer-valence energy regimeymmetry. As can be seen from Table lll, the ionization
to the inner-valence energy regime of the ionization specenergy and pole strength of tﬁelg state lowest in energy
trum. This is easily understood since, due to the larger enare reproduced to within 3.3810 % eV and 5.5 10 >, re-
ergy gap, the approximatec2h block has much less influ- spectively, of the corresponding “exact” values. The largest

TABLE IIl. Approximate ionization energies{) up to 30 eV with major pole strengtl{@éﬂ?;0.0l] of the valence ionic states Wiﬁ’Alg symmetry of
benzene obtained via the diagonalization of the prediagonalized secular Biafitve superscripd denotes the number of block Lanczos iterations performed
in calculating the pseudospectrum of thplh block. The corresponding “exact” values of the direct diagonalization of the full secular proBlame
denoted a$, andP,,. Also shown are the absolute errors in the ionization enerfies,| ()|, as well as in the pole strengthﬁ’,pn— P{fn)|. The numbers in
parentheses are the powers of ten with which the entries are to be multiplied. All energies in eV.

Orbital
p 1) [1a=16] P& |Pon— P& 150 1= 16 PO [Pon—PSY I Pon

3ay, 17.353573  3.38-4) 0.797 029 5.50-5) 17.353910 1.00-6) 0.796 977 3.00-6) 17.353911 0.796 974
19.959252 7.00-6) 0.019 585 4.00-6) 19.959259 <1.00-6) 0.019589 <1.00-6) 19.959259 0.019589
21.814986 1.16-5 0.043 152 3.00-6) 21.814997 <1.00-6) 0.043155 <1.00-6) 21.814997 0.043 155
25.794423 3.00-6) 0.018421 <1.00-6) 25.794426 <1.00—6) 0.018421 <1.00—6) 25794426  0.018 421

2ay 25.886852 4.00-6) 0.029 751 5.00-6) 25.886856 <1.00—6) 0.029 745 1.00-6) 25.886856  0.029 746
26.134281 2.06-6) 0.009 600 2.00-6) 26.134283 <1.00-6) 0.009 597 1.00-6) 26.134 283  0.009 598
26.781181 1.30-5) 0.095 064 1.00-4) 26.781194 <1.00—-6) 0.094 965 2.00-6) 26.781194  0.094 963
26.849326 2.60-5  0.189995 2.00-6) 26.849352 <1.00-6) 0.189987 6.00-6) 26.849352  0.189993
26.992161 2.40-5) 0.177 282 7.40-5) 26.992185 <1.00-6) 0.177356 <1.00-6) 26.992185 0.177 356
27.378993 1.406-5  0.094 335 2.10-5) 27.379007 <1.00-6) 0.094 358 2.00-6) 27.379007  0.094 356
28.836113 1.00-6) 0.014 475 1.00-6) 28.836114 <1.00—6) 0.014473 3.00-6) 28.836 114 0.014 476

29.048 785 0.064 144 29.048 792 0.064 151 a
29.349 252 0.010 598 29.349 253 0.010 599 a
29.649 414 0.013971 29.649 416 0.013 971 a

&The diagonalization procedure for these high-energy roo did not converge.
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deviations in the energies and pole strengths found for thdiagonalization oB (via block Davidsoih cannot be carried
other ionic states o?Alg symmetry are 2.6810 ° eV and  out in this part of the spectrum. In this section we describe an
1.01x10°%, respectively. We mention that similar results application for such a case.
have been obtained for the other symmetry species not dis- In recent article§see Refs. 51 and 52he existence and
cussed here. properties of thefree doubly negative molecular systems

Using pseudospectrum 2, a considerable improvemer¥iF3~ (M=Be, Mg, and Cahave been discussed. These di-
over the previous results is obtained. As is made available bginions were found to be stable with respect to both fragmen-
Tables Il and Ill, both the ionization energies and poletation into MR and F and to electron loss. The stability to
strengths of all the valence ionic states zﬁ‘zg and 2A1g electron loss has been established by computing the vertical-
symmetry are more or less reproduced to within about Gelectronic ionization energies of the outer-valefroin) an-
“exact” digits. As a remarkable outcome of our investiga- ionic states of the ME dianions using the one-particle
tions we would like to emphasize that we did not achieveGreen’s function approach. In the following we give an ac-
convergence for the three StateSZAflg symmetry highest in  count of the computational details of the calculations that we
energy when directly diagonalizing the full secular problemhave performed on the complete valence-shell ionization re-
B. This further underlines the excellent performance of thegime of the above dianions. In addition, we also report on the
block Lanczos method as employed here; the secular matrealculated ionization spectra of the corresponding anions and
cesB to be finally diagonalized are smaller and hence theneutral systems. As representative examples of these systems
diagonalization process is numerically more stable than fofve discuss the results obtained for BeFBeF; , and Bek.
the matricesB. The computed spectra of the homologous system$ MF

The above discussion of efficiency essentially comparesiF; , and MF, (M=Mg and Ca are similar to those of the
the error in the final results, i.e., in the ionization energiesperyllium fluorides. They are discussed in Ref. 53.
and pole strengths. A further relevant aspect concerns the The valence-shell ionization spectra of BeF BeF;,
gain in Computation time by the two-step diagonalizationand BeE have been calculated using the Amapproxi-
procedure with respect to the direct diagonalization of fullmation for the one-particle Green’s function. The orbital en-
secular problem. The time-determining step in the blockergies and Coulomb integrals required for the Green'’s func-
Lanczos algorithm is the multiplication of the matrideés-C  tion calculations were obtained from ground state HF-SCF
andU. The other operations have negligible cost and will notcalculations using the respective optimized CI geometries of
be considered here. The characteristic CPU timedoe  the above systems. Details on the geometry optimization cal-
block iteration was 250 s on an IBM 3090 computer. Thuscylations and the basis sets employed are given in Refs. 51
about 1250 and 2500 s were used up in generating the psedind 52. As for benzene, the spatial symmetry has been ex-
dospectra 1 and 2, respectively, considered here. The subssivited to the extent of the respective largest one-
quent diagonalization of the matrB took about 900 s. For  dimensional subgroups of the full point group, i85, Cs,,
comparison, the diagonalization time of the full probl®&n andD,,, in the case of Bef , BeF; , and Bek, respectively.
was approximately 8000 s. Hence, we find that the two-sterhe orbital space has essentially been exhausted. With the
procedure is betweefour andtwo times faster than the di- exception of theF1s core occupied orbitals and their unoc-
rect diagonalization oB. It should be mentioned that these cupied counterparts all the remaining orbitals have been
efficiency factors substantially increase with the size of themaintained. For the largest system considered hereZ BeF
molecule, the orbital basis set employed, and the number ahe resulting configuration spaces of the blocks | and Il with
roots to be computed. Moreover, one may expect that a mongrgest dimensions are 23 913 and 5 421, respecti@alyin
efficient (vectorized computer code for the block Lanczos D, point group symmetry The various computational steps
algorithm will further increase the performance of the pro-of the ADQ3) calculations proceeded as described in the
posed procedure. preceding section for benzene. For each beryllium fluoride

system, the total number of block iterations performed in
V. COMPLETE VALENCE-SHELL IONIZATION gener;tlng the respectlye pseudospectrateasin the case
SPECTRA OF BeF2~, BeF3, AND BeF, of Be , the Iargest_ g|genvalue_problgm for th;a prediago-
nalized secular matriB was of dimension 5707°A,, D,

The diagonalization of the full secular matfx (Dyson  notation. By contrast, the corresponding full secular prob-
equation whose eigenvalues and eigenvectors determine thiem B is of dimension 29 360.
one-particle Green’s function is generally expensive. The The results, ionization energies and spectral intensities
proposed procedure introduced in Sec. IV uses the blockpole strengths obtained for Bef , BeF;, and Bek are
Lanczos algorithm as a natural and convenient tool for recollected in Table IV. In addition, the calculated ionization
ducing the dimension of the secular problem, leading to aspectra are displayed in Fig. 3 in the shape of a line spec-
enhanced numerical stability of the diagonalization processrum. The position and height of each line are given by the
This reduction of the size of the secular problem is particucomputed ionization energy and pole strength, respectively.
larly important in applications where the treatment of the full The number above each line indicates the orbital out of
problem B becomes computationally extremely cumber-which ionization takes place.
some. In cases where a large number of very closely lying Before discussing the results let us first describe the
states in the inner-valence ionization region are present, th@ost critical problems arising in the calculations of the ion-
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TABLE IV. Vertical-electronic ionization energidg, and spectral intensity coefficien®,, of BeF, BeF;, and Bek calculated using the AD@) Green’s
function approach. Ten block Lanczos iterations have been performéd-68&)' and subsequently the resulting matBxhas been diagonalized using the
block Davidson procedure. The states wip,=0.01 are shown. All energies in eV.

BeF;™ BeF; BeF,
) Green'’s function ) Green'’s function ) Green'’s function
Orbital Hartree—Fock Orbital  Hartree—Fock Orbital  Hartree—Fock
p —& Iy Ppn o] -& Iy Ppn o] —& Iy Ppn
1t, 3.47 1.88 0.92 la, 9.47 7.86 0.92 ty 17.26 15.85 0.93
4t, 3.89 2.38 0.92 &" 9.97 8.46 0.92 *, 17.86 16.57 0.93
le 4.47 2.93 0.92 4’ 10.14 8.61 0.92 4y 18.89 17.62 0.93
3t, 5.53 4.10 0.92 1aj 10.90 9.52 0.92 a3, 19.27 17.89 0.92
4a, 6.40 5.01 0.92 8 11.81 10.35 0.92
4a; 12.22 10.81 0.92
2t, 28.69 24.78 0.04 e 35.01 30.80 0.01 &, 42.51 38.90 0.81
24.84 0.02 31.08 0.01 41.95 0.06
24.92 0.04 31.23 0.16 45.15 0.02
24.96 0.06 31.33 0.32 a2 42.73 39.09 0.79
24.99 0.22 31.39 0.05 41.95 0.07
25.11 0.23 31.45 0.16 45.16 0.02
25.22 0.02 31.52 0.03
25.31 0.06 31.54 0.01
25.40 0.06 31.68 0.02
3a; 29.20 25.46 0.05 35.45 0.01
25.52 0.20 38.00 0.01
25.58 0.31 3a; 35.33 31.19 0.01
25.67 0.14 31.54 0.01
25.84 0.07 31.55 0.04
26.03 0.01 31.66 0.03
28.38 0.02 31.73 0.72
35.45 0.02
38.04 0.01

ization spectra of the systems BeFand Bek . Whereas the going fromB to B, the diagonalization of all inner-valence
block Davidson algorithm could be straightforwardly appliedstates is hardly possible.

to the matrixB to extract the desired information on the We now turn to the discussion of the computed ioniza-
outer-valence part of the spectrum, serious computationalon spectra of Bef , BeF;, and Bek. In its ground state
difficulties emerged in calculating inner-valence ionic statesthe BeB~ dianion is well described by th&, electronic
The convergence problems of the block Davidson methodonfiguration (core)!%(3a;)?(2t,)%(4a;)?(3t,)°(1e)*(4t,)°
encountered in the inner-valence ionization region are due tx (1t;)®. As can be seen in Fig. 3 the spectrum of BeF
the large number of closely lying states in that part of theconsists of two groups of closely spaced lines which are
spectrum. To overcome these problems a modification of theeparated by a large energy dgap20 eV). The first group of
initial subspace selection for the block Davidson iterationdines at lowest ionization energy results from the removal of
was adopted. In the usual procedure the starting subspaedectrons out of the outer-valence orbitalsg ,14t,, le, 3t,,
vectors are simply selected as Brxn “unit” matrix Q™ and 4a,. These orbitals essentially derive from the vels
with elementQ;,,= &;,,, wheren is equal to the number of of fluorine (F2p lone pairg, the highest occupied of which,
occupied orbitals an8ll denotes the dimension of the predi- 1t;, is nonbonding with respect to the central beryllium
agonalized matrixB. In the problematic cases we augmentedatom. The second group of lines at higher binding energy
this starting basis set by additional unit vectors selected usarises from the ionization out of the inner-valence orbitals
ing a second-order perturbation theory criterion as follows2t, and 31, which are mainly of fluorine & character. These
The full list of 2h1p and 2p1h configurations is ordered lines are satellite lines and correspond tolp configura-
according to their summed second-order contribution to théions involving electron excitations from the outer-valence
1h inner-valence states and a suitable number of the largesiccupied to low-lying unoccupie@irtual) orbitals accompa-
contributing ones is then added to the starting basis. Out afiying the ionization of an electron out of an outer-valence
the thus obtained basis vectors a maximum number of 600rbital. They acquire their intensity by borrowing it from the
basis vectors has_been considered. In the block Davidsoks main states. According to the classification scheme pre-
diagonalization ofB the large number of about 70 block sented in Ref. 15 these satellites are final-state or correlation
iteration cycles were required to achieve convergence for abatellites. The present calculation yields a total of nine satel-
inner-valence ionic states, leadingSanatrices with dimen- lite lines of 2T, symmetry and a total of seven satellite lines
sions around 1100. Without the reduction of dimension wherof 2A; symmetry with pole strengths greater or equal to
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character. Further weak satellite lines’; and?E’ sym-
| BefF, 4321 | metry are predicted to appear at somewhat higher energy. As
for the BeB~ dianion these satellite lines arise due to corre-
81° 1 lation effects in the final states and thus can be classified as
correlation satellites. The major portion of the pole strength
(0.72 available for the &; orbital is confined in the “main”
65 state at 31.73 eV, the most intense lines emerging from the
- - T r T T ionization of the 2’ orbital are the ones at 31.23, 31.33, and
| BeFj cseszt 31.45. eV having pole strengths of 0.16, 0.32, and 0.16, re-
78 ] spectively.
Finally, we briefly discuss the results for BeH he cal-
] culated ionization spectrum in Fig. 3 of this molecule which
i ] possesses th®,., ground state electronic configuration
- e |7 ] (core®(20,)%(304)*(30,)*(40y)*(1m,)(1my)* is rather
i L S S S simple. It consists of four outer-valence main ionization lines
originating from the removal of electrons out of the orbitals
1 1my, 1m,, 4oy, and 3r, . The ionization of the inner-valence
- 1 orbital 3oy is predicted by the present calculation to result in

o o o o -
NP O o O
T
1

o o o o -
N oA OO O
T
@

1

SPECTRAL INTENSITY

BeFZ‘ 54321

1 a “main” line at 38.90 eV with a pole strength of 0.81 and
. in two satellite lines at 41.95 and 45.15 eV ionization energy

O o O o -
N PO o O
T

- 7u6 ] with pole strengths of 0.06 and 0.02, respectively. Similarly,
1 NE— || the 2, ionization leads to the appearance of a “main” line
50 45 40 35 30 25 20 45 10 5 O at 39.09 eV with a pole strength of 0.79 accompanied by two
IONIZATION ENERGY [eV] satellite lines at 41.95 and 45.16 eV possessing the pole
strengths of 0.07 and 0.02, respectively. The less pronounced
FIG. 3. Valence-shell ionization spectra of BeBeF; , and Bef calcu-  satellite structure and the absence of the breakdown of the

lated using the ADG) Green's function approach. The states with pole orpjtal picture of ionization predicted for this molecule is
strengths greater or equal to 0.01 are shown. The number above each line

specifies the orbital out of which ionization takes place. The assignment i?artly due to the_ smaller numbe'r OT electrons. .
as follows: +=1m,, 2=1m,, 3=40,, 4=30,, 5=30,, and 6=20, (BeFy); To make a simple characterization of the computed main

1=1a,,2=1¢€",3=4¢€',4 = 1a}, 5=3¢',6 = 4a;, 7=2¢’,and 8= 3a; and satellite ionic states for BéF, BeF;, and Bek we
Eggp@; 1=1t;, 2=4t;, 3=le, 4=3t,, 5=4a;, 6=2;, and 73a;  recal| the peculiar spatial electron distribution present in
A these systems. As has been discussed in Ref. 52 the bonding
in these systems, in particular in the dianion, is highly ionic

0.01. The most intens#, satellites are predicted to appear yvith the outer-valence elfectron dens_ity predominantly resid-
at 24.99 and 25.11 eV and to possess pole strengths of 0,339 0n the symmetry equivalent fluorine ligands and the cen-
and 0.23, respectively. The most interfdg satellites are tral beryllium atom bem_g positively charg_ed._ Th_erefore, we.
predicted to lie at 25.52 and 25.58 eV and to have poldn@y expect the vacancies created upon ionization and exci-
strengths of 0.20 and 0.31, respectively. As one can see frofdtion to be essentially localized on the fluorine sites. The
the figure, 2, and 3, main states cannot be identified, their Virtual orbitals are somewhat more difficult to characterize
intensity has spread over many lines. One encounters th@nce these orbitals represent—apart from a few

phenomenon of the breakdown of the orbital picture oféxceptions—admixtures of components deriving from both
ionization® the fluorine ligands and the central beryllium atom. How-

The ionization spectrum of BgFshown in Fig. 3 is €ver, as a closer analysis reveals, the metallic character of
similar to that of Bef discussed above. In the outer- almost all of these orbitals is obvious.
valence energy regime the spectrum exhibits six main ion- Owing to the above characterization of the orbitals and
ization lines all possessing a pole strength of 0.92. In théhe localization of the electronic charge density we may de-
order of increasing ionization energy these lines are assochote the single-hole configurations corresponding to the
ated with the ejection of electrons out of the orbitaks,1  outer-valence orbitals as p2* which simply implies that
1e", 4e’, 1aj, 3€’, and 4; in accordance with th®,, the hole created upon ionization is essentially localized on
ground state electronic configurationqre)®(3a;)?(2e’)*  one of the fluorine atoms. Theh2p configurations associ-
X (4a;)?(3e’)*(1ay)?(4e’)*(1e")%(1ay)? of the BeR an-  ated with the satellite states may be divided into two groups
ion. As for the outer-valence orbitals of BEF, these orbitals which we collectively denote as B2l F2p ! M'" and
are essentially built up of fluorinef2components, the high- F2p 2M’". The F2 ' F'2p~* M'" configuration indicates
est occupied orbital, d;, is nonbonding with respect to be- that one electron is excited from one of the fluorine ligands
ryllium. The rich satellite structure at about 31 eV binding to the central beryllium upon ionization of a further electron
energy originates from the ionization out of the inner-which stems from a fluorine atom other than the excited one
valence orbitals 8 and 2’ which have mainly fluorine®  (“two-site configuration”). Likewise, the FP 2M’'" con-
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figuration implies that both the ionized and excited electrondar delicate problem in view of the large number of closely
stem from the same fluorine atoiffone-site configura- lying states to be determined in the inner-valence regime of
tion” ). Physically, the abovel?lp configurations describe a their ionization spectra. Here, the block Lanczos transforma-
charge transfer of negative charge from fluorine to the cention has substantially reduced the computational effort as one
tral, almost positive, beryllium. The increasing many-bodyhas now to cope with smaller secular matrices. We have
effects in the inner-valence energy region when going frondiscussed the electronic structure of the computed spectral
BeF, to BeF is related to the growing ionicity and hence to profiles of the above beryllium fluorides in relation to the
the growing efficiency of the charge transfer in these syspeculiar bonding properties present in these systems.

tems. The efficiency of applying the block Lanczos prediago-
nalization grows, on the one hand, with the size of the con-
figuration spaces defining the dimension of the secular ma-
trices to be diagonalized and, on the other hand, with the

In the present work we have discussed the relevance agfumber of roots being sought. As we have pointed out, the
the block or band Lanczos method for calculating the onedimension of the secular problem is substantially determined
particle Green’s function. The usual way for determining thisby the size of the B1p block and, in particular, by that of
function is to resort to the Dyson equation whose solutiorthe 2p1h block. For a molecule under consideration the size
reduces to the diagonalization of large-dimensional Hermitof the configuration spaces of these blocks crucially depends
ian secular matrices. We have shown that the block Lanczosn the orbital basis set employed, i.e., on the number of
method quite naturally applies to the emerging secular probeccupied and unoccupiddirtual) orbitals. Enlarging the ba-
lems allowing for their efficient computation. sis set the P1lh block grows much faster with the basis set

To make transparent the importance of the block Lancthan does the 21p block, hence facilitating the application
zos method within the one-particle Green'’s function frame-of the block Lanczos prediagonalization. The second impor-
work we recall that its applicability heavily depends on thetant aspect concerns the number of eigensolutions wanted.
specific structure of the secular problem. As we have pointeds far as one is only interested in a few selected roots, e.g.,
out, in the secular matrixDyson equationto be diagonal- in those corresponding to the outer-valence ionic states of a
ized a block of small dimensiofthe 1p/1h block) is coupled  molecule one may directly apply the block Davidson diago-
to two larger blocks which do not couple with each other.nalization procedurgor any other proper diagonalization
Without loss of generality we have explicitly discussed themethod to generate the desired information from the secular
ADC(3) Dyson equation as a specific example. There, thenatrix. Considerable numerical difficulties, however, arise
latter two blocks are thef2Lh and Zh1p blocks. Based on when a multitude of solutions is required. In this situation,
the major prerequisite that thep2h and 2h1p blocks can be especially when the density of cationic states is large, the
treated independently and that thelh block is energeti- block Lanczos prediagonalization is advantageous.
cally well separated from thelp block and thus has minor The success in the ADGB) applications for the one-
influence on the cationic solutions being sought, we havgarticle Green'’s function renders the block Lanczos method
transformed theery large2plh block using block Lanczos. also a promising method for the treatment of the next higher
In this way a rather reliable approximation of theIh level of approximation, the fourth-order scheme, ABC
block in the region of ionization is obtained. As a result theFrom the numerical point of view the AD@) approximation
dimension of the secular matrix which is subject to subseposes two major bottlenecks. One drawback opposing actual
quent diagonalization is substantially reduced. applications is the calculation of special effective matrix el-

The computational performance of the proposed proceements involving sums of Coulomb interactions running over
dure has been tested in calculating the vertical ionizatioriour one-particle quantum numbers. The other difficulty
energies and accompanying spectral intensity coefficients ajriginates from the size of the configuration spaces. In the
the valence ionic states in benzene. The approximate valugsDC(4) scheme, the next higher class of excitations, i.e.,
of these quantities obtained by the prediagonalized DysoB8p2h and $h2p excitations is explicitly introduced leading
equation have been compared to the corresponding “exactto secular matrices whose dimensions surmount those of the
values of the full secular problem. The results for the valencADC(3) scheme considerably. The essential mathematical
ionic states 012E29I andZA1g symmetry have been discussed procedures now involve the diagonalization of Hermitian
in detalil. It has been demonstrated that a rather crude psesecular matrices built up of the blockg/lh, 2p1h/3p2h,
dospectrum of the 21h block already suffices to reproduce and zh1p/3h2p, where the 82p block and, in particular,
all the valence ionic levels to a sufficient degree of accuracythe 3p2h block are very large. Here, we expect that the
The results further show the expected tendency of a fastdrlock Lanczos prediagonalization will be extremely advanta-
convergence of the outer-valence states than is observed fgeous in order to cope with the otherwise very demanding
the inner-valence states. full ADC (4) matrices.

As a further model application of the procedure we have  Finally, we briefly outline a further application of the
calculated the valence-shell ionization spectra of BeF block Lanczos method within the many-body Green’s func-
BeF;, and Bek using the AD@3) Green's function ap- tion framework. This application aims at the computation of
proach. The diagonalization of the secular matrices arisinghe particle—particlép—p propagator which is a component
for the BeB~ and Bek systems has proven to be a particu- of the two-particle Green’s function. The p—p propagator

VII. CONCLUSIONS AND OUTLOOK
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