Slow quench dynamics of the Kitaev model: Anisotropic critical point and effect of disorder

T. Hikichi, S. Suzuki, K. Sengupta
2010 Physical Review B  
We study the non-equilibrium slow dynamics for the Kitaev model both in the presence and the absence of disorder. For the case without disorder, we demonstrate, via an exact solution, that the model provides an example of a system with an anisotropic critical point and exhibits unusual scaling of defect density n and residual energy Q for a slow linear quench. We provide a general expression for the scaling of n (Q) generated during a slow power-law dynamics, characterized by a rate τ^-1 and
more » ... onent α, from a gapped phase to an anisotropic quantum critical point in d dimensions, for which the energy gap Δ_k⃗∼ k_i^z for m momentum components (i=1..m) and ∼ k_i^z' for the rest d-m components (i=m+1..d) with z< z': n ∼τ^-[m + (d-m)z/z']να/(zνα +1) (Q ∼τ^-[(m+z)+ (d-m)z/z']να/(zνα +1)). These general expressions reproduce both the corresponding results for the Kitaev model as a special case for d=z'=2 and m=z=ν=1 and the well-known scaling laws of n and Q for isotropic critical points for z=z'. We also present an exact computation of all non-zero, independent, multispin correlation functions of the Kitaev model for such a quench and discuss their spatial dependence. For the disordered Kitaev model, where the disorder is introduced via random choice of the link variables D_n in the model's Fermionic representation, we find that n ∼τ^-1/2 and Q∼τ^-1 (Q∼τ^-1/2) for a slow linear quench ending in the gapless (gapped) phase. We provide a qualitative explanation of such scaling.
doi:10.1103/physrevb.82.174305 fatcat:tznj4yuw6jhvnklr2vskxxaluy