Efficacy of Incremental Next-Generation ALK Inhibitor Treatment in Oncogene-Addicted, ALK-Positive, TP53-Mutant NSCLC

László Urbán, Róbert Dóczi, Barbara Vodicska, Dóra Kormos, László Tóth, István Takács, Edit Várkondi, Dóra Tihanyi, Dóra Lakatos, Anna Dirner, István Vályi-Nagy, István Peták
2020 Journal of Personalized Medicine  
The anaplastic lymphoma kinase (ALK) gene fusion rearrangement is a potent oncogene, accounting for 2–7% of lung adenocarcinomas, with higher incidence (17–20%) in non-smokers. ALK-positive tumors are sensitive to ALK tyrosine kinase inhibitors (TKIs), thus ALK-positive non-small-cell lung cancer (NSCLC) is currently spearheading precision medicine in thoracic oncology, with three generations of approved ALK inhibitors in clinical practice. However, these treatments are eventually met with
more » ... tance. At the molecular level, ALK-positive NSCLC is of the lowest tumor mutational burden, which possibly accounts for the high initial response to TKIs. Nevertheless, TP53 co-mutations are relatively frequent and are associated with adverse outcome of crizotinib treatment, whereas utility of next-generation ALK inhibitors in TP53-mutant tumors is still unknown. Methods: We report the case of an ALK-positive, TP53-mutant NSCLC patient with about five years survival on ALK TKIs with continued next-generation regimens upon progression. Results: The tumor showed progression on crizotinib, but long tumor control was achieved following the incremental administration of next-generation ALK inhibitors, despite lack of evident resistance mechanisms. Conclusion: TP53 status should be taken into consideration when selecting ALK-inhibitor treatment for personalized therapies. In TP53-mutant tumors, switching TKI generations may overcome treatment exhaustion even in the absence of ALK-dependent resistance mechanisms.
doi:10.3390/jpm10030107 pmid:32872120 fatcat:egwm6q3d3vb5hnbnkqayaz263i