On the Ramsey Numbers of Trees with Small Diameter

Patrick Bahls, T. Scott Spencer
<span title="2011-10-11">2011</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/yxooi3wjmbgqtbp7l4evjeuj4i" style="color: black;">Graphs and Combinatorics</a> </i> &nbsp;
We estimate the Ramsey number r(T) = r(T,T) for various trees T, obtaining a precise value for r(T) for a large number of trees of diameter 3. Furthermore we prove that all trees of diameter 3 are Ramsey unsaturated as defined by Balister, Lehel, and Schelp in their article "Ramsey unsaturated and saturated graphs."
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s00373-011-1098-y">doi:10.1007/s00373-011-1098-y</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/kzdu3f6hu5efpk2sspimjydy64">fatcat:kzdu3f6hu5efpk2sspimjydy64</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20110331191006/http://facstaff.unca.edu/pbahls/papers/RamseyTrees.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/58/4b/584b7172a72f834ecdb988066fe6214e159cc773.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s00373-011-1098-y"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>