Dynamic Memory for Interpretable Sequential Optimisation [article]

Srivas Chennu, Andrew Maher, Jamie Martin, Subash Prabanantham
2022 arXiv   pre-print
Real-world applications of reinforcement learning for recommendation and experimentation faces a practical challenge: the relative reward of different bandit arms can evolve over the lifetime of the learning agent. To deal with these non-stationary cases, the agent must forget some historical knowledge, as it may no longer be relevant to minimise regret. We present a solution to handling non-stationarity that is suitable for deployment at scale, to provide business operators with automated
more » ... ive optimisation. Our solution aims to provide interpretable learning that can be trusted by humans, whilst responding to non-stationarity to minimise regret. To this end, we develop an adaptive Bayesian learning agent that employs a novel form of dynamic memory. It enables interpretability through statistical hypothesis testing, by targeting a set point of statistical power when comparing rewards and adjusting its memory dynamically to achieve this power. By design, the agent is agnostic to different kinds of non-stationarity. Using numerical simulations, we compare its performance against an existing proposal and show that, under multiple non-stationary scenarios, our agent correctly adapts to real changes in the true rewards. In all bandit solutions, there is an explicit trade-off between learning and achieving maximal performance. Our solution sits on a different point on this trade-off when compared to another similarly robust approach: we prioritise interpretability, which relies on more learning, at the cost of some regret. We describe the architecture of a large-scale deployment of automatic optimisation-as-a-service where our agent achieves interpretability whilst adapting to changing circumstances.
arXiv:2206.13960v1 fatcat:nkoguvspbzf2vhthv3qqfz6tbe