Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations

Juan Pablo Pinasco, ,IMAS (UBA-CONICET) and Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina, Mauro Rodriguez Cartabia, Nicolas Saintier
2020 Kinetic and Related Models  
In this work we propose a kinetic formulation for evolutionary game theory for zero sum games when the agents use mixed strategies. We start with a simple adaptive rule, where after an encounter each agent increases by a small amount h the probability of playing the successful pure strategy used in the match. We derive the Boltzmann equation which describes the macroscopic effects of this microscopical rule, and we obtain a first order, nonlocal, partial differential equation as the limit when
more » ... goes to zero. We study the relationship between this equation and the well known replicator equations, showing the equivalence between the concepts of Nash equilibria, stationary solutions of the partial differential equation, and the equilibria of the replicator equations. Finally, we relate the long-time behavior of solutions to the partial differential equation and the stability of the replicator equations. 2020 Mathematics Subject Classification. 35Q91, 35F20, 91A26.
doi:10.3934/krm.2020051 fatcat:qkape3f7srghlh2na3rr3tjyku