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CXII .  ~l'lte Problem qf t/~e WhisperiJzy G, lle~'~. 
B j  Lord RAYLEIGIL O.M., KR.&*  

T HE phenomena of the whispering gallery, of which 
there is a good and accessible example in St. Paul 's  

cathedral, indicate that sonorous vibrations have a tendency 
to cling to a concave surface. The~, may be reproduced 
upon a moderate scale by the use ot; sounds of very high 
pitch (wavc-leng~h=2 era.l, such as are excited by a bird- 
call, the percipient being a high pressure sensitive f lamet .  
E~peeially remarkable is the narrowness of the obstacle, held 
close to the concave surface, which is competent to intercept 
most of the effect. 

The explanation is not diMcult to understand in a general 
way, and in ' Theory of Sound,' w 287, I have given a cal- 
culation based upon the methods employed in geometrical 
optics. I have often wished to illustrate the matter further 
on distinctively wave principles, but only recently have re- 
eoguized that most of what I sought lay as it were under my 
nose. The math~matieal solution in question is well known 
and very simple in form, although the reduction to numbers, 
in the special circumstances, presenls certain difficulties. 

Consider the expression in plane polar coordinates (r, 0) 

, ~ = &  @') cos (l~t--~,O), (1) 

applicable to sound in two dimensions, ~ denoting velocity- 
potential ; or aga;n to the transverse vibrations or a stretched 
membn,ne~ in which ease ~ represents the displacement at 
,qny point:~. Here a denotes the velocity of propagation, 
k=27r/?~, where X is the wave-length of straight waves of 
the given frequency, n is any integer, and J~ is the Bessel's 
function usually so denoted. The waves travel eircum- 
ferentially, everything being reproduced when 0 and t 
receive suitable proportiom,1 increments. For the present 
purpose we sul,pose that there are a large number of waves 
round the circumference, so that n is ~reat. 

As a function of r, ~ is proportional to J~ (kr). When 
z is great enough, J~ (z), as we know, becomes oscillatory 
and admits of an infinite number of roots. In the ease of 
the membrane held at the boundary any one of these roots 
might be taken as the value of kR~ where R is the radius of 
~he boundary. But for our purpose we suppose that kR is 

* Communicated bv the Author. 
.t Prec. Roy. Inst. :/an. 15, ]904. 
~t ' Theory of Sound~' w167 201, 339. 
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the f i r s t  or lowest root (after  zero) which we may call zl. 
In this case J ,  (z) remains throughout of one sign. For  the 
aerial vibrations, in which we are especially interested, the 
boundary condition, representing that r = R  behaves as a 
fixed wall, is that J,J (kR) = 0 .  We will suppose that k and 
g are so related that kl~ is equal to the.first root (zl') of this 
equation. The character of the vibrations as a function o~ 

thus depemts upon that, of J,~ (z), where n is very large 
and z less than za or zl'. And we know that in general, 
n being integral, 

J .  = # cos 6" sin d o , . .  (2)  

Moreover, the well known series in ascem]ing powers of z 
shows that. in the neighbourhood of the origin Jn (z) is very 
small, the lowest Dower occurring being z". 

The tendene, y, When n is moderatel~y hioh. . . . .  may be reeo_~- 
nized in Meissel's tables*, from which the following is 
extracted : - -  

24 
23 

2O 
19 
18 
17 

31s (z). J~, (z). 

--0"0931 +0"2264 
+0"0340 0"2381 

O" 1549 0"2105 
0'2316 0 '162t 
0"25 l 1 O' 1106 
0'2235 0"0675 
O' 1706 0 0369 
0'1138 0"0180 

Z .  

m 

16 
15 
14 
13 
]2  
11 
10 
9 

Jls (z). ~ (~). 

+0"0668 +0 '0079 
0 0346 0-0031 
0"01.58 0'0010 
00063 0-0003 
t9"0022 O'oO01 
0"0006 0'0000 
0"0002 
0'0000 

From the second colunm we see that the first root of 
Jls (z)----0 occurs when z=23"3.  The function is a maximum 
in the neighbourhood of z--20,  and sinks to insignificance 
when z is less than 14, being thus in a physical sense limited 
to a somewhat narrow range within z=23"3 .  

The above applies to the membrane problem. In the case 
of aerial waves the third column shows that J~l (z) is a 
maximum when z =  23"3, so that J2l' (23"3) = 0. This then 
is the value of kR, or zl'. I t  appears that the important 
part  of the range is from 23"3 to about 16. 

The course of the function J,~ (z) when n and z are both 
largo and nearly equal has recentlv been discussed by Dr. 
Nicholsont .  Under these circumstances the important part 

* Gray and Matthews' Bessel's Functions. 
t Phil. Mag. xvi. p. 271 (1908) ; xviii, p. 6 (1909). 
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of ('2) evidently corresponds to small values of co. I f  z---u 
absolutely we may write ultimately 

J" ('~) ----- ~r cos n (co-- sin o~)dro = 1 cos n(co-- sin ~o)doJ 
' T / "  , 0 

--- - cos--6- do) ----- cos ~ d0~ 
"lr 7r k T`t] ..'0 

= r  (~) . .2-~ 3 -~ ,~ - ,  n-~,  . . . . . . .  (3) 

one of Nicholson's results. 
In like manner when n--z,  though not zero, is relatively 

small, (1) may be made to depend upon Airy's integral. 
Thus 

1~o~ & ( z )=  ~ cos {(n--~,) ~, + ~ ,~}  ~l~,. (4) 

In the second of the papers above cited Nieholson tabulates 
zt J ,  (z) against 2"1123 (n - z ) / z~ .  I t  thence appears tha~ 

2"4955 ~ 
zL=n+ ~ n  ----n+~['1814 n :i-. (5) 

The maximmn (about 0"67) occurs when 

z = n + ' 5 1  ~ ,  . . . . . .  (~) 

and the function sinks to insignificance (0"01) when 

z = n - - l ' 5 n  ~ . . . . . . .  (7) 

Thus in the membrane problem the practical range is only 
about  2"7 nk. 

In like manner 
1"0845 z~ '=n + ~ n ~ = n  + '51342n ~; . (8) 

so that in the aerial problem the practical range given by 
7"1, . (7) and (8) is about 2"1 

To take an example in the latter case, le~ n--1000,  repre- 
senting approximately the radius of the reflecting circle. 
The vibrations expressed by (1) are practically limited to an 
annulus of width 20, or one fiftieth part only of t~he radius. 
With  greater values of n the concentration in the imme- 
diate neighbourhood of the circumference is still further 
increased. 

I t  will be admitted that this example fully illustrates the 
observed phenomena, and that the clinging of vibrations to 
the immediate neighbourhood of a concave reflecting wall 
may become exceedingly pronounced. 
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Another example migh~ be taken from the vibrations og 
air within a spherical cavity. In the usual notation for 
polar coordinates (r, 0, qS) we have as a possible velocity- 
potential qF=(kr)-t J,+�89 (kr) sin"0cos (kat--nqb), and the 
discussion proceeds as before. 

So far as I have seen. the ultimate form of J ,  (z) when n 
is very great, and z a me(]crate mu]t, iple of ~ has not been 
considered. Though unrelated to the main subject of this 
note, I may perhaps briefly indicate it. 

The form of (2)suggests  tile application of the method 
employed by Kelvin in dealing with the problem of water 
waves due to a limited initial disturbance. Reference may 
also be made to a recent paper of my own*. 

When n and z are great the only important part of the 
r 'mge of integration in (2) is the neighbourhood of the place 
or pl.ees, where z sin e o - - ~  is statiomtry with respect to oJ 
These are to be found where 

c o s  ~,1 = . / ~ ,  . . . . . .  (9) 
from which we may infer that when z is decidedly less than 
~), the total wdue of the integral is small, as we have already 
seen to be the case. When z> n, ~ol is real, and according 
to (9) would admit of an infinite series of values. Only one, 
however, of these comes into consideration, since the actual 
range of' integration is from 0 to ~r. We suppose that z is 
so much greater than n that ~o 1 has a sensible value. 

The application of Kelvin's method gives at once 

- l i  2~C~ ~ s i n ~ ' - ~ ' - � 8 8  (tO) 
J ~ ( : ) - ~ /  ~,Trz/ ~/{sin ~o,} " 

We may test this by applying it to the familiar case where 
z is so much greater than n as to make w~=�89 We find 

) 2 
J ,  (z = , ~ , / ( ~ z ) .  cos {z-�89188 (11) 

the well known form. 
As an example of (10), 

J ,(2n) = ~ . cos {(v/3--~Tr) n--�88 (2[2) 

Although in (2) n is limited to be integral, it is not diificuI~ 
to recognize that results such as (3), (5), (12), applicable to 
large values of n, are free from this restriction. 

| Phil. Mag. xviii, p. 1~ immediately preceding Nicholson's paper 
.] ust quoted. 


