Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization

Franco Cortese, Dmitry Klokov, Andreyan Osipov, Jakub Stefaniak, Alexey Moskalev, Jane Schastnaya, Charles Cantor, Alexander Aliper, Polina Mamoshina, Igor Ushakov, Alex Sapetsky, Quentin Vanhaelen (+18 others)
2018 OncoTarget  
Copyright: Cortese et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT While many efforts have been made to pave the way toward human space colonization, little consideration has been given to the methods of protecting spacefarers against harsh cosmic and local radioactive
more » ... ts and the high costs associated with protection from the deleterious physiological effects of exposure to high-Linear energy transfer (high-LET) radiation. Herein, we lay the foundations of a roadmap toward enhancing human radioresistance for the purposes of deep space colonization and exploration. We outline future research directions toward the goal of enhancing human radioresistance, including upregulation of endogenous repair and radioprotective mechanisms, possible leeways into gene therapy in order to enhance radioresistance via the translation of exogenous and engineered DNA repair and radioprotective mechanisms, the substitution of organic molecules with fortified isoforms, and methods of slowing metabolic activity while preserving cognitive function. We conclude by presenting the known associations between radioresistance and longevity, and articulating the position that enhancing human radioresistance is likely to extend the healthspan of human spacefarers as well.
doi:10.18632/oncotarget.24461 pmid:29581875 pmcid:PMC5865701 fatcat:ms66iixpvjazfiwz6kqubwbevq