A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2012; you can also visit the original URL.
The file type is application/pdf
.
Caldero-Chapoton algebras
2014
Transactions of the American Mathematical Society
Motivated by the representation theory of quivers with potential introduced by Derksen, Weyman and Zelevinsky and by work of Caldero and Chapoton, who gave explicit formulae for the cluster variables of Dynkin quivers, we associate a Caldero-Chapoton algebra AΛ to any (possibly infinite dimensional) basic algebra Λ. By definition, AΛ is (as a vector space) generated by the Caldero-Chapoton functions CΛ(M) of the decorated representations M of Λ. If Λ = P(Q, W ) is the Jacobian algebra defined
doi:10.1090/s0002-9947-2014-06175-8
fatcat:owvu3ksve5gn3jnmptxo7y7s54