A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
On Quasinormal Subgroups II
1966
Nagoya mathematical journal
A subgroup was defined by O. Ore to be quasinormal in a group if it permuted with all subgroups of the group, and he proved [5] that such a subgroup is subnormal (= subinvariant = accessible) in a finite group. Finite groups in which all subgroups are quasinormal were classified by K. Iwasawa [3], and more recently N. Ito and J. Szép [2] and the author [1] proved that a quasi-normal subgroup is an extension of a normal subgroup by a nilpotent group. Similar results were obtained by O. Kegel [4]
doi:10.1017/s0027763000012034
fatcat:z6d5cvqkyjeh3lbslntgq27ukq