A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
On the existence of mild solutions for nonlocal differential equations of the second order with conformable fractional derivative

2021
*
Advances in Difference Equations
*

AbstractIn the work (Bouaouid et al. in Adv. Differ. Equ. 2019:21, 2019), the authors have used the Krasnoselskii fixed point theorem for showing the existence of mild solutions of an abstract class of conformable fractional differential equations of the form: $\frac{d^{\alpha }}{dt^{\alpha }}[\frac{d^{\alpha }x(t)}{dt^{\alpha }}]=Ax(t)+f(t,x(t))$ d α d t α [ d α x ( t ) d t α ] = A x ( t ) + f ( t , x ( t ) ) , $t\in [0,\tau ]$ t ∈ [ 0 , τ ] subject to the nonlocal conditions $x(0)=x_{0}+g(x)$

doi:10.1186/s13662-021-03593-5
fatcat:ouffsdxp6vda7k7lwd74mk24w4