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Preface

I. Software Product Line Engineering 

Are you interested in producing software products or software-intensive 
systems at lower costs, in shorter time, and with higher quality? If so, you 
are holding the right book in your hands. 

Software product line engineering has proven to be the methodology for 
developing a diversity of software products and software-intensive systems 
at lower costs, in shorter time, and with higher quality. Numerous reports 
document the significant achievements and experience gained by introducing 
software product lines in the software industry. Chapter 21 of this book 
summarises several cases. 

Concerning the terminology, there is an almost synonymous use of the terms 
“software product family” and “software product line”. Whereas in Europe 
the term software product family is used more often, in North America the 
term software product line is used more frequently. This is, among other 
things, reflected in the names of the two former conference series (the soft-
ware product line conference series, started in 2000 in the USA, and the 
product family engineering (PFE) workshop series, started in 1996 in 
Europe) which were merged in 2004 to form the leading software product 
line conference (SPLC) series. 

In this book, we use the term software product line.

II. Readers of the Book 

The book is for those people who are interested in the principles of software 
product line engineering. It elaborates on the foundations of software prod-
uct line engineering and provides experience-based knowledge about the two 
key processes and the definition and management of variability. 

We have written the book for practitioners, product line researchers, and 
students alike. 

Higher quality, lower 
cost, and shorter 
development times 

Software product line 
vs. software product 
family

Intended
readership
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III. Book Overview 

The book is organised according to our framework for software product line 
engineering, which has been developed based on our experience in product 
line engineering gained over the last eight years. The framework stresses the 
key differences of software product line engineering in comparison with 
single software-system development: 

a) The need for two distinct development processes: domain engineering 
and application engineering. The aim of the domain engineering process 
is to define and realise the commonality and the variability of the soft-
ware product line. The aim of the application engineering process is to 
derive specific applications by exploiting the variability of the software 
product line. 

b) The need to explicitly define and manage variability: During domain 
engineering, variability is introduced in all domain engineering artefacts 
(requirements, architecture, components, test cases, etc.). It is exploited 
during application engineering to derive applications tailored to the spe-
cific needs of different customers. 

Among others, the book provides answers to the following questions: 

How can we save development costs and development time and at the 
same time increase the quality of software? 
How can we establish proactive reuse in software development? 
What is the variability of a software product line? 
What are the key activities and aims of the domain and application 
engineering processes? 
How can we document and manage the variability of a product line? 
How can we ensure consistency of the variability defined in different 
development artefacts like requirements, architecture, and test cases? 
How can we exploit variability during application engineering and 
thereby derive specific products from a common core? 

The book is divided into six parts: 

Part I: Introduction 
Part II: Product Line Variability 
Part III: Domain Engineering 
Part IV: Application Engineering 
Part V: Organisation Aspects 
Part VI: Experience and Future Research 

Framework for 
product line 
engineering

Two
processes 

Variability

Part
structure
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Part I, Introduction, motivates the software product line engineering para-
digm, introduces our software product line engineering framework, and pro-
vides an introduction into the example domain used throughout the book. 

Chapter 1 outlines the basic principles of product line engineering 
and its roots in traditional engineering. 

Chapter 2 introduces our software product line engineering frame-
work. It defines the key sub-processes of the domain engineering 
and application engineering process as well as the artefacts pro-
duced and used in these processes. 

Chapter 3 provides a brief introduction to the smart homes domain 
from which examples are drawn throughout the book for explaining 
the introduced principles and concepts. 

Part II, Product Line Variability, defines the principles of the variability of a 
software product line and introduces notations to document variability in all 
software development artefacts. 

Chapter 4 defines the principles of variability of software product 
line engineering and introduces our orthogonal variability model, 
which we use throughout this book to document variability in the 
various software development artefacts clearly and unambiguously. 

Chapter 5 defines how to document variability in requirements arte-
facts, namely textual requirements, features, scenarios, use cases, 
statecharts, and class diagrams. 

Chapter 6 defines how to document variability in architectural arte-
facts, namely in the development view, the process view, and the 
code view of a software architecture. 

Chapter 7 defines how to document the variability of component 
interfaces and the variability within the internal structure of compo-
nents.

Chapter 8 defines how to document the variability in test artefacts 
such as test cases, test case scenarios, and test case scenario steps. 

Part III, Domain Engineering, defines the key sub-processes of the domain 
engineering process. For each of the sub-processes we define the construc-
tion of the common (invariant) product line artefacts as well as the variabil-
ity of the software product line. 

Chapter 9 introduces the principles of the product management sub-
process within the domain engineering process. This sub-process 
mainly deals with topics related to economics and, in particular, to 
product portfolio management. 

Introduction

Variability

Domain
engineering
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Chapter 10 defines the principles of the requirements engineering 
sub-process. It defines and illustrates the identification and docu-
mentation of common and variable features and requirements for 
the software product line. 

Chapter 11 deals with the definition of a reference architecture for 
the software product line. It shows how product line commonality 
and variability are incorporated in the reference architecture. 

Chapter 12 deals with the detailed design of reusable software 
components. It defines how the commonality and variability de-
fined in the reference architecture is mapped onto components. 

Chapter 13 discusses the influence of variability on the different 
test levels and presents and analyses test strategies with regard to 
their applicability in software product line engineering. The main 
focus is on establishing a systematic reuse of test artefacts in prod-
uct line test activities. 

Chapter 14 presents a technique for selecting commercial off-the-
shelf (COTS) components, which takes into account the variability 
of the software product line. We consider components that provide 
a significant fraction of the overall functionality, the so-called high-
level components. 

Part IV, Application Engineering, defines the key sub-processes of the appli-
cation engineering process. It shows how the orthogonal definition of vari-
ability established during domain engineering supports the exploitation and 
consistent binding of variability during application engineering – and 
thereby facilitates proactive reuse. 

Chapter 15 defines the application requirements engineering sub-
process. It tackles the problem of exploiting the common and vari-
able artefacts of the software product line when defining an appli-
cation. The chapter demonstrates how the orthogonal variability 
model supports the reuse of product line artefacts during application 
requirements engineering. 

Chapter 16 deals with the application design sub-process which de-
rives an application architecture from the reference architecture. By 
binding the variability according to the application requirements the 
required variants are selected and integrated into the application 
architecture. The sub-process also adapts the design according to 
application-specific requirements. 

Chapter 17 deals with the realisation of a specific software product 
line application. Ideally, the realisation is achieved through a con-

Application
engineering
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figuration of reusable domain components and application-specific 
ones by exploiting the commonality and variability of the compo-
nents and their interfaces. 

Chapter 18 deals with application testing. It shows how the vari-
ability – integrated into the domain test artefacts – supports the 
reuse of test case designs in application engineering. Consequently 
the effort of developing test cases for the different product line 
applications is significantly reduced. 

Part V, Organisation Aspects, elaborates on two key aspects to be considered 
when introducing a software product line into an organisation: the organisa-
tion structure and the transition strategies. 

Chapter 19 discusses the benefits and drawbacks of different 
organisation structures for software product line engineering. 

Chapter 20 outlines transition strategies for moving from a single 
software production to a software product line. It discusses when to 
apply which strategy depending on the current situation within the 
organisation. 

Part VI, Experience and Future Research, reports on the experience with 
product lines and briefly describes several essential topics for future re-
search.

Chapter 21 summarises experience reports about the application of 
the software product line engineering paradigm in several organisa-
tions. It also provides an annotated literature reference list as a 
guide for further reading. 

Chapter 22 outlines key challenges for future research in the area of 
software product line engineering. 

In addition, we provide at the end of the book: 

Information about the authors

The literature references used throughout the book 

A glossary for software product line engineering 

The index

IV. Share Your Experience! 

We are interested in your feedback. If you have any suggestions for im-
provements, or if you have detected an error or an important issue that the 
book does not cover, please do not hesitate to contact us at:

Organisation 
aspects

Experience and 
future research 

End of 
the book 

Feedback
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SPLE-Book@software-productline.com 

or visit the book web page: 

www.software-productline.com/SPLE-Book
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Guidelines for Teaching 

Many companies implement the software product line engineering (SPLE) 
principles for developing embedded software-intensive systems as well as 
information systems. Solid knowledge about SPLE will be crucial for em-
ployees in the future. The book has been designed to provide basic reading 
material that can serve for a 14-week course on SPLE as well as to accom-
pany lectures embedded in an advanced course on software engineering. 

Lectures on SPLE can be organised by taking our framework for SPLE as a 
basis. The framework stresses the key differences between SPLE and single-
system development: the need to distinguish between two types of develop-
ment processes (domain and application engineering) and the need to expli-
citly define and manage variability. 

Under the assumption that a single lecture takes two hours, the material cov-
ered in this book can, amongst others, be used for the following teaching 
courses and modules: 

a) A 14-lecture course on SPLE which covers almost all the topics pre-
sented in this book (Section I). 

b) A two-lecture module on SPLE in an advanced software engineering 
course which introduces the key concepts of SPLE (Section II). 

c) A four-lecture module on SPLE in an advanced software engineering 
course which introduces the key concepts of SPLE and illustrates these 
concepts on a particular process phase of domain and application engin-
eering, for instance using the domain and application requirements 
engineering sub-processes, or the domain and application design sub-
processes (Section III). 

d) A one-lecture module on the selection of COTS systems which could be 
part of an advanced software engineering course. This lecture intro-
duces the challenges and a technique for selecting a COTS (commercial 
of the shelf) component or system for a software product line 
(Section IV). 

e) A three-lecture module on testing in SPLE which could be part of a 
software quality assurance course or an advanced software engineering 
course. The module introduces the key concepts of SPLE and teaches 

Education of 
software engineers 

Framework

14-lecture
course

2-lecture
module

4-lecture
module

Lecture
on COTS 

3-lecture
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the challenges and basic solutions for testing domain and application 
artefacts (Section V). 

In addition, we recommend a three-lecture module on: 

requirements engineering for software product lines that could be part 
of an advanced requirements engineering course, and 

software design for software product lines that could be part of an 
advanced software architecture or design course. 

I. Fourteen-Lecture Course on SPLE 

This course provides a good overview of SPLE. It teaches the important 
aspects of SPLE and is organised around the framework proposed in this 
book. Students attending the lectures should have basic knowledge of soft-
ware engineering. After passing the course they will be familiar with the 
principles of SPLE: namely, variability management and the domain and 
application engineering processes. 

For the 14-lecture course, we suggest the following structure:1

Two lectures for introducing the principles and a framework for SPLE: 

(1) SPLE principles (Chapter 1); SPLE experiences (Chapter 21) 

(2) Key differences between single-system development and 
SPLE; SPLE framework (Chapter 2) 

Four lectures on the principles of variability and the documentation of 
variability with special emphasis on the consistent definition of vari-
ability across the various development artefacts: 

(3) Principles of product line variability illustrated by examples; 
basic concepts (Chapter 4) 

(4) Concepts of the orthogonal variability meta model illustrated 
by examples (Chapter 4); documenting requirements artefacts 
(Chapter 5) 

(5) Documenting variability in requirements artefacts illustrated by 
a comprehensive example (Chapter 5); interrelations to design 
(Chapters 5 and 6) 

                                                     
1 The number in brackets indicates the lecture in the course sequence, followed by the key contents of the 

lecture.

Requirements 
engineering module 

Software design 
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Basic principles 
and framework 

Documentation
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(6) Documenting variability in design, realisation, and test arte-
facts based on the orthogonal variability model (Chapters 6, 7, 
and 8) 

Five lectures on the domain engineering sub-processes with special 
emphasis on the differences between SPLE and development of single 
software systems: 

(7) Introduction to product management; product portfolio defini-
tion; scoping (Chapter 9) 

(8) Domain requirements engineering sub-process; defining vari-
ability, commonality and variability analysis; modelling re-
quirements variability (Chapter 10) 

(9) Domain design sub-process; refining requirements variability 
into design variability; defining the reference architecture/ plat-
form (Chapter 11) 

(10) Domain realisation; mapping design variability onto compo-
nents (Chapter 12); COTS selection in high-level design; 
COTS selection technique (Chapter 14) 

(11) Domain tests; strategies for domain testing; defining variability 
in test artefacts under the consideration of requirements, de-
sign, and realisation variability (Chapter 13) 

Two lectures on the derivation of application artefacts from domain 
artefacts through the binding of predefined variability: 

(12) Application requirements engineering and application design 
sub-processes; defining requirements for product line applica-
tions; binding variability defined in domain requirements and 
design artefacts; deriving the design of an application (Chap-
ters 15 and 16) 

(13) Application realisation and application test sub-processes; 
deriving the application realisation; deriving application test 
artefacts from domain test artefacts based on the variability 
binding established during application requirements engineer-
ing and application design (Chapters 17 and 18) 

One lecture on organisational aspects with an emphasis on the orga-
nisational consequences encountered with, when introducing SPLE in 
an organisation: 

(14) Influence of the organisation structure on SPLE; estimations 
for determining the ROI of SPLE; basic transition strategies for 
introducing SPLE in an organisation (Chapters 19 and 20) 

Domain
engineering

Application
engineering

Organisation 
and transition 
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An alternative course outline could be based on organising the domain and 
application engineering sub-process in such a way that each domain engin-
eering sub-process is followed by the corresponding application engineering 
sub-process, i.e. domain requirements engineering, application requirements 
engineering, domain design, application design, etc. Teaching the topics in 
this sequence gives the advantage to emphasise the differences between 
domain engineering and application engineering activities as well as their 
interrelations. It has the disadvantage that the relations between the sub-
processes in domain engineering as well as the relations between the appli-
cation engineering sub-processes cannot be emphasised equally well as in 
the standard course outline. 

II. Two-Lecture Module on SPLE 

The two-lecture SPLE module provides an introduction to SPLE. It is 
designed to fit in an advanced software engineering course. In the two 
lectures the students learn the key motivations for introducing the SPLE 
paradigm in an organisation as well as the key differences from the devel-
opment of single software systems. We suggest the following contents for 
the two lectures: 

(1) Motivation and principles of SPLE (Chapter 1) including one or two 
experiences (Chapter 21); key differences between SPLE and the 
development of single systems (Chapter 2) 

(2) The SPLE framework (Chapter 2); principles of software product 
line variability; overview of variability modelling (Chapter 4) 

III. Four-Lecture Module on SPLE 

The four-lecture SPLE module provides a comprehensive introduction to 
basic principles of SPLE and the differences between SPLE and the devel-
opment of single software systems. We recommend the four-lecture module 
for an introduction to SPLE if time constraints permit it: 

(1) Motivation and principles of SPLE (Chapter 1) including one or two 
experiences (Chapter 21); key differences between SPLE and the 
development of single systems (Chapter 2) 

(2) The SPLE framework (Chapter 2); principles of software product 
line variability; overview of variability modelling (Chapter 4) 

Alternative
course structure 

Motivation

Framework
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(3) Orthogonal variability meta model (Chapter 4); example of docu-
menting variability in requirements or in design (depending on the 
phase chosen for this module in the next lecture) 

(4) Specifics of the domain and application engineering processes; we 
recommend the selection of a particular phase of domain and appli-
cation engineering to illustrate the specifics of the two processes; we 
also recommend either the domain and application requirements 
engineering sub-processes (Chapters 10 and 15) or the domain and 
application design sub-processes (Chapters 11 and 16) 

IV. One-Lecture Module on COTS Selection 

This lecture focuses on the challenges of selecting COTS components for a 
software product line during high-level design. In addition, our technique for 
selecting COTS components should be part of this lecture. This technique 
takes into account the domain requirements, the domain architecture, as well 
as the variability of the product line (Chapter 14). 

V. Three-Lecture Module on Testing in SPLE  

This three-lecture module provides a brief introduction to SPLE and focuses 
on the specifics of testing in the domain engineering and the application 
engineering sub-processes. 

(1) Motivation and principles of SPLE (Chapter 1); key differences 
between SPLE and development of single systems (Chapter 2); 
challenges for testing (Chapter 13) 

(2) Principles of software product line variability; the orthogonal vari-
ability meta model (Chapter 4); documenting variability in test arte-
facts (Chapter 8) 

(3) Test strategies and evaluation criteria; preserving variability in test 
designs (Chapter 13); deriving application test cases from domain 
test cases; reuse of test artefacts (Chapter 18) 

VI. Exercises 

We recommend two types of exercises. The first type is an exercise which 
accompanies the lectures and aims at deepening the knowledge of the stu-
dents of the principles of SPLE, variability modelling, and the domain and 
application engineering processes. The second type is an exercise after the 
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Motivation
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lecture which, in addition to the first type, embeds practical exercises in 
extending the capability of a software product line. We recommend doing 
this by adding functional and non-functional features as well as deriving a 
product line application. 

Paper-Based Exercises 
For understanding the principles of SPLE and gaining experience with the 
orthogonal variability model as well as the various artefact models used in 
domain and application engineering, we recommend the following exercises: 

(1) Product line principles: The students should become familiar with 
two to three experience reports (based on the annotated literature ref-
erences in Chapter 21). They should summarise and compare the 
reported experiences and try to map the positive and negative 
experiences to product line principles. The results should be pre-
sented in a 20 minutes’ talk and/or in written reports of about three to 
four pages. 

(2) Defining variability: Based on a natural language description of vari-
ability which has to be integrated into an existing software product 
line, the students should extend the orthogonal variability model 
(without considering the development artefacts). 

(3) Modelling variability in requirements artefacts: The students are 
given an existing requirements document and a new variation to be 
integrated into the variability model as well as into the requirements 
artefacts. They have to consider variability dependencies and con-
straints during the integration. The example should be small in size. 

(4) Mapping variability in requirements artefacts to design artefacts:
The students are given a design document, a requirements document, 
and an orthogonal variability model for the product line. In the vari-
ability model and the requirements model, newly introduced exten-
sions are marked. The students should map these extensions onto the 
software architecture of the product line considering variability con-
straints and dependencies as well as design constraints. The example 
should be small in size and, to avoid an unwanted focus, different 
from the example used in Exercise (3). 

Optional: In addition, the students could be given the task to inte-
grate internal design variability into the design. For example, they 
could be asked to make the architecture flexible so that the introduc-
tion of different types of middleware is facilitated, allowing the 
company to shift between different middleware providers. 

Experience
reports

Variability
model
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(5) Mapping variability in design artefacts to realisation artefacts: The 
students are given a realisation document, a design document, a 
requirements document, and an orthogonal variability model for the 
product line. In the variability model and in the design models, 
newly introduced extensions are marked. The students should map 
these extensions to software components and their interfaces consid-
ering variability constraints and dependencies as well as realisation 
constraints. The example should be small in size and, to avoid an 
unwanted focus, different from the examples used in Exercises (3) 
and (4). 

(6) Defining domain test cases for system tests: Based on a requirements 
document, a design document, and an orthogonal variability model, 
the students should design a set of test cases for some part of the 
requirements specification. The variability in the domain artefacts 
should be preserved, i.e. should be adequately introduced into the 
test case design. 

(7) Mapping application requirements to domain requirements artefacts:
Based on a list of application requirements artefacts (e.g. features 
and scenarios), the students have to identify the corresponding com-
monalities and the variability in the domain requirements artefacts. 
In addition, they have to suggest an appropriate binding of the vari-
ability defined in the domain requirements artefacts to realise the 
given application requirements. 

(8) Deriving an application design: Based on the binding defined in the 
application requirements (documented in the orthogonal variability 
model and the application requirements artefacts), the students have 
to derive an application design that binds the domain design vari-
ability according to the application requirements. 

(9) Deriving system test case designs for an application: Based on the 
variability bound in the orthogonal variability model, the students 
have to derive system test cases from the domain test cases to test a 
particular functional or quality feature of the given application. 

(10) Desirable tool support: Based on their experiences gained during the 
exercise, the students should define a desirable tool support for prod-
uct line engineering. Each student should focus on the support for a 
particular domain and application engineering sub-process, e.g. 
domain and application requirements engineering, or a cross-cutting 
aspect such as variability modelling or configuration support. 

(11) Extending the variability meta model: Based on their experience, the 
students should suggest extensions to the variability meta model in 

Variability in 
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Application
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terms of a) specialisation of variation points and variants, b) relation-
ships to and between domain artefacts, and c) relationships to and 
between application artefacts. The suggested extensions should be 
presented and discussed. 

In addition, lecturers may add question-based exercises as appropriate. 

Extending a Product Line and Deriving an Application 
A prerequisite for this exercise is the (partial) realisation of a software prod-
uct line including up-to-date documentation of the features, the require-
ments, the design, the components, and the test cases of the software product 
line. This example product line may be based on the home automation 
example used in this book (Chapter 3). 

The goal of this exercise is two-fold. The first phase aims at deepening the 
knowledge of SPLE by taking some of the exercises defined in Section V. In 
the second phase, domain and application engineering is practised by adding 
new features to an existing software product line as well as by deriving a 
product line application. This involves adaptations and additions to the 
models that are made in the first phase. Feedback between the steps in each 
of the two processes, and from application engineering to domain engineer-
ing, should be stimulated. When there is sufficient time, active rework 
should also follow from that. In contrast to the paper-based exercise, this is a 
more hands-on exercise, i.e. the extensions are made using tool support and a 
(partially) realised product line. 

In the first phase, we recommend that the students are trained using a set of 
the paper-based exercises introduced above, e.g. Exercises (2), (3), (4), (7), 
and (8). 

The second phase of the exercise consists of two parts: 

Integration of a new feature: The students should add one or more 
functional and/or non-functional features or requirements which pref-
erably affect the variability of an existing product line. If time permits 
it, we suggest: 

(1) choosing a new feature which leads to an extension of existing 
variability and thereby letting the students experience that such 
an integration is typically easy to achieve due to the variation 
points, and 

(2) choosing a feature that leads to the introduction of a new vari-
ation point – which is typically far more complex than the task 
described in (1). 

Example
product line 

Simulation of 
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The challenge in both cases is the coherent integration of the new fea-
ture in all product line artefacts, and, even more important, to consider 
the effects of the integration on the domain assets as well as on the 
existing applications. The students will experience the importance of 
traceability as well as of the orthogonal variability model if the exten-
sions affect existing variations. 

Derivation of a product line application: The students are given a list 
of requirements artefacts (features, requirements, use cases, scenarios) 
for a new application. The challenge to derive the new application is 
two-fold. First, the students must map the application requirements to 
the product line requirements and decide which variability has to be 
bound to realise the given application requirements. Second, the stu-
dents gain experience with the support for deriving an application 
based on the identified variability bindings in requirements, i.e. they 
experience how the orthogonal variability model supports the mapping 
of the variability bound during application requirements engineering 
onto the application design, the application realisation, and the appli-
cation test designs. This exercise can be extended by giving the stu-
dents the requirements for an application, which involve application-
specific extensions of the application requirements artefacts (which 
should not be mixed up with extending the domain artefacts). 

Derivation of product 
line application 
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In this chapter you will learn: 

o The key principles of product line engineering for mechanical and electronic 
consumer products. 

o The key ideas of the software product line engineering paradigm. 
o The motivations and the prerequisites for adapting those principles to soft-

ware engineering. 

Günter Böckle 



4 1.  Introduction to Software Product Line Engineering 

1.1 Principles of Product Line Engineering 

The way that goods are produced has changed significantly in the course of 
time. Formerly goods were handcrafted for individual customers. By and by, 
the number of people who could afford to buy various kinds of products 
increased. In the domain of automobiles this led to Ford’s invention of the 
production line, which enabled production for a mass market much more 
cheaply than individual product creation on a handcrafted basis. However, 
the production line reduced the possibilities for diversification. 

Roughly, both types of products, individual and mass produced ones can be 
identified in the software domain as well: they are denoted as individual 
software and standard software. Generally, each of these types of products 
has its drawbacks. Individual software products are rather expensive, while 
standard software products lack sufficient diversification.2

1.1.1 Mass Customisation 
Customers were content with standardised mass products for a while – but 
not all people want the same kind of car for any purpose. Certain cars are 
used for travelling by a single person others for big families. Some cars are 
used by people living in cities, others mainly in the countryside. People want 
to have another car or a better one than their neighbours. Thus, industry was 
confronted with a rising demand for individualised products. This was the 
beginning of mass customisation, which meant taking into account the cus-
tomers’ requirements and giving them what they wanted (see Fig. 1-1). 

We use the following definition of mass customisation: 

Definition 1-1: Mass Customisation 

Mass customisation is the large-scale production of goods tailored to 
individual customers’ needs. 

[Davis 1987] 

Example 1-1: Mass Customisation in Car Manufacturing 

The four cars at the bottom of Fig. 1-1 are an example of mass 
customisation: different cars that meet individual customers’ wishes, 
each produced in large numbers. 

                                                     
2 See [Halmans and Pohl 2002] for a treatment of product line engineering for individual vs. mass-

market software. 
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1.1.2 Platforms
For the customer mass customisation means the ability to have an individ-
ualised product. For the company mass customisation means higher tech-
nological investments which leads to higher prices for the individualised 
products and/or to lower profit margins for the company. Both effects are 
undesirable. Thus many companies, especially in the car industry, started to 
introduce common platforms for their different types of cars by planning 
beforehand which parts will be used in different car types. 

Originally, an automobile platform only consisted of floor panels, a suspen-
sion system, and rocker panels. Later more parts were added to the platform. 
The platform provided a structure for major components determining the 
body size and the size and type of the engine and transmission. The parts 
comprising the platform were usually the most expensive subsystem in terms 
of design and manufacturing preparation costs. The use of the platform for 
different car types typically led to a reduction in the production cost for a 
particular car type. 

                                                     
3 Picture drawn by Loe Feijs. 

Fig. 1-1: Single product for all vs. individual products3

Not “one product 
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The platform approach enabled car manufacturers to offer a larger variety of 
products and to reduce costs at the same time. The result was that within 
periods of three years (measured from 1980 to 1991 and averaged) those 
companies using the best platform strategy increased sales by 35%, whereas 
those companies starting from scratch for each new series of cars had a sales 
loss of 7% (for details, see [Cusumano and Nobeoka 1998]). The same pat-
tern was observable in the camera industry and many others (Examples 1-2 
and 1-3). 

Example 1-2: From the Camera World 

In 1987, Fuji released the Quicksnap, the first single-use camera. It 
caught Kodak by surprise: Kodak had no such product in a market that 
grew from then on by 50% annually, from 3 million in 1988 to 43 
million in 1994. However, Kodak won back market share and in 1994, 
it had conquered 70% of the US market. How did Kodak achieve it? 
First, a series of clearly distinguishable, different camera models was 
built based on a common platform. Between April 1989 and July 
1990, Kodak reconstructed its standard model and created three add-
itional models, all with common components and the same manufac-
turing process. Thus, Kodak could develop the cameras faster and 
with lower costs. The different models appealed to different customer 
groups. Kodak soon had twice as many models as Fuji, conquered 
shelf space in the shops and finally won significant market share this 
way (for details see [Robertson and Ulrich 1999; Clark and 
Wheelwright 1995]). 

Example 1-3: Notion of Platform in Office Supplies

The “Post-It” notes from 3M are considered a platform from which 
many individual products have been derived. For instance, “Post-it” 
notes with a company logo, or markers to select pages in books, etc. 
[Cooper et al. 2001]. 

Definition 1-2: Platform

A platform is any base of technologies on which other technologies or 
processes are built. 

[TechTarget 2004] 

The term platform is used in various contexts as illustrated by Examples 1-1 
to 1-3. A common definition of platform does not exist. For this book we use 
the definition given in Definition 1-2. Note that this definition encompasses 

Platform:
35% sales growth 

“Platform” used in 
various contexts 
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all kinds of reusable artefacts as well as all kinds of technological capabil-
ities.

1.1.3 Combining Platform-Based Development and Mass 
Customisation

The combination of mass customisation and a common platform allows us to 
reuse a common base of technology and, at the same time, to bring out prod-
ucts in close accordance with customers’ wishes. The systematic combina-
tion of mass customisation and the use of a common platform for the 
development of software-intensive systems and software products is the key 
focus of this book. We call the resulting software development paradigm 
software product line engineering. In Section 1.2 we sketch the key implica-
tions of combining those approaches. The motivations behind the product 
line engineering paradigm are outlined in Section 1.3. 

1.2 Engineering Customised Products 

Combining platform and mass customisation in order to provide customised 
products has many implications for the development process as well as the 
developing organisation. We briefly sketch the three key influences. 

1.2.1 Creating the Platform 
In single-system engineering, products are regarded as independent, self-
contained items. In the example presented in Fig. 1-1 (bottom), this means 
having four distinct projects for developing four distinct products. Develop-
ing these four types of cars by product line engineering requires the creation 
of a platform that suits all of them. This platform comprises all common 
parts, for instance a gear box that can be applied in all or most of the cars (in 
so far, the platform extends the original meaning of a car platform as 
described in Section 1.1.2). Furthermore, the platform determines the specif-
ics that distinguish not only the four cars but also how to accommodate the 
customers’ wishes for more individualised products. Briefly, creating the 
platform implies preparing for mass customisation. For our example, this 
means having four basic types of cars, each with numerous customisable 
features.

The strategy that we have intuitively followed in the above example is, first, 
to focus on what is common to all products, and next, to focus on what is 
different. In the first step, artefacts are provided that can be reused for all 
products. These artefacts may be built from scratch or derived from another 
platform or earlier systems. Built-in flexibility makes it possible to reuse 
these artefacts in different applications, providing mass customisation. Cre-

Platform and mass 
customisation

Preparing for mass 
customisation

Commonality first, 
differences later 
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ating this flexibility requires some effort. Therefore, in the automobile 
industry, the platform is usually developed by a distinct project. Several 
other projects are commissioned to develop the single cars or, more fre-
quently, groups of cars, each group encompassing a subset of the product 
line’s products. 

1.2.2 Introducing Flexibility 
To facilitate mass customisation, the artefacts used in different products have 
to be sufficiently adaptable to fit into the different systems produced in the 
product line. This means that throughout the development process we have 
to identify and describe where the products of the product line may differ in 
terms of the features they provide, the requirements they fulfil, or even in 
terms of the underlying architecture etc. We thus have to provide flexibility 
in all those artefacts to support mass customisation. 

Different cars of the same product line may for instance have different wind-
shield wipers and washers. We design the cars in a way that allows a com-
mon approach to support the different motors for these different windshield 
wipers/washers, their different sizes, etc. Such flexibility comes with a set of 
constraints. If you drive a convertible, you would not want a rear window 
washer splashing water onto the seats! Therefore, the selection of a convert-
ible car means the flexibility that the availability of the windshield wipers 
and washers is restricted, so that the rear window washer is disabled when 
the car roof is open. 

This flexibility is a precondition for mass customisation; it also means that 
we can predefine what possible realisations shall be developed (there are 
only a certain number of windshield wiper configurations conceivable). In 
addition, it means that we define exactly the places where the products can 
differ so that they can have as much in common as possible. 

The flexibility described here is called “variability” in the software product-
line context. This variability is the basis for mass customisation. Variability 
is introduced and defined in detail in Part II of this book. 

In the automotive industry, cars sharing the same platform and exhibiting 
similar features were called a product line or a product family. At this stage, 
the relation between a platform and a product line was straightforward. A 
manageable set of cars belonged to one product line that was based on a 
single platform. But soon, in the history of automobile development, plat-
forms were shared across different product lines. New product lines used 
platforms of earlier product lines etc. Thus, the simple relation between plat-
form and product line vanished. Consequently, it became necessary to man-
age carefully the trace information from a platform to the products derived 
from it. Without such trace information, it is barely possible to find out 

Flexibility
is the key 

Variability

Sharing platforms 
between product lines 
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which parts of the platform have been used in which product. Thus, for 
example, the estimation of the impact of changes becomes difficult. 

1.2.3 Reorganising the Company 
Migrating from single-system engineering to a platform approach has far-
reaching consequences. The products derived from platform artefacts can no 
longer be treated as being independent. They are related through the under-
lying technology. This also has to be reflected in the organisation structure
of a company: it may be necessary to establish additional organisation units,
e.g. one unit responsible for the platform, or by setting up additional com-
munication paths between formerly independent units. Basically, the plat-
form approach leads to standardisation of procedures, workflows, and the 
technology employed within an organisation or even across organisations. 

1.3 Motivations for Product Line Engineering 

We already conveyed a first idea of the goals that product line engineering 
pursues: to provide customised products at reasonable costs. In this section, 
we briefly outline the key motivations for developing software under the 
product line engineering paradigm. 

1.3.1 Reduction of Development Costs 
A far-reaching change of engineering practices is usually not initiated with-
out sound economical justification. An essential reason for introducing prod-
uct line engineering is the reduction of costs. When artefacts from the plat-
form are reused in several different kinds of systems, this implies a cost 
reduction for each system. Before the artefacts can be reused, investments 
are necessary for creating them. In addition the way in which they shall be 
reused has to be planned beforehand to provide managed reuse. This means 
that the company has to make an up-front investment to create the platform 
before it can reduce the costs per product by reusing platform artefacts. 

Figure 1-2 shows the accumulated costs needed to develop n different sys-
tems. The solid line sketches the costs of developing the systems independ-
ently, while the dashed line shows the costs for product line engineering. In 
the case of a few systems, the costs for product line engineering are relative-
ly high, whereas they are significantly lower for larger quantities. The loca-
tion at which both curves intersect marks the break-even point. At this point, 
the costs are the same for developing the systems separately as for develop-
ing them by product line engineering. Empirical investigations revealed that, 

A platform leads to 
standardisation 

Up-front
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for software, the break-even point is already reached around three systems.4
A similar figure is shown in [Weiss and Lai 1999], where the break-even 
point is located between three and four systems. The precise location of the 
break-even point depends on various characteristics of the organisation and 
the market it has envisaged, such as the customer base, the expertise, and the 
range and kinds of products. The strategy that is used to initiate a product 
line also influences the break-even point significantly [McGregor et al. 
2002]. Chapter 20 elaborates on the initiation of product lines. 

1.3.2 Enhancement of Quality 
The artefacts in the platform are reviewed and tested in many products. They 
have to prove their proper functioning in more than one kind of product. The 
extensive quality assurance implies a significantly higher chance of detecting 
faults and correcting them, thereby increasing the quality of all products. 

1.3.3 Reduction of Time to Market 
Often, a very critical success factor for a product is the time to market. For 
single-product development, we assume it is roughly constant,5 mostly com-
prising the time to develop the product. For product line engineering, the 
time to market indeed is initially higher, as the common artefacts have to be 
built first. Yet, after having passed this hurdle, the time to market is consid-

                                                     
4 [Clements and Northrop 2001]: The sidebar on p. 226, “It Takes Two”, provides a closer examination 

of the break-even point for software product lines. 
5 In practice, this number varies, but for showing the effect of single-system vs. product line engineering 

this assumption is sufficiently accurate. 
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erably shortened as many artefacts can be reused for each new product (see 
Fig. 1-3). 

1.3.4 Additional Motivations 
In this section, we briefly outline additional motivations for introducing a 
software product line engineering paradigm. An overview of further motiva-
tions (and also key principles and solutions) can be found in [Pohl et al. 
2001b]. 

1.3.4.1 Reduction of Maintenance Effort 
Whenever an artefact from the platform is changed, e.g. for the purpose of 
error correction, the changes can be propagated to all products in which the 
artefact is being used. This may be exploited to reduce maintenance effort. 
At best, maintenance staff do not need to know all specific products and 
their parts, thus also reducing learning effort. However, given the fact that 
platform artefacts are changed, testing the products is still unavoidable. Yet, 
the reuse of test procedures is within the focus of product line engineering as 
well and helps reduce maintenance effort. The techniques used in product 
line engineering make a system better maintainable as stated in [Coplien 
1998]: “The same design techniques that lead to good reuse also lead to 
extensibility and maintainability over time.” 

1.3.4.2 Coping with Evolution 
The introduction of a new artefact into the platform (or the change of an 
existing one) gives the opportunity for the evolution of all kinds of products 
derived from the platform. Similarly, developers who want to introduce a 
trend towards certain product features may do so by adding specific artefacts 

Time to
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Single Systems
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Time for Building
Common Artefacts

Shorter Development
Cycles due to Reuse

Fig. 1-3: Time to market with and without product line engineering
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to the platform. Thus, it is possible to better organise development for evo-
lution of the product range and reduce the effort compared to single-system 
engineering.

1.3.4.3 Coping with Complexity 
Due to the increased number of customers’ wishes, the complexity of prod-
ucts increases. This holds especially for software, where code size and com-
plexity sometimes increase beyond being manageable. The reason for this 
trend is that more and more functionality is put into software. 

Example 1-4: Size of the Windows Operating System

In 1991 the size of Windows NT PDK 2 was 1.8 million SLOC,6 see 
[Cusumano and Selby 1998] – Windows XP has about 45 million 
SLOC.

In embedded systems, the complexity increase was further aggravated by 
moving functionality from hardware to software. This was done for several 
reasons, mostly because software provides more flexibility than hardware as 
well as a higher level of abstraction. Software enables complex interactions 
between functionality, and allows for distribution over a network. This 
causes a significant increase in the complexity of the system, making it diffi-
cult for developers to conceive the whole functionality. If no adequate meas-
ures are taken, high complexity leads to rapidly increasing error rates, long 
development cycles, and a higher time to market – influencing our key moti-
vations.

The fact that the common parts are reused throughout the product line 
reduces complexity significantly. The platform provides a structure that 
determines which components can be reused at what places by defining vari-
ability at distinct locations; this reduces complexity. The reuse of common 
parts from the platform reduces the error rate and the development time. 

1.3.4.4 Improving Cost Estimation 
The development organisation can focus its marketing efforts on those prod-
ucts that it can easily produce within the product line. Nevertheless, it can 
allow extensions not covered by the platform. Products that do need such 
extensions can be sold for higher prices than those products built by reusing 
platform artefacts only. Furthermore, calculating prices for products realised 
within the product line is relatively straightforward and does not include 
much risk. Consequently, the platform provides a sound basis for cost esti-
mation.

                                                     
6 SLOC = Source Lines of Code, the number of non-comment lines of code in a source program. 
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1.3.4.5 Benefits for the Customers 
Customers get products adapted to their needs and wishes. This is just what 
they ask for – previously, users had to adapt their own way of working to the 
software. In the past, it often happened that customers had to get used to a 
different user interface and a different installation procedure with each new 
product. This annoyed them, in particular as it even happened when replac-
ing one version of a product by the next version. So customers began to ask 
for improved software ergonomics. Accordingly, software packages were 
developed to support common user interfaces and common installation pro-
cedures. The use of such packages contributed to the proliferation of the idea 
of platforms. Moreover, customers can purchase these products at a reason-
able price as product line engineering helps to reduce the production costs. 
Additionally, customers get higher quality products since the reusable com-
ponents and their configurations have been tested in many products devel-
oped earlier and proved dependable. Moreover, many requirements are 
reviewed more often, not only in domain engineering but also in application 
engineering, and the architecture review for application architectures helps 
to find problems in the domain architecture, too. 

Despite possessing individual features, the products of a product line have a 
lot in common due to the artefacts reused from the platform. Similar or the 
same user interfaces and similar major functionality make it easy for the 
customer to switch from one product to another. The customer does not have 
to learn new ways of using another product derived from the same platform. 

1.4 Software Product Line Engineering 

Until recently software, especially embedded software was relatively small7

and each product variant got its own variant of software. Software was a way 
to easily implement on the same hardware individual product variants that 
originally required individual hardware variants. Compared to hardware, 
software is easy and cheap to copy, transport, and replace. This fact was 
exploited by employing software flexibly and adapting it at very late stages 
of development, thus easing many problems of system developers. Not much 
thought was spent on how software was produced. Outside the embedded 
system world, software was typically not regarded as being variable. Either a 
customer could buy a software system including all possible features one 
might ever need, or software was produced for a single purpose by order of a 
single customer. 

                                                     
7 See the introduction of [V. Ommering 2004], where it is shown how TV-set software grew from 1 kB 

in 1978 to 100 kB in 1990 and to 10,000 kB in 2004. 
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However, the situation in software engineering has changed. Almost all sys-
tems of a certain complexity contain software. Many systems in our envi-
ronment are becoming software-intensive systems, not only because vari-
ability can be implemented more flexibly than in pure hardware, but also 
because of the fact that software allows the introduction of new functionality 
that could not easily be achieved without it. The amount of embedded soft-
ware is growing, and the amount of variability is growing even faster. In 
many systems, this amount is now many times larger than before software 
came into play. Therefore, presently a strong need for adopting product line 
engineering can be observed in the software domain, especially when size 
and complexity exceed the limits of what is feasible with traditional 
approaches.

1.4.1 Definition
We define the term software product line engineering as follows: 

Definition 1-3: Software Product Line Engineering

Software product line engineering is a paradigm to develop software 
applications (software-intensive systems and software products) using 
platforms and mass customisation. 

Our definition covers the development of pure software products or systems 
as well as the development of software that is embedded into a software-
intensive system, i.e. a system that closely integrates hardware and software. 
Being an integral part of many everyday products, embedded software con-
stitutes a great proportion of the total amount of software being developed 
and sold. With respect to this book, it is valid to consider both kinds of soft-
ware, as the principles of product line engineering are the same for them. 

Developing applications using platforms means to plan proactively for reuse, 
to build reusable parts, and to reuse what has been built for reuse. Building 
applications for mass customisation means employing the concept of 
managed variability, i.e. the commonalities and the differences in the 
applications (in terms of requirements, architecture, components, and test 
artefacts) of the product line have to be modelled in a common way. The 
definition of the commonalities and the variability, the documentation, the 
subsequent deployment, and the management are key focuses of this book. 

Managed variability has a great impact on the way software is developed, 
extended, and maintained. Usually, for those who understand how a piece of 
software works, it is also easy to change it and adapt it to suit a new purpose. 
However, such changes often corrupt the original structure of the software 
and hamper quality aspects like understandability or maintainability. In order 
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to be able to deal with adaptations in a managed way, they have to be 
accomplished in a reproducible manner. The abundance of possibilities for 
adapting a piece of software has to be restricted to those places where it 
makes sense to do so. More than other engineering disciplines, software 
product line engineering deals with ways to restrict variation in a manage-
able way. 

1.4.2 Software Platform 
Definition 1-3 makes use of the term platform. In the software industry, this 
term is often used to denote the underlying computer system on which appli-
cation programs can run. This may be the hardware used, e.g. the processor, 
or, more often, the combination of hardware and operating system (see 
Example 1-5). 

Example 1-5: Symbian as a Platform 

The Symbian operating system is used by several companies as a plat-
form for some of their product lines of mobile phones, including 
Nokia, Siemens, and Motorola. 

In software architecture the term platform is used slightly differently but still 
in line with the classic meaning. A software architecture usually consists of 
multiple layers. From the viewpoint of one layer, its underlying layer is 
called its platform. 

Though the above interpretations of platform are quite common in software 
engineering, they do not reflect what makes up a platform in software prod-
uct line engineering. This kind of software platform must enable the creation 
of entire products from reusable parts. Therefore, we use the definition given 
in Definition 1-4. 

Definition 1-4: Software Platform 

A software platform is a set of software subsystems and interfaces that 
form a common structure from which a set of derivative products can 
be efficiently developed and produced. 

[Meyer and Lehnerd 1997] 

The subsystems belonging to a software platform encompass not just code 
but also requirements, architecture, and other artefacts of the development 
process.
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1.4.3 Prerequisites
The fact that product line engineering entered the software engineering 
domain much later8 than other domains was due to several reasons. Past 
barriers for adapting the product line engineering paradigm to software 
development have been partly overcome but can still complicate the adop-
tion of software product line engineering if not taken carefully into consider-
ation. To overcome these barriers, certain prerequisites are necessary for 
adopting software product line engineering. 

1.4.3.1 Enabling Technologies 
For a long time, an important barrier to adopting software product line 
engineering was the lack of adequate technology for applying the principles 
of product line engineering in an easy way. In addition, part of the technol-
ogy available was not used in practice. The development of such enabling 
technology supported the introduction of software product line engineering. 
Actually, the implementation technologies of standard software engineering 
are used for product line engineering, no new ones are introduced. Coplien 
states that “many software families are naturally expressed by existing pro-
gramming language constructs” [Coplien 1998]. 

Object-oriented programming is a major enabling technology. Many pro-
grams were (and still are) written in procedural programming languages. 
These languages make encapsulation and information hiding hard to put into 
practice. Yet, encapsulation is a prerequisite for realising managed variabil-
ity. Object-oriented modelling and programming concepts mitigated this 
barrier by supporting approved design principles in a more natural way. 

Another important achievement is the introduction of component techno-
logy. Component technology enables developers to package software as 
loosely coupled parts. Components can be developed, compiled, linked and 
loaded separately. Only at run-time are they combined into a working sys-
tem. This helps developers to focus on a particular component and thus to 
cope with complexity. Besides, component technology limits the scope 
where variation is possible and thus supports the realisation of managed 
variability. 

Late-binding techniques, especially installation and run-time dynamic bind-
ing, allow for late configuration choices. By applying late binding, variabil-
ity can be designed and implemented in a uniform way without bothering 
about how the actual variants look. This facilitates the implementation of 
platforms and provides an easy way to realise mass customisation. 

                                                     
8 However, the basic ideas had already been proposed in the 1970s by Dijkstra [Dijkstra 1972] and 

Parnas [Parnas 1976]. 
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The quasi-standardisation of middleware, interoperability, and interface 
descriptions supports late binding. It also speeds up the configuration of 
applications enormously and helps in defining the platform and its bounda-
ries. Software from different origins can be used to work together inside an 
application. Middleware facilitates the development of loosely coupled com-
ponents, thus contributing to reduced complexity and easing managed reuse. 

Configuration management is another important prerequisite for being able 
to cope with the complexity of large applications consisting of many parts in 
different versions. Therefore, sophisticated configuration management is 
necessary to succeed in software product line engineering. 

1.4.3.2 Process Maturity 
Lacking maturity in software engineering can affect the success of software 
product line engineering even more seriously than technological matters. 

For a long time, software development processes were unstructured, hardly 
well defined, and also not well understood. The increasing application of 
assessments, e.g. postulated by CMMI, led to better software development 
processes. Process models such as CMMI help to identify the weak parts of 
software development processes, thus driving their improvement and foster-
ing the use of sound engineering principles in software practice. 

The CHAOS report [Standish Group 1995] showed that inadequate require-
ments engineering is a major cause of problems in software projects. Conse-
quently, thorough requirements engineering comprising the identification of 
commonality and variability is a major prerequisite for software product line 
engineering.

The history of software and system development shows that abstraction 
plays a major role in making the complexity manageable. Although model-
ling techniques were available, they were often not used or people used dif-
ferent techniques, mostly on an ad hoc basis. The major driver for using 
modelling techniques was the foundation of UML [OMG 2003], which has 
become an industrial standard. This standardisation of modelling notations 
helps engineers to become aware of methods for modelling variability, too. 

1.4.3.3 Domain Characteristics and Expertise 
Another major prerequisite for software product line engineering is sufficient 
domain expertise. Only people who know their markets and/or customers 
can identify commonalities and variability in an adequate way for develop-
ing platforms and variability. 

Software is flexible and all sorts of variability can be added to it. Wrong 
choices are, however, costly. The introduction of variability that is not used 
leads to additional costs for developing it and, at a later stage, removing it 
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again. Failing to introduce the required variability leads to additional costs 
for realising common and even variable parts in each product. Moreover, it 
is important to use an appropriate level of abstraction to define the variabil-
ity of a product line. Ideally, the variability abstractions match the com-
monly used domain abstractions. Domain-related abstractions are known to 
the customers and developers and thus help them to understand the variabil-
ity of the product line. Not knowing the domain leads to incorrect abstrac-
tions with the danger that they are not perceived by the stakeholders, and 
thus cause wrong choices, which have to be repaired afterwards. 

The better you know the domain and the more experience you have with 
your products, the more likely it is that you can successfully introduce a 
software product line. 

The stability of the domain is also an important factor for the successful 
introduction of software product line engineering. If everything changes 
every half-year in an unpredictable way, the investment costs never pay off. 
This situation is similar to not understanding the domain well: variability is 
added that is not needed and the variability that is actually required is not 
available.

Domain
stability
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In this chapter you will learn: 

o The principles of software product line engineering subsumed by our software 
product line engineering framework. 

o The difference between domain engineering and application engineering, 
which are the two key processes of software product line engineering. 

o Where variability of the product line is defined and where it is exploited. 
o The structure of this book, which is derived from the framework. 
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2.1 Introduction 

Our framework for software product line engineering incorporates the cen-
tral concepts of traditional product line engineering, namely the use of plat-
forms and the ability to provide mass customisation. 

A platform is, in the software context, a collection of reusable artefacts 
(Definition 1-4). These artefacts have to be reused in a consistent and 
systematic way in order to build applications. Reusable artefacts encompass 
all types of software development artefacts such as requirements models, 
architectural models, software components, test plans, and test designs. 

The experience from reuse projects in the 1990s shows that without proper 
planning the costs for reuse may be higher than for developing the artefacts 
from scratch. It is therefore crucial to plan beforehand the products for which 
reuse is sensible, together with the features that characterise these products. 
The planning for reuse continues throughout the whole development process. 

To facilitate mass customisation (Definition 1-1) the platform must provide 
the means to satisfy different stakeholder requirements. For this purpose the 
concept of variability is introduced in the platform. As a consequence of 
applying this concept, the artefacts that can differ in the applications of the 
product line are modelled using variability. 

The following sections outline our software product line engineering frame-
work.

2.2 Two Development Processes 

The software product line engineering paradigm separates two processes: 

The software product line engineering paradigm separates two processes (see 
e.g. [Weiss and Lai 1999; Boeckle et al. 2004b; Pohl et al. 2001b, V.d. 
Linden 2002]): 

Domain engineering: This process is responsible for establishing the 
reusable platform and thus for defining the commonality and the vari-
ability of the product line (Definition 2-1). The platform consists of all 
types of software artefacts (requirements, design, realisation, tests, etc.). 
Traceability links between these artefacts facilitate systematic and con-
sistent reuse. 

Application engineering: This process is responsible for deriving prod-
uct line applications from the platform established in domain engineer-
ing; see Definition 2-2. It exploits the variability of the product line and 
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ensures the correct binding of the variability according to the applica-
tions’ specific needs. 

The advantage of this split is that there is a separation of the two concerns, to 
build a robust platform and to build customer-specific applications in a short 
time. To be effective, the two processes must interact in a manner that is 
beneficial to both. For example, the platform must be designed in such a way 
that it is of use for application development, and application development 
must be aided in using the platform. 

The separation into two processes also indicates a separation of concerns 
with respect to variability. Domain engineering is responsible for ensuring 
that the available variability is appropriate for producing the applications. 
This involves common mechanisms for deriving a specific application. The 
platform is defined with the right amount of flexibility in many reusable 
artefacts. A large part of application engineering consists of reusing the plat-
form and binding the variability as required for the different applications. 

Definition 2-1: Domain Engineering

Domain engineering is the process of software product line engineer-
ing in which the commonality and the variability of the product line 
are defined and realised. 

Definition 2-2: Application Engineering 

Application engineering is the process of software product line engin-
eering in which the applications of the product line are built by 
reusing domain artefacts and exploiting the product line variability. 

2.3 Overview of the Framework 

Our software product line engineering framework has its roots in the ITEA 
projects ESAPS, CAFÉ, and FAMILIES [V.d. Linden 2002; Boeckle et al. 
2004b; CAFÉ 2004] and is based on the differentiation between the domain 
and application engineering processes proposed by Weiss and Lai [Weiss 
and Lai 1999]. The framework is depicted in Fig. 2-1. 

The domain engineering process (depicted in the upper part of Fig. 2-1) is 
composed of five key sub-processes: product management, domain require-
ments engineering, domain design, domain realisation, and domain testing. 
The domain engineering process produces the platform including the com-
monality of the applications and the variability to support mass customi-
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sation. We briefly describe the domain engineering process and its sub-
processes in Section 2.4. 

The application engineering process (depicted in the lower part of Fig. 2-1) 
is composed of the sub-processes application requirements engineering, 
application design, application realisation, and application testing. We 
briefly describe the application engineering process and its sub-processes in 
Section 2.6. 

The framework differentiates between different kinds of development arte-
facts (Definition 2-3): domain artefacts and applications artefacts. The 
domain artefacts (Definition 2-4) subsume the platform of the software 
product line. We briefly characterise the various artefacts in Section 2.5. The 
application artefacts (Definition 2-5) represent all kinds of development 
artefacts of specific applications. We briefly characterise these artefacts in 
Section 2.7. As the platform is used to derive more than one application, 
application engineering has to maintain the application-specific artefacts for 
each application separately. This is indicated in the lower part of Fig. 2-1. 
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Note that neither the sub-processes of the domain and application engineer-
ing processes, nor their activities, have to be performed in a sequential order. 
We have indicated this by a loop with an arrow in Fig. 2-1 for each process. 

In this book, we define the key activities that have to be part of each product 
line engineering process. The order in which they are performed depends on 
the particular process that is established in an organisation. Thus, the sub-
processes and their activities described in this book can be combined with 
existing development methods such as RUP (Rational Unified Process, see 
[Kruchten 2000]), the spiral model [Boehm 1988], or other development 
processes. 

When the domain engineering process and the application engineering pro-
cess are embedded into other processes of an organisation, each sub-process 
depicted in Fig. 2-1 gets an organisation-specific internal structure. 
Nevertheless, the activities presented in this book have to be present. An 
example of an organisation-specific process is the FAST process presented 
in [Weiss and Lai 1999]. 

Definition 2-3: Development Artefact 

A development artefact is the output of a sub-process of domain or 
application engineering. Development artefacts encompass require-
ments, architecture, components, and tests. 

Definition 2-4: Domain Artefacts 

Domain artefacts are reusable development artefacts created in the 
sub-processes of domain engineering. 

Definition 2-5: Application Artefacts 

Application artefacts are the development artefacts of specific product 
line applications. 

2.4 Domain Engineering 

The key goals of the domain engineering process are to: 

Define the commonality and the variability of the software product line. 

Define the set of applications the software product line is planned for, 
i.e. define the scope of the software product line. 
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Define and construct reusable artefacts that accomplish the desired vari-
ability. 

The goals of domain engineering are accomplished by the domain engineer-
ing sub-process. Each of them has to: 

Detail and refine the variability determined by the preceding sub-
process.

Provide feedback about the feasibility of realising the required variabil-
ity to the preceding sub-process. 

The domain engineering part of the software product line engineering 
framework is highlighted in Fig. 2-2. We briefly explain the domain 
engineering sub-processes in this section, whereas domain artefacts are 
explained separately in Section 2.5. 

2.4.1 Product Management 
Product management deals with the economic aspects of the software prod-
uct line and in particular with the market strategy. Its main concern is the 
management of the product portfolio of the company or business unit. In 
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product line engineering, product management employs scoping techniques 
to define what is within the scope of the product line and what is outside. 

The input for product management consists of the company goals defined by 
top management. The output of product management is a product roadmap 
that determines the major common and variable features9 of future products 
as well as a schedule with their planned release dates. In addition, product 
management provides a list of existing products and/or development arte-
facts that can be reused for establishing the platform. 

Product management for software product lines differs from product man-
agement for single systems for the following reasons: 

The platform has an essential strategic meaning for the company. The 
introduction and elimination of an entire platform have a strong influ-
ence on entrepreneurial success. 

A major strength of software product line engineering is the generation 
of a multitude of product variants at reasonable cost. 

The products in the product portfolio are closely related as they are 
based on a common platform. 

Product management anticipates prospective changes in features, legal 
constraints, and standards for the future applications of the software 
product line and formulates (models) the features accordingly. This 
means that the evolution of market needs, of technology, and of con-
straints for future applications is taken into account. 

We deal with the principles of product management, activities, and artefacts 
in Chapter 9. 

2.4.2 Domain Requirements Engineering 
The domain requirements engineering sub-process encompasses all activities 
for eliciting and documenting the common and variable requirements of the 
product line. 

The input for this sub-process consists of the product roadmap. The output
comprises reusable, textual and model-based requirements and, in particular, 
the variability model of the product line. Hence, the output does not include 
the requirements specification of a particular application, but the common 
and variable requirements for all foreseeable applications of the product line. 

                                                     
9 A feature is an abstract requirement (see Definition 5-4 for the definition of “feature” by Kang et al.). 
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Domain requirements engineering differs from requirements engineering for 
single systems because: 

The requirements are analysed to identify those that are common to all 
applications and those that are specific for particular applications (i.e. 
that differ among several applications). 

The possible choices with regard to requirements are explicitly docu-
mented in the variability model, which is an abstraction of the variabil-
ity of the domain requirements. 

Based on the input from product management, domain requirements 
engineering anticipates prospective changes in requirements, such as 
laws, standards, technology changes, and market needs for future appli-
cations.

The artefacts and activities of domain requirements engineering are de-
scribed in detail in Chapter 5 and Chapter 10. 

2.4.3 Domain Design 
The domain design sub-process encompasses all activities for defining the 
reference architecture of the product line. The reference architecture pro-
vides a common, high-level structure for all product line applications. 

The input for this sub-process consists of the domain requirements and the 
variability model from domain requirements engineering. The output encom-
passes the reference architecture and a refined variability model that includes 
so-called internal variability (e.g. variability that is necessary for technical 
reasons).

Domain design differs from design for single systems because: 

Domain design incorporates configuration mechanisms into the refer-
ence architecture to support the variability of the product line. 

Domain design considers flexibility from the very first, so that the refer-
ence architecture can be adapted to the requirements of future applica-
tions.

Domain design defines common rules for the development of specific 
applications based on the reference architecture. 

Domain design designates reusable parts, which are developed and 
tested in domain engineering, as well as application-specific parts, 
which are developed and tested in application engineering. 

The artefacts and activities of domain design are described in detail in 
Chapter 6 and Chapter 11. 
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2.4.4 Domain Realisation 
The domain realisation sub-process deals with the detailed design and the 
implementation of reusable software components. 

The input for this sub-process consists of the reference architecture including 
a list of reusable software artefacts to be developed in domain realisation. 
The output of domain realisation encompasses the detailed design and imple-
mentation assets of reusable software components. 

Domain realisation differs from the realisation of single systems because: 

The result of domain realisation consists of loosely coupled, configur-
able components, not of a running application. 

Each component is planned, designed, and implemented for the reuse in 
different contexts, i.e. the applications of the product line. The interface 
of a reusable component has to support the different contexts. 

Domain realisation incorporates configuration mechanisms into the 
components (as defined by the reference architecture) to realise the 
variability of the software product line. 

The artefacts and activities of domain realisation are described in detail in 
Chapter 7 and Chapter 12. 

2.4.5 Domain Testing 
Domain testing is responsible for the validation and verification of reusable 
components. Domain testing tests the components against their specification, 
i.e. requirements, architecture, and design artefacts. In addition, domain 
testing develops reusable test artefacts to reduce the effort for application 
testing.

The input for domain testing comprises domain requirements, the reference 
architecture, component and interface designs, and the implemented reusable 
components. The output encompasses the test results of the tests performed 
in domain testing as well as reusable test artefacts. 

Domain testing differs from testing in single-system engineering, because: 

There is no running application to be tested in domain testing. Indeed, 
product management defines such applications, but the applications are 
available only in application testing. At first glance, only single compo-
nents and integrated chunks composed of common parts can be tested in 
domain testing. 

Domain testing can embark on different strategies with regard to testing 
integrated chunks that contain variable parts. It is possible to create a 
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sample application, to predefine variable test artefacts and apply them 
in application testing, or to apply a mixture of the former two strategies. 

We describe the artefacts produced by domain testing in Chapter 8 and deal 
with product line test strategies and techniques in Chapter 13. 

2.4.6 Other Software Quality Assurance Techniques 
Besides testing, other software quality assurance techniques are also applica-
ble to software product line engineering, most notably inspections, reviews, 
and walkthroughs. These techniques have to be integrated into the domain 
and application engineering processes. 

To our knowledge, specialised techniques for software product line inspec-
tions, reviews, or walkthroughs have not been proposed. There is also a lack 
of experience reports identifying required adaptations of inspection, review, 
and walkthrough techniques known from the development of single software 
systems. We thus refer the interested reader to the standard literature on soft-
ware inspections, reviews, and walkthroughs such as [Fagan 1976; Fagan 
1986; Freedman and Weinberg 1990; Gilb and Graham 1993; Yourdon 
1989]. 

2.5 Domain Artefacts 

Domain artefacts (or domain assets; see Definition 2-4) compose the plat-
form of the software product line and are stored in a common repository. 
They are produced by the sub-processes described in Section 2.4. The arte-
facts are interrelated by traceability links to ensure the consistent definition 
of the commonality and the variability of the software product line through-
out all artefacts. In the following, we briefly characterise each kind of arte-
fact including the variability model. 

2.5.1 Product Roadmap 
The product roadmap describes the features of all applications of the soft-
ware product line and categorises the feature into common features that are 
part of each application and variable features that are only part of some 
applications. In addition, the roadmap defines a schedule for market intro-
duction. The product roadmap is a plan for the future development of the 
product portfolio. Its role in domain engineering is to outline the scope of the 
platform and to sketch the required variability of the product line. Its role in 
application engineering is to capture the feature mix of each planned appli-
cation.
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Note that the output of product management (the product roadmap) is not 
contained in the framework picture. The main reason for this is that the 
product roadmap is not a software development artefact in the common 
sense. Moreover, it guides both domain and application engineering, and is 
not an artefact to be reused in application engineering. In domain engineer-
ing, it guides the definition of the commonality and the variability of the 
software product line. In application engineering it guides the development 
of the specific products. We thus decided to define the product roadmap 
neither as a domain nor as an application artefact. We deal with the essential 
techniques for defining the product roadmap in Chapter 9. 

2.5.2 Domain Variability Model 
The domain variability model defines the variability of the software product 
line. It defines what can vary, i.e. it introduces variation points for the prod-
uct line. It also defines the types of variation offered for a particular vari-
ation point, i.e. it defines the variants offered by the product line. Moreover, 
the domain variability model defines variability dependencies and variability 
constraints which have to be considered when deriving product line applica-
tions. Last but not least, the domain variability model interrelates the vari-
ability that exists in the various development artefacts such as variability in 
requirements artefacts, variability in design artefacts, variability in compo-
nents, and variability in test artefacts. It thus supports the consistent defini-
tion of variability in all domain artefacts. 

We describe the variability model in greater detail in Chapter 4. To distin-
guish our variability model from the definition of variability within other 
development artefacts, we call it the “orthogonal variability model”. 

2.5.3 Domain Requirements 
Domain requirements encompass requirements that are common to all 
applications of the software product line as well as variable requirements 
that enable the derivation of customised requirements for different applica-
tions. Requirements are documented in natural language (textual require-
ments) or by conceptual models (model-based requirements). Variability 
occurs in functional as well as in quality requirements. In Chapter 5, we 
elaborate on modelling variability in requirements using the orthogonal vari-
ability model. 

2.5.4 Domain Architecture 
The domain architecture or reference architecture determines the structure 
and the texture of the applications in the software product line. The structure 
determines the static and dynamic decomposition that is valid for all appli-
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cations of the product line. The texture is the collection of common rules 
guiding the design and realisation of the parts, and how they are combined to 
form applications. Variability in the architecture is documented by refining 
the orthogonal variability model and adding internal variability (i.e. variabil-
ity that is only visible to the engineers). The architectural texture defines 
common ways to deal with variability in domain realisation as well as in 
application design and application realisation. Chapter 6 elaborates on the 
documentation of variability in design artefacts using the orthogonal vari-
ability model. 

2.5.5 Domain Realisation Artefacts 
Domain realisation artefacts comprise the design and implementation arte-
facts of reusable software components and interfaces. The design artefacts 
encompass different kinds of models that capture the static and the dynamic 
structure of each component. The implementation artefacts include source 
code files, configuration files, and makefiles. Components realise variability 
by providing suitable configuration parameters in their interface. In addition 
to being configurable, each component may exist in different variants to 
realise large differences in functionality and/or quality. We elaborate on 
variability in domain realisation artefacts in Chapter 7. 

2.5.6 Domain Test Artefacts 
Domain test artefacts include the domain test plan, the domain test cases, 
and the domain test case scenarios. The domain test plan defines the test 
strategy for domain testing, the test artefacts to be created, and the test cases 
to be executed. It also defines the schedule and the allocation of resources 
for domain test activities. The test cases and test case scenarios provide 
detailed instructions for the test engineer who performs a test and thus make 
testing traceable and repeatable. We include variability definitions in domain 
test artefacts to enable the large-scale reuse of test artefacts in application 
testing. We deal with the documentation of variability in test artefacts in 
Chapter 8. 

2.6 Application Engineering 

The key goals of the application engineering process are to: 

Achieve an as high as possible reuse of the domain assets when defining 
and developing a product line application. 
Exploit the commonality and the variability of the software product line 
during the development of a product line application. 
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Document the application artefacts, i.e. application requirements, archi-
tecture, components, and tests, and relate them to the domain artefacts. 
Bind the variability according to the application needs from require-
ments over architecture, to components, and test cases. 
Estimate the impacts of the differences between application and domain 
requirements on architecture, components, and tests. 

The framework introduces four application engineering sub-processes: 
application requirements engineering, application design, application realisa-
tion, and application test. Each of the sub-processes uses domain artefacts 
and produces application artefacts. Figure 2-3 highlights the application 
engineering part of the software product line engineering framework. We 
characterise the application engineering sub-processes in this section. Appli-
cation artefacts are described in Section 2.7. 

2.6.1 Application Requirements Engineering 
The application requirements engineering sub-process encompasses all 
activities for developing the application requirements specification. The 
achievable amount of domain artefact reuse depends heavily on the applica-

Fig. 2-3: Application engineering 
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tion requirements. Hence, a major concern of application requirements 
engineering is the detection of deltas between application requirements and 
the available capabilities of the platform. 

The input to this sub-process comprises the domain requirements and the 
product roadmap with the major features of the corresponding application. 
Additionally, there may be specific requirements (e.g. from a customer) for 
the particular application that have not been captured during domain 
requirements engineering. The output is the requirements specification for 
the particular application. 

Application requirements engineering differs from requirements engineering 
for single systems for the following reasons: 

Requirements elicitation is based on the communication of the available 
commonality and variability of the software product line. Most of the 
requirements are not elicited anew, but are derived from the domain 
requirements. 

During elicitation, deltas between application requirements and domain 
requirements must be detected, evaluated with regard to the required 
adaptation effort, and documented suitably. If the required adaptation 
effort is known early, trade-off decisions concerning the application 
requirements are possible to reduce the effort and to increase the 
amount of domain artefact reuse. 

We deal with the specific activities of application requirements engineering 
in Chapter 15. 

2.6.2 Application Design 
The application design sub-process encompasses the activities for producing 
the application architecture. Application design uses the reference architec-
ture to instantiate the application architecture. It selects and configures the 
required parts of the reference architecture and incorporates application-
specific adaptations. The variability bound in application design relates to 
the overall structure of the considered system (e.g. the specific hardware 
devices available in the system). 

The input for application design consists of the reference architecture and the 
application requirements specification. The output comprises the application 
architecture for the application at hand. 

Application design differs from the design process for single systems for the 
following reasons: 

Application design does not develop the application architecture from 
scratch, but derives it from the reference architecture by binding vari-
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ability, i.e. making specific choices at places where the reference archi-
tecture offers different variants to choose from. 

Application design has to comply with the rules defined in the texture of 
the reference architecture. The rules cover the binding of variability as 
well as the incorporation of application-specific adaptations. 

Application design must evaluate the realisation effort for each required 
adaptation and may reject structural changes that would require a simi-
lar effort as for developing the application from scratch. 

We elaborate on the key problems and solutions of application design in 
Chapter 16. 

2.6.3 Application Realisation 
The application realisation sub-process creates the considered application. 
The main concerns are the selection and configuration of reusable software 
components as well as the realisation of application-specific assets. Reusable 
and application-specific assets are assembled to form the application. 

The input consists of the application architecture and the reusable realisation 
artefacts from the platform. The output consists of a running application 
together with the detailed design artefacts. 

Application realisation differs from the realisation of single systems because: 

Many components, interfaces, and other software assets are not created 
anew. Instead, they are derived from the platform by binding variability. 
Variability is bound, e.g. by providing specific values for component-
internal configuration parameters. 

Application-specific realisations must fit into the overall structure, e.g. 
they must conform to the reusable interfaces. Many detailed design 
options are predetermined by the architectural texture. Application-
specific components can often be realised as variants of existing compo-
nents that are already contained in the platform. 

We deal with the challenges of application realisation in Chapter 17. 

2.6.4 Application Testing 
The application testing sub-process comprises the activities necessary to 
validate and verify an application against its specification. 
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The input for application testing comprises all kinds of application artefacts 
to be used as a test reference,10 the implemented application, and the 
reusable test artefacts provided by domain testing. The output comprises a 
test report with the results of all tests that have been performed. Addition-
ally, the detected defects are documented in more detail in problem reports. 

The major differences from single-system testing are: 

Many test artefacts are not created anew, but are derived from the plat-
form. Where necessary, variability is bound by selecting the appropriate 
variants.

Application testing performs additional tests in order to detect defective 
configurations and to ensure that exactly the specified variants have 
been bound. 

To determine the achieved test coverage, application testing must take 
into account the reused common and variable parts of the application as 
well as newly developed application-specific parts. 

We elaborate on the specific challenges and the activities of application 
testing in Chapter 18. 

2.7 Application Artefacts 

Application artefacts (or application assets) comprise all development arte-
facts of a specific application including the configured and tested application 
itself. They are produced by the sub-processes described in Section 2.6. The 
application artefacts are interrelated by traceability links. The links between 
different application artefacts are required, for instance, to ensure the correct 
binding of variability throughout all application artefacts. 

Many application artefacts are specific instances of reusable domain arte-
facts. The orthogonal variability model is used to bind variability in domain 
artefacts consistently in the entire application. Traceability links between 
application artefacts and the underlying domain artefacts are captured to 
support the various activities of the application engineering sub-processes. 
These links also support the consistent evolution of the product line. For 
example, if a domain artefact changes, the application artefacts affected by 
this change can be easily determined. In the following, we briefly character-
ise each kind of application artefact. 

                                                     
10 The artefacts used as a test reference comprise the application requirements specification, the 

application architecture, and the component and interface designs. 
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2.7.1 Application Variability Model 
The application variability model documents, for a particular application, the 
binding of the variability, together with the rationales for selecting those 
bindings. It is restricted by the variability dependencies and constraints 
defined in the domain variability model. Moreover, the application variabil-
ity model documents extensions to the domain variability model that have 
been made for the application. For example, it documents if a new variant 
has been introduced for the application. It also documents if existing variants 
have been adapted to match the application requirements better and if new 
variation points have been introduced for the application. Briefly, the appli-
cation variability model documents the variability bindings made and all 
extensions and changes made for a particular application. Note that, similar 
to other application artefacts, a separate application variability model is 
introduced for each product line application. We deal with the definition of 
the application variability model in Chapter 15. 

2.7.2 Application Requirements 
Application requirements constitute the complete requirements specification 
of a particular application. They comprise reused requirements as well as 
application-specific requirements. The reuse of domain requirements 
involves the use of the orthogonal variability model to bind the available 
variability. Application-specific requirements are either newly developed 
requirements or reused requirements that have been adapted. Chapter 15 
elaborates on how to define the application requirements specification. 

2.7.3 Application Architecture 
The application architecture determines the overall structure of the consid-
ered application. It is a specific instance of the reference architecture. For the 
success of a product line, it is essential to reuse the reference architecture for 
all applications. Its built-in variability and flexibility should support the 
entire range of application architectures. The application architecture is 
derived by binding the variability of the reference architecture that is docu-
mented in the orthogonal variability model. If application-specific require-
ments make it necessary to adapt the reference architecture, the stakeholders 
must carefully weigh up the cost and benefit against each other. We deal 
with the development of the application architecture based on application 
requirements and the reference architecture in Chapter 16. 

2.7.4 Application Realisation Artefacts 
Application realisation artefacts encompass the component and interface 
designs of a specific application as well as the configured, executable appli-
cation itself. The required values for configuration parameters can be pro-
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vided, for example, via configuration files. These parameter values are 
evaluated, for example, by makefiles or the run-time system. The values can 
be derived from the application variability model. 

Many application realisation artefacts are created by reusing domain arte-
facts and binding the available variability. However, part of the realisation 
artefacts usually has to be developed in the application realisation sub-
process for the specific application. Chapter 17 deals with the development 
of an application based on reusable components. 

2.7.5 Application Test Artefacts 
Application test artefacts comprise the test documentation for a specific 
application. This documentation makes application testing traceable and 
repeatable. Many application test artefacts can be created by binding the 
variability of domain test artefacts which is captured in the orthogonal vari-
ability model. Moreover, detailed test instructions such as the particular 
input values to be used must be supplemented. For application-specific 
developments, additional test artefacts must be created. We deal with the 
development of application test artefacts in Chapter 18. 

2.8 Role of the Framework in the Book 

The book is organised according to the two key differences between soft-
ware product line engineering and single-system development: 

The need for two distinct development processes, namely the domain 
engineering process and the application engineering process. 

The need to explicitly define and manage variability.

Part II elaborates on the definition of variability, which is the central concept 
for realising mass customisation in software product line engineering. The 
part consists of five chapters: 

Principles of Variability (Chapter 4) 

Documenting Variability in Requirements Artefacts (Chapter 5) 

Documenting Variability in Design Artefacts (Chapter 6) 

Documenting Variability in Realisation Artefacts (Chapter 7) 

Documenting Variability in Test Artefacts (Chapter 8) 
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Part III elaborates on the creation of the platform and thus on the definition 
of the commonality and the variability of the software product line. The 
chapters are shown in the upper half of Fig. 2-4. Each of the first five chap-
ters of Part III elaborates on one of the sub-processes of domain engineering 
(as shown in the upper part of Fig. 2-4). The last chapter of Part III deals 
with the specific problem of selecting off-the-shelf components in domain 
engineering. The chapters of Part III are: 

Product Management (Chapter 9) 

Domain Requirements Engineering (Chapter 10) 

Domain Design (Chapter 11) 

Domain Realisation (Chapter 12) 

Domain Testing (Chapter 13) 

Selecting High-Level COTS11 Components (Chapter 14) 

                                                     
11 COTS is the acronym for Commercial Off-The-Shelf. A high-level COTS component provides a 

significant fraction of the functionality of a software product line. 

Fig. 2-4: Structure of Parts III and IV 
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Part IV elaborates on the use of the platform to derive specific product line 
applications. It shows how product line variability is exploited to develop 
different applications. Each chapter explains one of the four application 
engineering sub-processes (shown in the lower half of Fig. 2-4): 

Application Requirements Engineering (Chapter 15) 

Application Design (Chapter 16) 

Application Realisation (Chapter 17) 

Application Testing (Chapter 18) 

Part V deals with the institutionalisation of software product line engineering 
in an organisation. Its focus is on the separation between the domain and 
application engineering processes. The chapters of Part V are: 

Organisation (Chapter 19) 

Transition Process (Chapter 20). 

Part VI presents experiences with software product line engineering gained 
in 15 organisations and briefly characterises essential fields for future 
research. Whenever possible, we employ the terminology introduced in our 
framework to make clear the relationships between the topics considered in 
Part VI and our framework. The chapters of Part VI are: 

Experiences with Software Product Line Engineering (Chapter 21) 

Future Research (Chapter 22) 
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In this chapter you will learn: 

o Basic domain knowledge about the home automation domain, from which 
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3.1 Smart Home Fundamentals 

In recent times, smart homes have moved into the focus of scientific and 
technological research and development. Most everyday-life technical 
devices are controlled by microprocessors. Home automation integrates such 
devices into a network. The network allows the devices to coordinate their 
behaviour in order to fulfil complex tasks without human intervention. Intui-
tive user interfaces allow easy access to the functionality of a smart home. 

A variety of domains contribute to the evolution of smart homes. An over-
view is given in Fig. 3-1. The relation between home automation and these 
domains becomes clearer in the course of this chapter. For example, ‘web 
technology’ allows to access home functions remotely through the Internet. 

3.1.1 Goals
The home automation domain tackles four major goals: comfort, security, 
life safety, and low costs. Smart home technology addresses these goals in 
different ways. Comfort is increased by automating tedious tasks and by an 
intuitive and well-designed user interface. Security is addressed by identifi-
cation mechanisms and surveillance equipment like outdoor cameras. Notifi-
cation mechanisms additionally contribute to security by allowing for imme-
diate reaction, e.g. in the case of an attempted burglary. A similar reasoning 
holds for life safety. Here, sensors detect danger to life – for example, 
caused by fire or electricity. Another aspect of life safety is health monitor-
ing, which can be part of a smart home as well. The fourth goal of home 
automation, namely low costs, has two facets. First, expenses for purchasing 
and installing the system should be low. Second, home automation helps to 
reduce running costs by smart energy management, which prevents unneces-
sary heating, lighting, and other kinds of energy consumption. For example, 
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when a resident opens a window, heating can be turned down automatically 
for that room. 

3.1.2 Stakeholders
Various stakeholders are involved in the development, installation, and 
usage process of a home automation system. When dealing with home auto-
mation, the interests of these stakeholders have to be accounted for. The 
interest of the residents of the home defines a large part of the requirements 
that a smart home must satisfy. Residents are not necessarily identical with 
the building owner who invests money for the installation of the system. 
Thus, the building owner has own interests as well. In many cases, a care-
taker may also be involved, who is responsible for the administration of the 
house and for accounting tasks. Managers of the company developing the 
home automation system and bringing it to market have a strong interest in 
the features of their products as well. Regarding the development process, 
the installation, and technical maintenance of the smart home, three more 
stakeholders can be identified: developers, installers, and maintenance per-
sonnel (technicians). This non-exhaustive list of stakeholders is depicted in 
Fig. 3-2. 

3.1.3 Smart Homes vs. Conventional Homes 
Regarding technical equipment in homes as it is today reveals that in most 
cases only few functions are automated. For example, the residents of a con-
ventional home switch lights on and off manually when entering or leaving a 
room. Similarly, they check whether windows are closed by walking from 
room to room, for instance when a storm is expected, or for security reasons. 
Often, there are already some automated functions in a conventional home 
such as alarm equipment, sensor-controlled roller shutters or programmable 
timers for power outlets. But in contrast to smart homes these devices do not 
cooperate. A typical situation that shows the drawbacks of isolated devices is 
when the heating is on and some windows are open at the same time. 

Viewpoints
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Managers …

Fig. 3-2: Examples of stakeholders in the smart home domain.
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Window sensors belonging to the alarm equipment would not remind the 
residents to adjust heating or notify the heating system about open windows. 

Smart homes are characterised by a high degree of automation. Their devices 
are integrated into a home network. So, the smart home constitutes an entire 
system that is made up of individual subsystems and whose behaviour is 
determined by the software controlling it. Thus, it is possible to coordinate 
the functions provided by different subsystems. 

A major advantage that comes along with networking and software control is 
the facility to provide a unified management layer for the whole system. In 
order to interact with a particular device of a smart home, the residents do 
not have to frequent this device and operate its individual user interface. 
Instead the user can access all devices via a common user interface such as a 
touch screen. The consequence is for example that residents do not need to 
walk from room to room in order to check if some window is open, because 
they can get this information from a centralised user interface. 

In fact, the residents can use Internet applications and mobile computers to 
control their home from any place. Figure 3-3 illustrates the possibility to 
control home functions remotely via the Internet, e.g. from the home 
owner’s work place (right side of the picture) or via a wireless, handheld PC 
(bottom left). A simple scenario that shows the value of remote access is 
checking whether an electric iron has been switched off, after already having 
left on a vacation trip. 
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3.2 Building Blocks of a Home Automation System 

In this section, we take a more technical viewpoint on home automation in 
order to elaborate on typical components that a smart home contains. 

3.2.1 Sensors and Actuators 
Sensors and actuators are mechanical or electronic components that measure 
and respectively influence physical values of their environment. Sensors
gather information from the physical environment and make it available to 
the system. For example, infrared sensors can be used to detect the presence 
of a person in a room. Likewise, the system can act on its environment by 
means of actuators. An example is a light actuator that is capable of switch-
ing on or off or of dimming one or more electric lights. 

3.2.2 Smart Control Devices 
Smart control devices read data from sensors, process this data, and activate 
actuators, if necessary. A single control device is responsible only for a frac-
tion of the total functionality of the smart home, such as the lighting of one 
room. For many control and automation tasks a smart control device can act 
autonomously, i.e. without control by a central server. But there are also 
tasks that demand communication among different control devices or with 
the home gateway (see next section). 

Example 3-1: Electronic Door Locks 

Later in the book, we use examples that deal with door locks, which 
provide different kinds of authentication such as fingerprint-based 
authentication. The technical realisation of an electronic door lock 
employs actuators for locking and unlocking a door, and possibly sen-
sors that detect the state of a door (e.g. open or closed). The sensors 
and actuators are connected to a control device that is responsible for a 
particular door and has to communicate with other devices, e.g. to 
access a database with fingerprint data of authorised persons. As this 
book is about software product line engineering, we do not consider 
the hardware configuration in our examples but the software necessary 
to provide the door lock functionality. We assume that this software is 
somehow deployed on the home automation hardware. 

There are two major types of control devices: devices that are produced to be 
flexibly adaptable to a wide range of tasks, and devices that are dedicated to 
a special purpose. The former type are able to execute custom software and 
connect different kinds of sensors and actuators. The latter type often come 
together with sensors and actuators necessary for the given purpose. The 
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examples used in this book do not explicitly distinguish between the two 
types. However, we assume that some kind of software is necessary to pro-
vide the functionality of the control device. Example 3-1 illustrates the role 
of control devices in the examples in this book. 

3.2.3 The Home Gateway 
The home gateway is the central server of a smart home. It offers the proces-
sing and data storage capabilities required for complex applications. Users 
such as residents or technicians can access the services offered by the home 
gateway via different front-ends that interact with the home gateway and 
provide the user interface. The services offered by the home gateway mostly 
pertain to overall system management functionality such as the configura-
tion, monitoring, and control of the subsystems and their devices, or the 
detection of failures. 

User management is a necessary component of the home gateway software. 
Each individual user has different access rights and different preferences 
with regard to the system functions. This kind of information is stored in the 
database of the home gateway and can be accessed by other devices such as 
electronic door locks (see Example 3-1). Moreover, the home gateway stores 
a model of the home automation system. This model captures the types, 
physical and logical locations, configuration parameters, etc., of all devices 
in the home automation system. 

As stated above, smart control devices can operate autonomously. For 
example, the application program of a lighting control device can handle an 
event, caused by a resident operating a light switch, without involving the 
home gateway. However, in a home automation system various events can 
occur that may demand complex reactions or a multitude of processing steps 
from the system. Different events and reactions can be combined to work-
flows. The management and processing of workflows is within the responsi-
bility of the home gateway. Example 3-2 illustrates such a workflow. 

The home gateway may also support other functions, such as audio and 
video entertainment, Internet access, e-shopping, or email (see for example 
[InHouse 2004]). 
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Example 3-2: An Example Workflow for Fire Detection 

On the detection of fire, the home gateway shuts all windows, closes 
gas valves, deactivates power outlets, switches on emergency lights, 
unlocks doors, activates the alarm, and informs the fire station. Each 
of these steps may involve several sub-steps and additional events. 
Moreover, the event of detecting fire may coincide with other events 
such as the detection of glass breakage, which otherwise indicates an 
attempted burglary. The different events may demand reactions that 
are in conflict with each other, e.g. unlocking doors on the detection 
of fire and locking doors on the detection of glass breakage. Rules are 
necessary how to deal with the coincidence of different events. 

3.2.4 Networking 
Like conventional computer networks, the network of a smart home can be 
based on various communication media, e.g. twisted pair cable. To avoid 
additional cabling, power-line communication or wireless communication 
can be used. A realistic home automation system is inclined to employ a 
heterogeneous network made up of various network standards and various 
communication media. Network interfaces are devices that allow for inte-
grating diverse types of networks and communication media into the home 
network. Apart from the internal network that links devices inside the home, 
external networks such as the public Internet, ISDN, and mobile phone net-
works can be integrated as well. 

It is not just that network technology comes in many different forms; the 
devices connected to the home network can also differ greatly with respect 
to their functionality and their software and hardware. As a consequence, the 
software architecture of a smart home must be able to cope with all kinds of 
networks and technical devices. This aspect is characteristic of many distrib-
uted systems. 

3.2.5 Standards in the Home Automation Domain 
Technological standards simplify the development of complex technical 
systems and help to achieve compatibility between devices developed by 
different manufacturers. In the home automation domain, standards are used 
for instance with regard to network technology. Typically, the networking of 
a smart home is based on field bus technology such as the European Instal-
lation Bus (EIB, see [EIBA 2004]) and the Local Operating Network (LON, 
LonWorks, see [Echelon 1999; LonMark 2004]), or on local area network 
technology (e.g. Ethernet or wireless LAN). 
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Certain aspects of the software architecture are standardised. A well-known 
framework employed in the home automation domain is the OSGi frame-
work (Open Service Gateway Initiative, see [OSGi 2003]). Apart from the 
OSGi standard, other vendor-specific software frameworks are also avail-
able.

3.3 An Example 

In order to follow the examples presented in this book, it is useful to exam-
ine some simple example models of a home automation system before going 
into software engineering details. 

3.3.1 System Functionality 
Figure 3-4 contains a schematic picture of a smart home with some net-
worked devices from the following subsystems: lighting control, door and 
window control, and home appliances control. In the following, these sub-
systems are described in more detail. 

The lighting control subsystem comprises switches, lights and sensors. A 
smart home is expected to adapt lighting based on a number of factors. The 
overall intensity of light in a room and the presence of persons are two basic 
factors lighting control should take into account. However, the favoured 
lighting can also depend on the current activity of the residents and on indi-
vidual habits. For example, different lighting would be desired for a dinner 
party than for reading a book. Moreover, a smart home can offer an elaborate 
vacation mode that uses lighting control and other subsystems to let the 
house appear occupied. 

The door and window control subsystem monitors the state of doors and 
windows. Endowed with the information about all doors and windows, i.e. 
whether they are open, closed, locked, or unlocked, the smart home can for 
example remind the residents to shut some windows in certain situations. 
Outer doors can be unlocked electronically based on some kind of identifi-
cation mechanism (see Example 3-1). 

Window control also encompasses electric roller shutters. However, opening 
and closing roller shutters affects lighting. Hence, the door and window 
control subsystem and the lighting control subsystem have to interact with 
each other. For example, when roller shutters are closed, lighting control can 
switch on a lamp without the residents having to intervene or to operate both 
subsystems individually. 

The basic function of home appliances control is to monitor and control 
power outlets. This allows the residents to monitor power consumption and 
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switch off individual power outlets. In recent times, microprocessor-con-
trolled home appliances have become available that provide sophisticated 
device interfaces enabling a tight integration into the smart home. This kind 
of integration allows, for example, monitoring and operating a washing 
machine at the user interface of the home automation system. 

Smart homes contain more subsystems, such as heating, fire and smoke 
detection, access control, audio and video equipment, Internet access, etc. 
However, the previous considerations suffice to give a general understanding 
of typical smart home applications. 

The value of home automation becomes obvious if we consider that all the 
functions so far mentioned are available at the same user interface. In addi-
tion, being equipped with an Internet or ISDN connection, the smart home 
can offer remote access functionality (see Fig. 3-3). The user interface itself 
may be realised in different ways. It is possible to employ a TV set, a wall-
mounted touch screen, a handheld PC or some other device. The user inter-

Fig. 3-4: Schematic picture of a smart home with lighting, door and window, and home 
appliances control
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face software can provide a graphical user interface but may also offer a 
speech interface or – as sometimes suggested by human–computer inter-
action research – a human-like embodied character. The following, brief 
scenario gives an idea of the prospects home automation can provide: 

Example 3-3: Remote Access to the Smart Home

The residents are going on holiday. On the motorway they doubt 
whether they have shut all the windows and locked the door in their 
hurry. They access their home using a handheld PC with mobile Inter-
net connectivity. After ascertaining themselves that everything is all 
right, they activate the vacation mode for their home in order to save 
energy and protect it from burglars. 

3.3.2 A Simple System Configuration 
In the following, we briefly sketch a system configuration that facilitates 
lighting control as depicted in Fig. 3-5. This system consists of a home gate-
way and two control devices, all of which are connected to a common net-
work. One of the control devices is responsible for monitoring the state of 
light switches. The other one controls the lights attached to it. 
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Fig. 3-5: Example configuration of a home automation system 
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The application programs that run on the control devices determine the reac-
tion of the system to the activation of a light switch. The application pro-
grams use I/O services provided by the lighting control devices that monitor 
the switches and control the lights. The communication services provided by 
the control devices enable the exchange of messages among the application 
programs. 

The software of the home gateway comprises a server application that can 
interact with various front-ends. The front-end shown in Fig. 3-5 provides a 
touch screen as user interface. Moreover the home gateway enables Internet 
access to the smart home through an additional network interface 

3.3.3 System Component Interaction 
To portray the dynamics of a home automation system, we consider an 
example scenario describing internal system interactions. The scenario in 
Fig. 3-6 assumes that the system is equipped with sensors that are able to 
detect water intrusion, e.g. in the basement of the house. 

When a sensor detects water intrusion, the smart control device reports this 
emergency event to the home gateway, which holds the knowledge about the 
workflow that deals with this event. The home gateway acknowledges 
receipt of the emergency message with a confirmation message. Having 
received the confirmation, the smart control device leaves further processing 
to the home gateway. The home gateway enquires of the security subsystem 
whether any residents are in the house. Failing to identify any residents, the 
home gateway sends a notification to the PDA user interface and waits for 
further instructions from a resident. After some period of time has elapsed 
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without an answer from the mobile user interface, the home gateway calls an 
emergency phone number that has been chosen by the residents for the case 
of water intrusion. This action marks the end of the depicted workflow. 

3.4 Software Variability in Smart Home Applications 

The reason for dealing with home automation systems was to get insight into 
a domain in which applying product line engineering is almost imperative. 
The following examination demonstrates variability that is inherent to a 
home automation system. 

3.4.1 Examples of Variability 
Variability allows choosing between different options, which we call vari-
ants. By a different choice of variants, one home automation system can 
differ from another. In the following we present some examples of variabil-
ity in a home automation system: 

User interface variability: One aspect of smart homes, where variability 
is easy to identify, is the user interface. Various realisations of local and 
remote user interfaces have been discussed or hinted at throughout the 
chapter. Part of them constitute alternatives, others tend to coexist in the 
same system. A typical set of variants might for example comprise a 
graphical TV interface, a web-based interface, and a PDA interface. 
Software variability is necessary to support different kinds of user inter-
faces for the home automation system. 

Available sensors: The kinds of sensors installed in the home automa-
tion system influence the possible realisations of control tasks. A simple 
example is the task of roller shade control. When timer control and 
luminance sensors are available, the rules for opening and closing roller 
shades depend on the current time and on the amount of daylight. When 
weather sensors are additionally available, roller shades can be opened 
in case of strong wind in order to prevent damage. Software variability 
allows the provision of different control algorithms according to the 
available sensors in the home automation system. 

Fail-safety: The home automation system may support different levels 
of fail-safety. For example, the basic level can provide self-tests and 
failure reports. Higher levels can include redundant system components 
for the most important functions. Software variability is needed to sup-
port different levels of fail-safety. For example, the software of a 
redundant system has to detect malfunctions, deactivate defective com-
ponents and relocate tasks to back up components. 
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Assistance for older and handicapped people: Home automation sys-
tems must fulfil additional requirements when they are used by older 
and handicapped people. These users may have difficulties with every-
day activities and in the operation of the normal user interface. The 
additional requirements, which only apply for a certain group of cus-
tomers, are realised by certain variants of the software. 

The essence of the above examples is that the support of different options 
leads to variability in the software of the smart home. This is the most 
important observation with regard to the use of the examples in the book. 

3.4.2 Causes of Variability 
In this section we analyse the reasons for software variability such as the 
variability presented in the examples of the previous section. 

In order to make the system work, each individual configuration of hardware 
devices must be supplied with appropriate software. Hardware and software 
have to be compatible with each other. The support of different hardware 
configurations demands software variability. This is the software engineers’ 
point of view on variability as software engineers have to deal with the dif-
ferent technologies that are supported or used by the home automation sys-
tem. The technical point of view is typically a minor concern for the cus-
tomer, who is mostly interested in the functionality of the home automation 
system. 

The interrelation between customer wishes, hardware, and software is illus-
trated in Fig. 3-7. The customer demands certain functionality and certain 
quality. The home automation system has to satisfy the required functional-
ity and quality. It consists of a specific hardware configuration and a soft-
ware configuration that depend on each other. 

Different customers have different demands with respect to the overall level 
of automation as well as to the specific functions of their home automation 
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Fig. 3-7: Interrelations between customer needs, hardware, and software
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system. In addition, customers have different demands with regard to the 
quality of the system. Both required functionality and required quality affect 
the price of the home automation system. The differences in customer needs 
are a reason for variability. 

Example 3-4: Variability Caused by Customer Needs 

It may be the case that one customer wants to have electronically 
controlled door locks with fingerprint authentication while another 
customer does not want to have electronic door locks at all for cost 
reasons. In order to be able to provide both customers with applica-
tions that satisfy their individual wishes, the home automation system 
has to support variability in door locks. 

Not only differences in customer needs but also technical reasons cause vari-
ability as illustrated in Example 3-5. 

Example 3-5: Variability Caused by Differences in Hardware 

The home automation system supports fingerprint sensors from two 
different manufacturers, which differ in the resolution of the scanned 
fingerprints. Hence, the software of the home automation system has 
to support variability in the resolution of fingerprint images. 

3.5 Role of the Home Automation Domain in the Book 

The remaining chapters of this book make use of the example domain in 
order to explain software product line engineering techniques. The example 
domain is used to illustrate the commonality as well as possible variability 
among the applications of a product line. Requirements engineers, architects, 
programmers, and test engineers have to deal with the commonality and 
variability when developing a platform of reusable software artefacts, e.g. 
for a home automation system. Such a platform allows the creation of a vari-
ety of customised home automation applications by reusing the platform 
artefacts. 

Typically, each chapter uses only a fragment of the smart home, whereas the 
purpose of this chapter was to provide a coherent overall picture. Moreover, 
each chapter uses the home automation example in a slightly different way 
depending on the main focus of the chapter. Though some examples are 
closely related, in general, the examples are independent of each other. They 
are not meant to depict a single, consistent model of a home automation 
software product line. 
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Part II: Overview 

Documenting and managing variability is one of the two key properties character-
ising software product line engineering. The explicit definition and management of 
variability distinguishes software product line engineering from both single-system 
development and software reuse. 

In this part you will learn: 

The principles of software product line variability. 

How to document explicitly the variability of a software product line in require-
ments, design, realisation, and test artefacts. 

How to facilitate the consistent management of variability across the various 
domain artefacts. 

The documentation of the commonalities and the variability in all artefacts is illus-
trated using examples from the home automation domain. 

Fig. II-1: Chapter overview of Part II 
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In this chapter you will learn: 

o Basic knowledge about the variability of a software product line. 
o The difference between external and internal software product line variability. 
o The basic concepts for modelling variability: variation points, variants, and 

their interrelation. 
o An orthogonal variability model used throughout this book to define variabil-

ity across all software development artefacts. 
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4.1 Introduction 

We introduce variability modelling in order to support the development and 
the reuse of variable development artefacts. In software product line engin-
eering, variability is an essential property of domain artefacts. Hence, we use 
variability modelling in this book to capture the variability of domain 
requirements, architecture, components, and tests (the artefacts highlighted 
in Fig. 4-1). 

Variability is introduced during the product management sub-process when 
common and variable features of the software product line applications are 
identified. As domain requirements detail the features defined in product 
management, variability is carried over to domain requirements. Similarly, 
this holds for design, realisation, and testing. Requirements engineering, 
design, and realisation deal with models of a system at different levels of 
abstraction. At each level, variability from the previous level is refined and 
additional variability is introduced, which is not a result of refinement. For 
instance, it may be necessary to introduce variability at the architectural 
level in order to make a component compatible with different versions of a 
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domain artefacts 

Fig. 4-1: Focus of variability modelling 
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standard component library. Variability at different abstraction levels is con-
sidered in more detail in Section 4.5.4. 

We refer to the sum of all activities concerned with the identification and 
documentation of variability as defining variability. Variability is defined 
during domain engineering. It is exploited during application engineering by 
binding the appropriate variants. 

Defining and exploiting variability throughout the different life cycle stages 
of a software product line is supported by the concept of managed variabil-
ity. This concept basically encompasses the following issues: 

Supporting activities concerned with defining variability. 

Managing variable artefacts. 

Supporting activities concerned with resolving variability. 

Collecting, storing, and managing trace information necessary to fulfil 
these tasks. 

Each sub-process in application engineering binds variability introduced by 
the corresponding sub-process in domain engineering. This has to be done in 
a consistent way to ensure that the required variant is built correctly. The 
moment of variability resolution in realisation is often called the binding 
time of the variability. The binding time is not within the focus of variability 
modelling. To increase flexibility, the design may demand moving the 
binding time to a rather late phase in the realisation, for instance during the 
building of the actual system. There is a trend to decide very late on the 
binding time, and thus make the binding time variable; see [V. Ommering 
2004]. For further reading on variability management; see [Bosch et al. 
2002; Bachmann et al. 2003]. 

4.2 Variability Subject and Variability Object 

In common language use, the term variability refers to the ability or the ten-
dency to change. To be more precise, the kind of variability we are interested 
in does not occur by chance but is brought about on purpose. We illustrate 
variability in the real world with a few examples: 

An electric bulb can be lit or unlit. 

A software application can support different languages. 

Chewing gum can be sweet or sour. 

A triple band mobile phone supports three different network standards. 

Defining and 
exploiting variability 

Managed 
variability

Binding 
time

“Variability” in 
common language 
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It might be a good exercise for the reader to search for variability in his or 
her surroundings. In order to characterise variability in more detail, we for-
mulate three questions that are helpful in defining product line variability. 

The first essential question is “what does vary?” Answering this question 
means identifying precisely the variable item or property of the real world. 
The question leads us to the definition of the term variability subject.

Definition 4-1: Variability Subject 

A variability subject is a variable item of the real world or a variable 
property of such an item. 

The second question is “why does it vary?” There are different reasons for 
an item or property to vary: different stakeholder needs, different country 
laws, technical reasons, etc. Moreover, in the case of interdependent items, 
the reason for an item to vary can be the variation of another item. 

The third question is “how does it vary?” This question deals with the differ-
ent shapes a variability subject can take. To identify the different shapes of a 
variability subject we define the term variability object.

Definition 4-2: Variability Object 

A variability object is a particular instance of a variability subject. 

A vital effect of regarding the three questions is a shift in the way of thinking 
about variability. Being aware of variability and dealing with it consciously 
is an important prerequisite of variability modelling. In order to provide a 
better understanding of variability subject and variability object, we give 
some examples from different domains (Examples 4-1 to 4-3). Note that the 
variability space, i.e. the available options, may be very large or even infi-
nite, such as the number of possible colours in Example 4-1. 

Example 4-1: Variability Subject and Objects for “Colour” 

The variability subject “colour” identifies a property of real-world 
items. Examples of variability objects for this variability subject are 
red, green, and blue. 

Example 4-2: Variability Subject and Objects for “Payment Method” 

Payment method is a variability subject and payment by credit card, 
payment by cash card, payment by bill, and payment by cash are 
examples of variability objects. 
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Example 4-3: Variability Subject and Objects for “Identification 
Mechanism” 

The identification mechanism of a home security system is a variabil-
ity subject, keypad and fingerprint scanner are examples of variability 
objects.
The reasons for the variability subject to vary can be for instance dif-
ferent security standards or different customer needs. Changing the 
identification mechanism of an electronic door lock also leads to 
changes in other system components like the database that stores the 
keys: 
a) Keypad: The database for this identification mechanism stores 

numerical keys. 
b) Fingerprint scanner: In this case, the database stores graphical 

information, i.e. the characteristics of a fingerprint. 
In this example, changing the identification mechanism of a door lock 
from keypads to fingerprint scanners causes variability in the key 
database.

4.3 Variability in Software Product Line Engineering 

In this section, we define the central concepts for variability in software 
product line engineering. 

4.3.1 Variation Point 
In software product line engineering, variability subjects and the corres-
ponding variability objects are embedded into the context of a software 
product line. They represent a subset of all possible variability subjects and a 
subset of all possible variability objects from the real world, which are 
necessary to realise a particular software product line. We reflect this transi-
tion in our terminology and define the term variation point12 (Definition 4-3) 
accordingly. 

The definition applies to all kinds of development artefacts, i.e. require-
ments, architecture, design, code, and tests. Contextual information of a vari-
ation point encompasses the details about the embedding of the variability 
subject into the software product line, such as the reason why the variation 
                                                     
12 Jacobson et al. define variation point as “one or more locations at which the variation will occur” 

[Jacobson et al. 1997]. This definition is similar to the definition presented in this book, but Jacobson 
et al. focus on UML models, whereas this chapter takes a more general view on variability by linking 
variability in the real world and variability in software product lines. Furthermore, our definition 
emphasises that a variation point exists in a certain context. 
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point was introduced. Examples of such reasons are the specifics of different 
countries in which the software product line applications are sold, different 
stakeholder needs, or different marketing strategies for the applications. 

Definition 4-3: Variation Point 

A variation point is a representation of a variability subject within 
domain artefacts enriched by contextual information. 

4.3.2 Variant
We define the term variant, which is a representation of a variability object, 
in analogy to the term variation point (Definition 4-4). We illustrate the 
transition from variability subjects to variation points, and from variability 
objects to variants in Example 4-4. 

It is important to recognise that variation points and variants are self-
contained entities that are distinct from artefacts like requirements, archi-
tecture, etc. A variant identifies a single option of a variation point and can 
be associated with other artefacts to indicate that those artefacts correspond 
to a particular option. Yet, for the sake of simplicity, in cases in which there 
is no danger of confusion, the artefacts associated to a variant are referred to 
as variants themselves (Section 4.6.9 deals with such terminology issues in 
more detail). 

Definition 4-4: Variant

A variant is a representation of a variability object within domain arte-
facts.

Example 4-4: Colour of a Car as Variation Point 

The variability subject ‘colour’13 shown on the left of Fig. 4-2 has sev-
eral variability objects (‘red’, ‘blue’, ‘green’, ‘yellow’, etc.). An 
automotive company wants to build cars in different colours, therefore 
a variation point “colour of a car” (car is the context of the variation 
point) is defined. 
An example automotive company builds red and green cars, therefore 
only the variants ‘red (car)’ and ‘green (car)’ are defined on the right 
of Fig. 4-2. Other variability objects (‘yellow’, etc.) are not considered 
as variants for the automotive company, e.g. for marketing reasons. 

                                                     
13 We use single quotes when we refer to the elements of a figure, such as ‘colour’ in Fig. 4-2. 
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4.3.3 Defining Variation Points and Variants 
Variation points and variants are used to define the variability of a software 
product line. Thus, it is essential to be able to identify variation points and 
variants in a systematic manner. In the following, we provide three basic 
steps for accomplishing this task. 

The first step is to identify the item of the real world that varies, i.e. identi-
fying the variability subject (Example 4-5). 

The second step is to define a variation point within the context of the soft-
ware product line. This step is necessary as there is a difference between 
variability in the real world (represented by variability subjects) and vari-
ability in a software product line (represented by variation points). For 
instance, a variation point only offers an excerpt of the possible variability in 
the real world. A variation point becomes part of the model of the system 
under consideration and affects this model in different ways. For example, a 
variation point can mean that there are different requirements to choose from 
and that there will be different applications, which result from a particular 
choice model. 

In the third step, the variants are defined. For this purpose, it is necessary to 
select variability objects of the identified variability subject and define them 
as variants of the variation point. Adding the variants supplements the 
information provided by the variation point by specific instances. However, 
the variation point still captures unique information not represented by the 
variants. For example, the variants do not capture the variability subject. 
Moreover, the set of variants is likely to change over time, while the vari-
ation point tends to remain constant. 
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Fig. 4-2: Relation between variability in the real world and in a model of the real world 
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Example 4-5: Identifying the Variability Subject 

The engineers of a home automation software product line suggest dif-
ferent ways of communication between system components, e.g. 
cabled LAN, wireless LAN, Bluetooth, or power line. The engineers’ 
suggestions yield the variability subject “kind of network”. 

Example 4-6: Creating a Variation Point 

Example 4-5 defined the variability subject “kind of network”. The 
resulting variation point for the home automation system is “home 
automation system network”. The variation point indicates that the 
home automation product line has to support different kinds of net-
works, yet without stating which ones. The development artefacts to 
be developed are already affected by the existence of the variation 
point. For example, it may be necessary to introduce an architectural 
layer that provides a common view of different types of networks. 

Example 4-7: Defining Variants 

Example 4-5 already mentioned possible variability objects for the 
variability subject “type of network”. The engineers select cabled 
LAN and wireless LAN and define them as variants of the variation 
point “home automation system network”. The variants make clear 
that the software to be developed has to support cabled LAN as well 
as wireless LAN. This allows engineers to develop the software far 
more efficiently than would be possible knowing only that there are 
different kinds of networks. Still the engineers have to prepare for 
future changes in the set of variants, i.e. the addition of other kinds of 
networks.

4.3.4 Variability of a Software Product Line 
Variability of a software product line is variability that is modelled to enable 
the development of customised applications by reusing predefined, adjust-
able artefacts. Hence, variability of a software product line distinguishes 
different applications of the product line. Example 4-8 illustrates what we 
mean by the variability of a software product line. 

Commonality denotes features that are part of each application in exactly the 
same form. Example 4-9 illustrates what we mean by commonality. In soft-
ware product line engineering, one can often decide whether a feature is 
variable for the software product line (Example 4-8) or whether it is com-
mon to all software product applications and thus adds to the commonality 
(Example 4-9). 
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Example 4-8: Variability in the User Interface Language 

The customers of a home automation system can decide on the lan-
guage of the user interface before the system is installed. Moreover, 
for an additional charge, a multilingual version is offered that allows 
selecting the user’s favourite language at any time (e.g. by selecting a 
flag symbol on a touch screen). 

Example 4-9: User Interface Language as Commonality 

The user interface of a home automation system offers users a choice 
of their preferred language. This feature is part of each home automa-
tion system sold to any customer. 

4.4 Variability in Time vs. Variability in Space 

There is a fundamental distinction between variability in time and variability 
in space that is essential for software product line engineering (see [Bosch et 
al. 2002; Coplien 1998]). We define variability in time as follows: 

Definition 4-5: Variability in Time 

Variability in time is the existence of different versions of an artefact 
that are valid at different times. 

An unavoidable fact in software engineering is that development artefacts 
evolve over time, e.g. when they have to be adapted due to technological 
progress. This kind of change is denoted as evolution or as variability in 
time. Variability in time applies to single-system engineering as well as to 
software product line engineering. Configuration management is a common 
technique used to manage different versions of development artefacts that 
are valid at different times. 

Yet, there is an important difference between single systems and software 
product lines with regard to variability in time. In the domain artefacts of a 
software product line, there are predefined locations, identified by variation 
points, at which it is relatively easy to introduce changes. If the required 
change pertains to such a variation point, engineers have already recognised 
the need for change with respect to a certain variability subject. The follow-
ing example illustrates this situation: 
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Example 4-10: Evolution in a Software Product Line 

The engineers of a home automation system expect technological pro-
gress in identification mechanisms. Therefore they define a variation 
point “door lock identification mechanism” with just one variant 
“magnetic card”. Later, when sufficiently reliable fingerprint scanners 
appear on the market, the engineers replace the variant “magnetic 
card” by the variant “fingerprint scanner”. 

Hence, variation points help to keep the impact of changes small by provid-
ing guidance for software engineers who can then enforce separation of con-
cerns for the variable aspect. The necessary changes tend to have only local 
impact. Thus, less effort is necessary to add a new variant than to realise 
arbitrary changes. However, in our example it could also have happened that 
the engineers were not aware of future variability in identification mecha-
nisms. In this case the amount of rework for replacing the old identification 
mechanism would probably be much higher as there would be no predeter-
mined locations in the development artefacts to introduce such a change. 
This might even cause the engineers to argue for keeping the old mechanism 
instead of integrating the new one. 

Next, we define variability in space: 

Definition 4-6: Variability in Space 

Variability in space is the existence of an artefact in different shapes at 
the same time. 

We associate the different shapes of a variable artefact with variants and 
assign these variants to the same variation point (see Section 4.6). 

Example 4-11: Variability in Space 

A home automation system offers the variation point “system access 
by” with four variants: web browser, mobile phone (SMS), telephone 
call (computer voice), and secure shell client (SSH). These variants 
are associated, for instance, with requirements artefacts of the soft-
ware product line. 

Variability in space is quite different from variability in time. The time 
dimension covers the change of a variable artefact over time. The space 
dimension covers the simultaneous use of a variable artefact in different 
shapes by different products. The time dimension of variability is synonym-

Predetermined 
locations for changes 

Variants assigned to 
variation point 

Differences from 
variability in time 



4.4  Variability in Time vs. Variability in Space 67

ous with software evolution, whereas the space dimension of variability is a 
younger field of research. 

Single-system engineering does not provide the means to deal with variabil-
ity in space in an adequate manner, whereas the goal of software product line 
engineering is to build similar products that differ within a defined scope. 
These products are normally offered at the same time and therefore – in 
contrast to single software system development – understanding and hand-
ling variability in space is an important issue of software product line engin-
eering. Hence a major goal of this book is to provide the reader with 
sufficient information on variability in space. When speaking of variability 
we mostly mean variability in space. If necessary, we use the complete terms 
variability in time and variability in space to avoid confusion. 

Development artefacts vary in time as well as in space. In addition, the cate-
gorisation of the occurrence of variability in a development artefact as vari-
ability in time or variability in space can change over time. Figure 4-3 
illustrates the usage of keypads, magnetic cards, and fingerprint scanners in 
an ‘economy line’ and a ‘professional line’ of a home automation system. 
Magnetic cards on the one hand and keypads or fingerprint scanners on the 
other hand are clearly examples of variability in space. Yet, there is a small 
area that marks the transition from keypads to fingerprint scanners (indicated 
by small waves). This area expresses that the transition from keypads to 
fingerprint scanners is a smooth one. During the time period highlighted by 
the waves (Fig. 4-3), both versions of electronic door locks are used in the 
professional line of home automation systems. According to Definition 4-6 
the coexistence of both variants is considered as variability in space. 
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4.5 Internal and External Variability 

Different stakeholders perceive differently what is variable: customers want 
applications customised to their individual needs. This entails that customers 
must be aware of at least a part of the variability of a software product line 
(Fig. 4-4). 

On the other hand, variability is an integral part of domain artefacts and thus 
a major concern of the organisation that develops the software product line. 
In order to be able to differentiate between these two views we define the 
terms external variability and internal variability:

Definition 4-7: External Variability 

External variability is the variability of domain artefacts that is visible 
to customers. 

As external variability is visible to customers, they can choose the variants 
they need. This can happen either directly or indirectly. In the former case, 
customers decide for each variant whether they need it or not. In the latter 
case product management selects the variants thereby defining a set of dif-
ferent applications among which the customers can choose. The two cases 
can also be combined, i.e. product management defines a set of applications 
but only binds a part of the external variability. Thus the customers are able 
to decide about the unbound variants themselves. 

Definition 4-8: Internal Variability 

Internal variability is the variability of domain artefacts that is hidden 
from customers. 

All decisions that concern defining and resolving internal variability are 
within the responsibility of the stakeholders representing the provider of a 
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software product line. The customer does not have to take internal variability 
into account when deciding about variants. 

Example 4-12: External Variability 

The customers of a home automation system can choose between 
three electronic door lock identification mechanisms: keypad, mag-
netic card, and fingerprint scanners. 

Example 4-13: Internal Variability 

The communication protocol of a home automation system network 
offers two different modes: one is optimised for high bandwidth, the 
other for error correction. The installers measure the quality of the 
available communication medium and choose the mode based on the 
measurement results. 

4.5.1 Causes of External Variability 
External variability directly contributes to customer satisfaction as customers 
are aware of this kind of variability and can select those options that serve 
their needs best. Thus, different stakeholder needs are a cause of external 
variability. 

Yet, there are more causes. External variability can for example be intro-
duced because of differences in laws that apply to the domain of the software 
product line (e.g. the medical domain or the home automation domain). 
Similarly, different standards that have to be fulfilled by the applications of a 
software product line can be the reason for external variability. 

Example 4-14: Different Standards Causing External Variability 

A home automation product line supports two security standards, 
which are officially imposed by a home automation association, 
namely basic security and high security. The basic security standard 
demands that the front door is secured by a numeric keypad. The high 
security standard demands a numeric keypad and additionally a bio-
metric identification mechanism. Only homes compliant with the lat-
ter standard receive an official security certificate. 

4.5.2 Causes of Internal Variability 
Internal variability often emerges when refining or realising external vari-
ability. The realisation of each option offered to the customer typically 
demands several fine-grained options at a lower abstraction level. The 

Stakeholder
needs

Laws and 
standards

Refinement of 
external variability 



70 4.  Principles of Variability 

customer is usually interested in high-level decisions, not in those at a fine-
grained level. Therefore, the different realisation alternatives need not be 
communicated to the customer. 

Similarly, the realisation or refinement of internal variability can lead to 
more internal variability at a lower abstraction level. The relation between 
variable artefacts at different abstraction levels is a complex one. For 
instance, a variable requirement can relate to a couple of variable artefacts at 
the architecture level. Conversely, it is possible that one variable artefact at 
the architecture level is influenced by a couple of variable requirements. 
Thus there is an n-to-m relation between artefacts at different abstraction 
levels.

Finally, technical issues that do not have to be considered by the customer 
can be the cause of internal variability. Typical examples of such technical 
reasons are testing, implementation, installation, or maintenance issues or 
matters of scalability, portability, etc. 

Example 4-15: Technical Issues as Causes of Internal Variability 

The fingerprint scanner door lock in a home automation system can 
use two different ways of storing fingerprint images, compressed and 
uncompressed. The uncompressed algorithm is used during system 
maintenance and development to enable fine-tuning and testing of the 
algorithm. Compressed image storage is used during the normal sys-
tem operation to save database capacity. 

4.5.3 Deciding between Internal and External Variability 
Different considerations have to be weighed up to declare whether variabil-
ity is internal or external. For instance, customer interest, business strategy, 
and marketing issues have to be considered. 

Hiding variability from the customer (internal variability) leads to reduced 
complexity to be considered by the customer. Being faced with all possible 
decisions necessary to derive an application from domain artefacts, the cus-
tomer would be overwhelmed with the number of possible decisions and 
their interrelations. Hence, restricting the customer’s view by hiding internal 
variability makes the decision process more convenient and thereby attracts 
more customers. 

In addition, declaring variability as being internal can contribute to protec-
ting company secrets from competitors and thus hinder them from imitating 
innovative ideas too early. This illustrates that also business strategy influ-
ences the differentiation between internal and external variability. 
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Example 4-16: Internal Variability as a Part of Business Strategy 

The use of a LAN as an alternative to the EIB (European Installation 
Bus; see Chapter 3) in a home automation system might be a competi-
tive advantage for the company, since it allows the use of low-cost 
components. It might be wise not to draw competitors’ attention to 
this feature too early. 

Finally, marketing is a crucial aspect to consider when declaring variability 
as internal or external. Being able to choose between several variants can 
significantly increase the customer’s perceived value of a product. Yet, there 
may be other cases in which the variability of a new software product line 
interferes with older applications that still generate high profits for the com-
pany. Then, it might be advisable not to offer this variability to customers 
until sales of the other applications drop. Hence, marketing people have to 
consider carefully the pros and cons of making variability visible to custom-
ers.

4.5.4 The Variability Pyramid 
Variability is defined at some abstraction level of domain artefacts and 
refined at lower abstraction levels. When creating application artefacts, the 
variability of domain artefacts is considered again in order to bind the 
required variants.14 The variability pyramid in Fig. 4-5 illustrates the amount 
of variability15 that has to be considered at each abstraction level. 

Stakeholder needs, laws, and standards make up the top of the pyramid. The 
growth of the pyramid represents the typical increase of the complexity of 
variability from higher to lower abstraction levels: 

Requirements variability usually leads to a larger amount of variability 
in architecture. For example, a requirement is typically mapped to more 
than one design element. Consequently, the variability in a requirement 
leads to variability in several design elements and thus to an increase of 
the variability definitions. Similarly, variability in design is refined into 
variability in components which again increases the variability com-
plexity. Finally, software testing also has to take into account the vari-
ability defined in requirements, in design, and in components. The 
variability must, for example, be considered in test cases but, equally, in 
test environments, test mock-ups, and simulators. Therefore, the com-
plexity of the variability is again increased. 

                                                     
14 Svahnberg et al. deal with resolving variability at different stages of software product line engineering 

in [Svahnberg et al. 2001]. 
15 The amount of variability is introduced as an abstract entity here. The reader can think of the amount of 

variability as a measure based on the number of variation points, variants and variable artefacts. 
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The complexity of variability also increases due to the introduction of 
additional internal variability. The introduction of internal variability is 
represented in Fig. 4-5 by the arrows leading from outside the pyramid 
to its interior (see Section 4.5.2 for examples of internal variability). 

With the increase of variability definitions, the number of variants and vari-
ation points increases together with an increase of the interrelations between 
variants, variation points, and development artefacts, i.e. the complexity of 
the variability increases. 

External variability is represented as a grey area at the core of the pyramid, 
shrinking in size from top to bottom. This represents the decrease of external 
variability from higher to lower abstraction levels. The reason for this 
decrease is that the customer is primarily interested in the features or 
requirements of an application but usually less interested in the internal 
realisation. A customer may have to decide on specific aspects of the archi-
tecture but probably does not want to deal with implementation issues. 
Curved arrows in Fig. 4-5 leading from the core of the pyramid to its outer 
regions represent external variability causing internal variability. 

The large amount and high complexity of variability inherent in the variabil-
ity pyramid can only be handled by means of managed variability. The first 
step towards managed variability is a common notation for variability as 
introduced in the following section. 

4.6 Orthogonal Variability Model 

In this section we introduce the meta model and the graphical notation of our 
orthogonal variability model. 
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4.6.1 Explicit Documentation of Variability 
An adequate documentation of variability information should at least include 
all the information needed to answer the following questions: 

What varies? To be able to answer this question the variable properties 
of the different development artefacts have to be explicitly defined and 
documented by variation points. For documenting the variability in 
requirements one has to take into account textual requirements, features, 
scenarios, and traditional requirements models (Chapter 5). Variability 
in the product line architecture may affect the system structure, behav-
iour, or the deployment of software to hardware (Chapter 6). Variability 
in realisation artefacts includes variability in components and interfaces 
as well as variability implementation mechanisms, such as aspect-
oriented programming or pre-compiler macros (Chapter 7). 

Why does it vary? This question was analysed in Section 4.5 for internal 
and external variability. The causes of external variability are, for 
instance, stakeholder needs, laws, and standards, or simply product 
management decisions. The causes of internal variability include the 
realisation of external variability, realisation of other internal variabil-
ity, as well as technical variability. We capture the causes of variability 
in textual annotations of variation points and variants. 

How does it vary? Answering this question means explicitly document-
ing the available variants and linking them to domain model elements 
that correspond to these variants by trace links. We call the links “arte-
fact dependencies”. 

For whom is it documented? The distinction between internal and exter-
nal variability defines the audience of a variation point and/or its vari-
ants. This distinction is based on the fact that, for instance, variability 
documentation for customers is different from variability documenta-
tion for software test engineers. The separation in presenting internal 
and external variability can be achieved in different ways, e.g. by using 
different documents for different stakeholders. We record the separation 
by distinguishing between internal and external variation points. 

The explicit documentation of variability has significant advantages as men-
tioned in the previous sections. The three key advantages are the improve-
ment of making decisions, communication, and traceability. We briefly 
characterise each of these aspects: 

Explicitly documented variability improves decision making by forcing 
engineers to document the rationales for introducing a certain variation 
point or a certain variant. The documentation of rationales can be used 
for example by customers (external variability) in their choice of a cer-

Required variability 
information

What? 

Why? 

How?

Documented
for whom? 

Advantages of explicit 
documentation

Decision
making



74 4.  Principles of Variability 

tain variant or by engineers in their task of defining or binding variabil-
ity.

Explicit variability modelling improves communication about the vari-
ability of a software product line by providing a high-level abstraction 
of variable artefacts. For instance, communicating variability to cus-
tomers benefits from the existence of an explicit variability model. The 
explicit documentation of variability subjects as variation points enables 
customers to pinpoint the decisions to be made. The explicit documen-
tation of variability objects as variants allows customers to consider the 
available options for each decision. 

Explicitly documented variability allows for improved traceability of 
variability, for instance between its sources and the corresponding vari-
able artefacts. This type of link is necessary, for example, to perform 
application requirements engineering efficiently (Chapter 15). In addi-
tion, traceability links facilitate the implementation of changes, e.g. 
with respect to a variation point. Thus, the variability model of a soft-
ware product line provides an entry point to navigate through all kinds 
of development artefacts. 

Example 4-17: Improved Customer Communication 

The customers of a home automation system are interested in remote 
access to the system. A brochure on the home describes the variation 
point ‘remote access by’ with the variants ‘dial-up isdn access’ and 
‘internet-based access‘. This tells the customers that the home automa-
tion system supports two different ways of satisfying their needs. 

4.6.2 Orthogonal Variability Definition 
Variability can be defined either as an integral part of development artefacts 
or in a separate variability model. Many research contributions have sug-
gested the integration of variability in traditional software development dia-
grams or models such as use case models, feature models, message sequence 
diagrams, and class diagrams. Kang et al. and Fey et al. use feature models 
to represent variability [Kang et al. 2002; Fey et al. 2002]. Halmans and Pohl 
and von der Maßen and Lichter introduce variability in use case models 
[Bühne et al. 2003; Halmans and Pohl 2003; V.d. Maßen and Lichter 2002]. 
Bosch et al. and Svahnberg et al. deal with variability in implementation 
structures [Bosch et al. 2002; Svahnberg et al. 2001]. 

Modelling variability within the traditional software development models 
has some significant shortcomings. First, if variability information is spread 
across different models it is almost impossible to keep the information con-
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sistent. Second, it is hard to determine, for instance, which variability infor-
mation in requirements has influenced which variability information in 
design, realisation, or test artefacts. Third, the software development models 
(e.g. feature models) are already complex, and they get overloaded by 
adding the variability information. Fourth, the concepts used to define vari-
ability differ between the different kinds of software development models. 
Consequently, the variability defined in different models does not integrate 
well into an overall picture of the software variability. Yet, such an overall 
picture turns out to be essential for software product line engineering. Fifth, 
the definition of the variability information within a single development 
model often leads to ambiguous definitions of the variability contained in 
development artefacts (we provide an example of such an ambiguous 
definition in Section 5.4.1). 

For these and other reasons (for instance, those described in [Bachmann et 
al. 2003; Geyer and Becker 2002; Muthig and Atkinson 2002; Bühne et al. 
2004b; Bühne et al. 2005]), approaches have been proposed that suggest 
defining the variability information in a separate model. We call such a 
model an “orthogonal variability model” (Definition 4-9). The variability 
model presented in this chapter is such a model. 

Definition 4-9: Orthogonal Variability Model 

An orthogonal variability model is a model that defines the variability 
of a software product line. It relates the variability defined to other 
software development models such as feature models, use case 
models, design models, component models, and test models. 

An orthogonal variability model provides a cross-sectional view of the vari-
ability across all software development artefacts. In the following subsec-
tions we incrementally introduce the elements of our orthogonal variability 
model. For each element we define a graphical notation. We use the 
orthogonal variability model throughout the book for the definition of the 
variability of a software product line across all development artefacts. 

4.6.3 Variation Points, Variants, and Variability Dependencies 
The basic elements of our orthogonal variability model are defined in the 
meta model in Fig. 4-6 using UML 2 notation. The two central elements of 
the variability meta model are the ‘variation point’ and ‘variant’ classes 
(Definitions 4-3 and 4-4). 

The ‘variation point’ class is an abstract class (indicated by the italic font in 
Fig. 4-6) and is specialised into the two classes ‘internal variation point’ and 
‘external variation point’. This specialisation is complete and disjoint. Con-
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sequently, every variation point is either of the class ‘internal variation 
point’ or ‘external variation point’. The two classes have different semantics. 
The ‘internal variation point’ has associated variants that are only visible to 
developers but not to customers. The ‘external variation point’ has associ-
ated variants that are visible to developers and customers. 

Each model element depicted in Fig. 4-6 has an attribute called textual anno-
tation that allows us, for instance, to record the rationales for introducing the 
element. For the sake of simplicity, the attributes are shown neither in Fig. 
4-6 nor in the other models in this chapter. 

A variability dependency is the association class of an association between 
the ‘variation point’ and the ‘variant’ classes. The association states that a 
variation point offers a certain variant. The multiplicities of the association 
enforce the following conditions: 

Each variation point must be associated with at least one variant. 

Each variant must be associated with at least one variation point. 

A variation point can offer more than one variant. 

A variant can be associated with different variation points. 

The variability dependency is defined as an abstract class (indicated by the 
italic font). We specialise the variability dependency relationship into a 
mandatory and an optional relationship (Fig. 4-6). The specialisation is 
defined as complete and disjoint. 

The optional variability dependency states that a variant related to the vari-
ation point can be a part of a particular product line application but does not 
need to be a part of it (Definition 4-10). 
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Definition 4-10: Optional Variability Dependency 

The optional variability dependency states that a variant can (but does 
not need to) be a part of a product line application. 

Example 4-18: Optional Variability Dependency 

Defining three identification mechanisms, ‘keypad’, ‘magnetic card’, 
and ‘fingerprint scanner’, as optional variants allows the customer to 
choose any combination of variants. The customer can decide to have 
none of the identification mechanisms, only one, any combination of 
two mechanisms, or all of them as a part of the home security system. 

The mandatory variability dependency states that a variant is required for a 
variation point to which it is related. This does not imply that the variant has 
to be included in all applications of the software product line. A mandatory 
variant is only part of an application if the related variation point is part of it. 

Definition 4-11: Mandatory Variability Dependency 

The mandatory variability dependency defines that a variant must be 
selected for an application if and only if the associated variation point 
is part of the application. 

Example 4-19: Mandatory Variability Dependency 

A home automation system offers different key lengths for encrypted 
remote communication (128 bits to 1024 bits). The software product 
line engineer wants to state that 128 bit encryption is required for 
minimal data protection and that it must be available in each applica-
tion that offers remote access. Therefore, the engineer defines the 128 
bit encryption as a mandatory variant and 256 bit, 512 bit, and 1024 
bit encryption as optional variants. The 128 bit encryption is, how-
ever, only part of applications which include remote communication. 

4.6.4 Alternative Choice 
A variability model must offer the facility to define the minimum and the 
maximum number of optional variants to be selected from a given group of 
variants. Consequently, we define a modelling element that allows us to 
group optional variants and to define multiplicities for each group 
(Definition 4-12). 
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Definition 4-12: Alternative Choice 

The alternative choice groups a set of variants that are related through 
an optional variability dependency to the same variation point and 
defines the range for the amount of optional variants to be selected for 
this group. 

Figure 4-7 shows the necessary extensions of the variability meta model. 
Newly introduced elements are depicted in dark grey, whereas previously 
introduced elements are depicted in light grey. The meta model contains an 
additional class ‘alternative choice’. The class is associated with the 
‘optional’ class by a ‘part of’ association. The multiplicities of the ‘part of’ 
association enforce the following conditions: 

The alternative choice groups at least two optional variability depend-
encies.

Each optional variability dependency may be part of at most one alter-
native choice but does not have to be part of one. 

Example 4-20: Alternative Choice

By declaring the optional variants ‘keypad’, ‘magnetic card’, and 
‘fingerprint scanner’ as alternative choices with ‘min’ taking the value 
“1” and ‘max’ taking the value “2”, the variability model states that at 
least one and at most two of the variants can be selected. 

The ‘alternative choice’ class contains two attributes, ‘min’ and ‘max’. They 
are needed to specify the range for the permissible numbers of variants to be 
selected from the group. Additionally, the ‘alternative choice’ class has the 
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constraint (which is not clear from Fig. 4-7) that the optional variability 
dependencies that are part of a group must refer to the same variation point. 

4.6.5 Variability Constraints 
The variability meta model described so far does, amongst other things, not 
support the documentation of relationships between variants that belong to 
different variation points. Yet such restrictions are required in variability 
modelling, for instance in the following cases: 

The modeller wants to state that a variant V1 requires a variant V2 to 
function correctly. Consequently, if V1 is selected for an application, V2
also has to be selected. 

The modeller wants to state that if variant V1 is selected, variant V2 must 
not be selected. 

The modeller wants to state that a variation point must be part of an 
application depending on the selection of a particular variant made for 
another variation point. 

The first two cases describe relationships between a variant and another 
variant. We call the first relationship a “requires” dependency and the 
second one an “excludes” dependency. The third case describes a “requires” 
dependency between a variant and a variation point. Similarly, there may be 
“requires” and “excludes” relationships between variation points. To model 
these kinds of relationships we extend the variability meta model by three 
types of constraint dependencies (Fig. 4-8). A constraint dependency docu-
ments a restriction that exists between two variants (Definition 4-13), 
between a variation point and a variant (Definition 4-14), or between two 
variations points (Definition 4-15). Each restriction is either of the type 
“requires” or “excludes”. 

The meta model in Fig. 4-8 represents the variant constraint dependency 
(Definition 4-13) by the abstract association class ‘variant constraint depend-
ency’ which is specialised into a ‘requires_V_V’ class and an 
‘excludes_V_V’ class. The specialisation in the meta model is defined as 
complete and disjoint. The multiplicity at both ends of the ‘constrains’ asso-
ciation is ‘0..n’, because a variant can (but need not) be constrained by an 
arbitrary number of other variants and a variant can (but need not) constrain 
an arbitrary number of other variants. 
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Definition 4-13: Variant Constraint Dependency 

A variant constraint dependency describes a relationship between two 
variants, which may be of one of two types: 

a) Variant requires variant (requires_V_V): The selection of a variant 
V1 requires the selection of another variant V2 independent of the 
variation points the variants are associated with. 

b) Variant excludes variant (excludes_V_V): The selection of a vari-
ant V1 excludes the selection of the related variant V2 independent 
of the variation points the variants are associated with. 

Example 4-21: Variant Requires Variant 

A home automation system provides a variation point ‘wireless com-
munication’ with two variants ‘WLAN’ and ‘Bluetooth’ and a vari-
ation point ‘secure connection’ with two variants ‘VPN’ (Virtual 
Private Network) and ‘SSH’ (Secure Shell). The selection of ‘WLAN’ 
requires the selection of ‘VPN’ as a secure connection. This is docu-
mented by introducing a requires_V_V relationship between the 
‘WLAN’ and the ‘VPN’ variants. 
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Example 4-22: Variant Excludes Variant 

A home automation system provides a variation point ‘wireless com-
munication’ with two variants ‘WLAN’ and ‘Bluetooth’ and another 
variation point ‘motion detection’ with two variants ‘optical sensors’ 
and ‘radar-based sensors’. It is not possible to combine the variant 
‘WLAN’ with the variant ‘radar-based sensors’ because both use 
similar frequencies and interfere with each other. This is documented 
by introducing an excludes_V_V dependency between the variants 
‘WLAN’ and ‘radar-based sensors’. 

The extensions required in the meta model for including the variant to vari-
ation point constraint dependency (Definition 4-14) are similar to those 
made for the variant constraint dependency, i.e. an association with multi-
plicities, an abstract class, and two concrete sub-classes (Fig. 4-8). 

Definition 4-14: Variant to Variation Point Constraint Dependency 

The variant to variation point constraint dependency describes a rela-
tionship between a variant and a variation point, which may be of one 
of the two types: 

a) Variant requires variation point (requires_V_VP): The selection of 
a variant V1 requires the consideration of a variation point VP2.

b) Variant excludes variation point (excludes_V_VP): The selection 
of a variant V1 excludes the consideration of a variation point VP2.

Example 4-23: Variant Requires Variation Point 

Wireless LAN provides different standards with different transfer 
speeds. Hence, the variant ‘WLAN’ requires a variation point ‘LAN 
Standard’ that is related to variants representing the different stan-
dards of wireless LAN communication (e.g. IEEE 802.11a, b, and g). 
This is represented by introducing a requires_V_VP relation between 
the variant ‘WLAN’ and the variation point ‘LAN-Standard’. 

Example 4-24: Variant Excludes Variation Point 

If only one LAN type can be selected, the selection of cabled LAN 
makes the selection of different antennas for wireless communication 
unnecessary. This is represented by introducing an excludes_V_VP 
relation between the variant ‘cabled LAN’ and the variation point 
‘antenna for wireless communication’. 
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To include the variation point constraint dependency (Definition 4-15), the 
meta model is extended in a similar way as for the former two dependencies 
(an association with multiplicities, an abstract class, and two concrete sub-
classes; see Fig. 4-8). The variation point constraint dependency affects the 
variants that are assigned to a variation point. If a variation point is excluded 
its variants are also excluded. The modeller should therefore handle variation 
point dependencies with care. 

Definition 4-15: Variation Point Constraint Dependency 

A variation point constraint dependency describes a relationship 
between two variation points, which may be of one of two types: 

a) Variation point requires variation point (requires_VP_VP): A vari-
ation point requires the consideration of another variation point in 
order to be realised. 

b) Variation point excludes variation point (excludes_VP_VP): The 
consideration of a variation point excludes the consideration of 
another variation point. 

Example 4-25: Variation Point Requires Variation Point 

Any selection of a variant at the variation point ‘wireless communica-
tion’ requires the selection of some variant at the variation point 
‘antenna for wireless communication’. This is represented by intro-
ducing a requires_VP_VP relation between the variation point ‘wire-
less communication’ and the variation point ‘antenna for wireless 
communication’. 

Example 4-26: Variation Point Excludes Variation Point 

The home automation system does not support combining wireless 
communication and cabled communication. Hence the variation points 
‘wireless communication’ and ‘cabled communication’ exclude each 
other – represented by an excludes_VP_VP relation between those 
two variation points. 

4.6.6 Traceability between Variability Model and Other 
Development Artefacts 

Modelling variation points, variants, and their relationships is only part of 
the work when modelling the variability of software product line artefacts. 
Developers also have to relate the variability defined in the variability model 
to software artefacts specified in other models, textual documents, and code 
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(Fig. 4-9). The means to document such relationships is to define traceability 
links between the variability model and other development artefacts. 

The arrows depicted in Fig. 4-9 relate the variability definitions or, to be 
more precise, the variants in the variability model with software artefacts, 
such as requirements, design, realisation, and test artefacts, that document 
the refinement and/or realisation of the variability at the different develop-
ment stages. Basically, variants may be related to artefacts of an arbitrary 
granularity, e.g. to an entire use case or to a single step of a use case scenario 
(Chapter 5). 

To be able to relate variability definitions to other software artefacts we 
extend the variability meta model (Fig. 4-10) by a relationship which we call 
“artefact dependency”. 

The meta model depicted in Fig. 4-10 contains an additional class ‘develop-
ment artefact’ that represents any kind of development artefact. Particular 
development artefacts are sub-classes of the ‘development artefact’ class. 
The ‘realised by’ association relates the ‘variant’ class with the newly intro-
duced ‘development artefact’ class. The artefact dependency is realised as an 
association class of the ‘realised by’ association. The multiplicities of the 
association define the following conditions: 

A development artefact can but does not have to be related to one or 
several variants (multiplicity ‘0..n’). 

A variant must be related to at least one development artefact and may 
be related to more than one development artefact (multiplicity ‘1..n’). 

There are cases in which a development artefact needs to represent a vari-
ation point. For instance, in design, an abstract class may realise the common 
behaviour of several variants. In other cases, developers may want to antici-
pate that there are variants, which are not yet defined. These situations are 
covered by introducing an artefact dependency between a variation point and 
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a development artefact. The variability meta model is extended by a ‘repre-
sented by’ association, which relates the ‘variation point’ class with the 
‘development artefact’ class. This artefact dependency is realised as an 
association class of the ‘represented by’ association. The multiplicities of the 
association define the following conditions: 

A development artefact can but does not have to be related to one or 
several variation points (multiplicity ‘0..n’). 

A variation point can but does not have to be related to one or more 
development artefacts (multiplicity ‘0..n’). 

The artefact dependency can be further specialised, for example to capture 
domain-specific dependencies. Such a specialisation is, however, not within 
the scope of this book. 

4.6.7 Graphical Notation 
To be able to graphically represent the variability information defined under 
the meta model introduced in the previous sections, we associate each con-
crete class in the meta model with a graphical notation as depicted in Fig. 
4-11.
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The graphical notation for the alternative choice shows the permissible range 
[min..max] in square brackets. The default range is [1..1]. In the diagrams of 
this book we omit the range if it is the default range. 

4.6.8 An Example 
Figure 4-12 illustrates a simple example of orthogonal variability modelling. 
The use case diagram contains a single use case ‘open front door’ of the 
actor ‘inhabitant’. This use case includes two other use cases, ‘unlock door 
by keypad’ and ‘unlock door by fingerprint’. The variability diagram defines 
a single variation point ‘door lock’ with two variants ‘keypad’ and ‘finger-
print scanner’, related to the variation point by an alternative choice with the 
default range [1..1]. Each variant is associated with the corresponding use 
case by an artefact dependency. 
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Fig. 4-11: Graphical notation for variability models 
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Using the graphical notation proposed by Halmans and Pohl [Halmans and 
Pohl 2003], Fig. 4-13 depicts the variability defined in Fig. 4-12 within the 
use case diagram. Based on the artefact dependencies between the variants in 
the orthogonal variability model and the use cases, the two use cases ‘unlock 
door by keypad’ and ‘unlock door by fingerprint’ have been stereotyped as 
variants (depicted by the black ‘V’). In addition, the two use cases are 
related to an explicit representation of the variation point within the use case 
model (as suggested in [Halmans and Pohl 2003]), which is related by an 
‘includes’ relationship to the use case ‘open front door’. Note that for repre-
senting this information within the use case diagram, no additional informa-
tion is required other than the information contained in the orthogonal vari-
ability model. The representation of the variability information within the 
use case diagram is deduced from the orthogonal variability model and the 
artefact dependencies depicted in Fig. 4-12. Similarly, variability can also be 
highlighted in other conceptual models or even textual documents based on 
the orthogonal variability and its relations to the artefacts. 

4.6.9 Terminology Issues 
Despite being a self-contained entity of the variability model, a variation 
point is also an abstraction of development artefacts that represent variability 
(e.g. interface definitions). In order to allow simpler wording, these develop-
ment artefacts are sometimes also referred to as variation points, though, 
strictly speaking, they are representations of a variation point defined in the 
variability model. 

A similar statement holds for variants. Artefacts which are associated to a 
variant are frequently referred to as variants themselves, though, strictly 
speaking, they merely realise a certain aspect of a variant. The strict form 
corresponds to the orthogonal view of variability as illustrated by the ex-
ample in Fig. 4-12, whereas the short form hints at the possibility of repre-
senting variability within development artefacts as illustrated in Fig. 4-13. 

Representing
variability in 

use case diagram 

Artefacts representing 
variation points 

Artefacts realising 
variants

VP

Door Lock
Open Front Door

Inhabitant

Use Case Diagram (with Integrated Variability)

<<include>>

V

Unlock Door
by Keypad

Unlock Door
by Fingerprint

V

Fig. 4-13: Representing variability in a use case diagram 



4.7  Handling Complexity in Variability Models 87

4.7 Handling Complexity in Variability Models 

An orthogonal variability model can easily become very complex. For 
example, a variability model for automotive software easily offers more than 
a thousand variation points and several thousand variants. A typical way of 
dealing with the complexity is to introduce abstract variation points which 
combine concrete variation points and predefine the bindings of their vari-
ants. For example, the automotive industry offers equipment packages for 
cars like a business package or a family package. By choosing one of those 
packages several variations are chosen, i.e. if a customer selects a business 
package, implicitly several variants are selected, e.g. automatic air-
conditioning, a mobile phone, and a navigation system. 

The orthogonal variability meta model facilitates the packaging of variation 
points and variants. The different packages are represented by a variation 
point. Each package is represented as a variant of this variation point. A 
variant representing a package is linked to the variants that are included in 
the package via ‘requires_v_v’ dependencies. Note that a variant that is 
included in a package can include other variants that represent other pack-
ages. We illustrate the use of packaging in Example 4-27. 

Example 4-27: Packaged Variants 

The variability model in Fig. 4-14 includes the variation point ‘secur-
ity package’ and the two alternative variants ‘basic’ and ‘advanced’. 
These variants represent packages. Selecting the ‘basic’ package also 
selects the variant ‘motion sensors’ of the variation point ‘intrusion 
detection’ and the variant ‘keypad’ of the variation point ‘door locks’. 
If the ‘advanced’ package (variant) is selected, the variants ‘camera 
surveillance’ and ‘fingerprint scanner’ are chosen. 
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4.8 Differences from Single-System Engineering 

Single-system engineering deals with variability in time and employs con-
figuration management to manage different versions of development arte-
facts. Software product line engineering has to deal with variability in time 
as well as variability in space. The presence of variability in space means 
that the same set of development artefacts is used to derive multiple applica-
tions with different features. The shift to software product line engineering 
has far-reaching consequences on the development process and artefacts 
created by this process. Therefore variability has to be explicitly defined. 
This makes variability a first-class subject. 

Variation points and variants provide a high-level abstraction of vari-
able development artefacts that significantly improves the management 
of these parts. 

Variability modelling restricts the set of variants that can be chosen 
together by introducing different kinds of dependencies between vari-
ation points and variants. Therefore, amongst other things, the consist-
ent definition of applications is eased. 

Variability modelling supports the communication of the variability of 
the product line, e.g. to customers. 

4.9 Summary 

Variability modelling is a central technique required to put software product 
line engineering into practice. The variability of a software product line is 
specified in a separate model consisting of variation points, variants, and 
their relationships. In domain engineering, variants are linked to domain 
artefacts realising the variability of the software product line. Variation 
points and variants can be introduced at each abstraction level of domain 
artefacts and refined at lower abstraction levels. 

Variability modelling, as an integral part of software product line engineer-
ing, focuses on the explicit documentation of the variability of a software 
product line. Variability enables the derivation of distinguishable product 
line applications. The importance of being able to communicate the available 
variability of a software product line to customers entails the distinction 
between internal and external variability. 

Establishing tool support for modelling variability and managing it across 
different development artefacts is still a research challenge (see Section 
22.6). The focus of the PRIME project [PRIME 2005] is the development of 
a variability management tool. 
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5
Documenting Variability 

in Requirements Artefacts 

In this chapter you will learn: 

o About the documentation of requirements for a software product line. 
o How to document requirements variability using the orthogonal variability 

model.
o How to document variability in textual requirements, use cases, and scenarios 

as well as in requirements models such as feature models, class diagrams, 
data flow diagrams, and state machine diagrams. 

Klaus Pohl 
Thorsten Weyer 
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5.1 Introduction 

We describe the way of documenting variability in different kinds of require-
ments artefacts in order to provide the reader with the basic knowledge that 
is necessary to document requirements variability in the domain artefacts of 
a software product line. The sub-processes and artefacts closely related to 
documenting variability in domain requirements are highlighted in Fig. 5-1. 

Domain requirements are created in the domain requirements engineering 
sub-process. They encompass requirements common to all applications of 
the software product line as well as variable requirements enabling the cre-
ation of different applications. Domain requirements artefacts are the input 
for the domain design sub-process, which is concerned with developing the 
domain architecture. Domain testing uses domain requirements artefacts to 
provide reusable test artefacts for the software product line. Application 
requirements artefacts are created in the application engineering sub-process 
by exploiting the common and variable domain requirements artefacts. 

The IEEE defines the term requirement as follows: 

Variability in 
domain requirements 

Fig. 5-1: Focus of documenting variability in requirements artefacts 
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Requirements 
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Definition 5-1: Requirement 

A requirement is: 

(1) A condition or capability needed by a user to solve a problem or 
achieve an objective. 

(2) A condition or capability that must be met or possessed by a sys-
tem or system component to satisfy a contract, standard, specifi-
cation, or other formally imposed document. 

(3) A documented representation of a condition or capability as in 
(1) or (2). 

[IEEE 1990] 

When we refer to requirements in this book, we consider a requirement as an 
object with a unique identifier imposing a prescriptive, self-contained state-
ment about the properties of the system under consideration. 

5.2 Documenting Requirements 

Requirements are documented using natural language text (textual require-
ments documentation) or using a requirements modelling language such as 
data models, behavioural models, or functional models (see e.g. [Davis 
1993; Wieringa 1996]). 

5.2.1 Model-Based vs. Textual Requirements Documentation 
A textual requirements specification, on the one hand, does not limit the 
expressiveness of the specified requirements. On the other hand, the use of 
natural language introduces the danger of ambiguity, i.e. textual require-
ments specifications typically allow more than one interpretation and are 
thus often a source for misunderstanding. 

Model-based requirements have an underlying model, which defines the set 
of permissible language elements, the set of composition rules, and, if the 
modelling language is a formal language, the formal semantics. An example 
of a modelling language is a finite state automaton, which allows system 
behaviour to be documented in terms of states, inputs, outputs, and state 
transitions. Model-based requirements have a restricted expressiveness in 
contrast to natural language. 

A model defines an abstraction of a system at a chosen level of detail from a 
particular viewpoint (which is typically determined by the purpose of the 
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model). In contrast, a diagram is a graphical presentation of a collection of 
model elements [Rumbaugh et al. 2003]. 

5.2.2 Requirements Artefacts 
Requirements artefacts support the documentation of requirements in terms 
of text and various kinds of models. We define the term requirements arte-
facts as follows: 

Definition 5-2: Requirements Artefacts 

Requirements artefacts are products of the requirements engineering 
process specified using natural language and/or requirements models. 

Examples of requirements artefacts are textual requirements, goals, features, 
use cases, and scenarios as well as behavioural, functional, and data models. 

5.2.3 Goals and Features 
Goals describe the intent of a stakeholder with respect to the system under 
consideration, whereas features describe the characteristics that a system 
offers to its customer. This leads to the following definitions: 

Definition 5-3: Goal 

A goal is an objective the system under consideration should achieve. 

[V. Lamsweerde 2001] 

Definition 5-4: Feature

A feature is an end-user visible characteristic of a system. 

[Kang et al. 1990] 

There is an overlap between the goal and feature definitions. In most cases, 
feature and goal models define similar information. Goal models have been 
introduced by the requirements engineering community to express high-level 
intentions regarding the system, which are refined into more concrete 
requirements. Feature models have been introduced by the software design 
community to abstract from a given high-level architectural design, i.e. to 
express the high-level requirements of an architecture. To express the inten-
tions of a system, goal models as well as feature models can be used. For 
example, unlocking the front door of a home electronically can be both a 
goal as well as a feature. In this chapter, we describe the documentation of 
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variability in feature models. Yet, the proposed notation can also be used to 
define variability in goal models. 

5.2.4 Scenarios and Use Cases 
Customers and users typically prefer talking about concrete sequences of 
actions that describe system usage rather than talking about abstract models 
of a system (see e.g. [Carroll 2000; Weidenhaupt et al. 1998]). For this rea-
son, scenarios are widely used in requirements engineering. Scenarios 
describe concrete sequences of actions related to the intended application. 
Scenarios can be documented in different representation formats, such as 
natural language, tabular notation, or sequence diagrams. A scenario is 
defined as follows: 

Definition 5-5: Scenario 

A scenario is a concrete description of system usage which provides a 
clear benefit for the actor of the system. 

Pohl and Haumer distinguish between three types of scenarios [Pohl and 
Haumer 1997]: 

System internal scenarios focus on the system itself, i.e. they do not 
consider the context in which the system is embedded. System internal 
scenarios are used, for example, to represent interactions between sys-
tem components or subsystems. 

Interaction scenarios focus on the interaction of the system with stake-
holders and/or other systems. 

Contextual scenarios additionally represent information about the con-
text of the system itself. For example, business goals are stated and 
related to the services provided by a system, relationships between 
stakeholders external to the system are represented, the use of informa-
tion obtained from the system is expressed, or organisational policies 
are stated. Consequently, contextual scenarios extend interaction scen-
arios.

Scenarios are well suited for capturing the context of a system, developing 
innovative requirements, and establishing traceability, e.g. to goal models 
(see e.g. [Pohl and Haumer 1997; Haumer et al. 1999; Rolland et al. 1998; 
Carroll 1995]). 

To cope with the complexity of distributed, heavily interacting (embedded) 
systems, it is necessary to refine scenarios hierarchically and thereby capture 
requirements at different levels of abstraction (e.g. system level, subsystem 
level, etc.; see [Pohl and Sikora 2005]). 
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A use case represents an interaction of one ore more actors (user and/or sys-
tem) with the considered system, which offers a concrete benefit to these 
actors. The concrete interactions between the actors and the system are 
described in terms of scenarios, the so-called use case scenarios. Use case 
scenarios typically focus on the actor–system interactions, but also provide 
contextual information such as the goals behind an interaction. Thus, a use 
case scenario typically defines a certain way of achieving a given goal. 
Usually, there are several use case scenarios representing alternatives of 
accomplishing the same goal or failing to accomplish it, e.g. due to unexpec-
ted events. Consequently, a use case comprises a number of positive and 
negative use case scenarios. Moreover, use cases provide information about 
the system state before and after the execution of the use case scenarios in 
terms of pre- and post-conditions. We define the term use case as follows 
(see also [Rumbaugh et al. 2003]): 

Definition 5-6: Use Case 

A use case is a description of system behaviour in terms of scenarios 
illustrating different ways to succeed or fail in attaining one or more 
goals.

A use case template is a tabular structure consisting of so-called slots. Each 
slot represents a different type of information necessary to define a use case. 
The use case name, the use case goal, its primary actors, its preconditions, 
and the initiator of the use case are examples of such slots. The use case 
template guides the documentation of a use case (see e.g. [Halmans and Pohl 
2003; Cockburn 2000; Schneider and Winters 2001; Kulak and Guiney 
2003]). We define a use case template as follows: 

Definition 5-7: Use Case Template 

A use case template is a tabular structure guiding the textual docu-
mentation of use cases. 

A use case diagram is a graphical notation that provides an overview of the 
use cases of a system.16 It shows the relationship between actors and use 
cases as well as the interrelations among use cases themselves. Use cases can 
be related by “extend”, “include”, and by generalisation relationships. 

                                                     
16 Large systems are typically subdivided into several abstraction levels, such as system level, subsystem 

level, and component level. The use case diagram can be used to provide an overview of the use cases 
at any abstraction level, i.e. of the system use cases as well as the subsystem and component use cases. 
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A use case model captures the functionality of a system. To document a use 
case model, at least the following three components are necessary [Larman 
2002]: 

The template-based description of all use cases. 

The adequate documentation of all use case scenarios. 

One or more use case diagrams providing an overview of all use cases. 

5.2.5 Traditional Requirements Models 
There are three kinds of traditional models, namely models of function, data, 
and behaviour (see e.g. [Davis 1993; Wieringa 1996] for examples of such 
models). 

Functional analysis is based on decomposing the system under consideration 
into a set of functions and their interrelations. For example, the data flow 
diagram (DFD) is used in structured analysis [DeMarco 1979]. It documents 
graphically: 

The data flows of a system. 

The manipulation of data (functions or processes). 

The location of persistent data (data stores). 

The data sources and sinks outside the context of the system. 

Data flow diagrams describe a system at different levels of abstraction. The 
data flow diagrams at a coarse-grained level are refined by those at finer 
grained levels. Data flow diagrams are supplemented by so-called mini-
specs, which define the atomic functions, and by a data dictionary, which 
defines all terms used (see [DeMarco 1979; McMenamin and Palmer 1984] 
for details). 

Data modelling focuses on the data processed and stored in a system as well 
as the relations between the data. A popular data modelling approach is the 
entity relationship model [Chen 1976]. UML 2 (Unified Modelling 
Language [OMG 2003]) introduces the class diagram to define the data, or 
more generally, the static structure of a system. 

In requirements engineering, class diagrams document the essential entities 
of the system under consideration.17 Relationships between classes represent 
relationships between concrete or abstract real world items that are essential 
for the system. The class diagram provides different kinds of relationships 

                                                     
17 The class diagram is also used at other stages of software development. We use it in domain realisation 

to describe the internal structure of components. Similar statements hold for the state machine diagram 
also described in this section. 
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such as associations and generalisations. Class diagrams are at the so-called 
type layer, which means that a class diagram defines a set of valid instances. 
An instance of a class diagram consists of objects, i.e. instances of classes, 
and links between objects, i.e. instances of associations. Multiplicities 
determine the admissible lower and upper bounds for the number of 
instances that can participate in an association. Associations may carry 
association names and roles. In addition, attributes and operations can be 
defined for a class. Such details are considered particularly in detailed design 
(Chapter 7). The class diagram notation itself can be extended and thereby 
adapted to different modelling purposes. The UML 2 enables extensibility 
for example by means of stereotypes, which allow the semantics of model 
elements to be enriched. For more details, see e.g. [OMG 2003; Rumbaugh 
et al. 2003; Booch et al. 1999]. 

The third kind of traditional requirements models focuses on the behaviour 
of a system. Behavioural requirements can be modelled in different ways, 
e.g. in terms of actions, interactions or state transitions. The state machine 
model is a popular example of behavioural modelling. Its basic elements are 
states and state transitions. A state transition is triggered by an external 
stimulus. Guard conditions restrict the permissible state changes. A state 
change can only happen when the guard condition is satisfied. A state 
machine can additionally initiate actions that are executed within a state or 
during a state transition. Statecharts [Harel 1987] are a popular state machine 
notation. UML 2 incorporates them in terms of the state machine diagram:

Definition 5-8: State Machine Diagram 

A state machine diagram depicts discrete behaviour modelled through 
finite state-transition systems. In particular, it specifies the sequences 
of states that an object or an interaction goes through during its life in 
response to events, together with its responses and actions. 

[OMG 2003] 

5.3 Variability in Textual Requirements 

Textual requirements express variability by certain keywords or phrases. 
Yet, documenting requirements variability in this way leaves room for ambi-
guity. Additionally, it suffers from other shortcomings (Section 5.2). 

Example 5-1: Variability in Textual Requirements 

The home security system shall be equipped with either black and 
white or colour cameras capable of taking infrared pictures. 
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In Example 5-1 it is not clear whether only colour cameras or both types of 
cameras must be capable of infrared shooting. Requirements variability has 
to be documented in an unambiguous systematic way that also supports 
traceability between different kinds of artefacts. Therefore, either explicit 
variability modelling has to be enabled for textual requirements, or develop-
ers have to use model-based requirements. The former solution is presented 
in this section. 

5.3.1 Defining Variability in Textual Requirements 
Figure 5-2 illustrates a text fragment, in which requirements variability has 
been made explicit by highlighting the variation point and its variants thus 
adding more accuracy to Example 5-1. 

In fact, the variation point in this example is the ‘type of camera of the home 
security system’. Yet, this cannot be expressed without rewriting the text. 
Moreover, the effects of a variation point are not necessarily restricted to a 
single part of the textual requirements specification. 

It is possible that the selection of a variant has an influence on several differ-
ent parts of the document. The orthogonal variability model circumvents 
these problems. Figure 5-3 illustrates the use of orthogonal variability mod-
elling in a slightly extended version of Example 5-1. The orthogonal 
variability model allows the selection of a chunk of text corresponding to the 
selected variant. The variant ‘colour cameras’ influences two different parts 
of the document, namely the requirements concerning the installed cameras 
and the requirements concerning the required storage system. 
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5.3.2 Documenting Variability Using XML 
Text can be augmented in different ways in order to improve the documen-
tation of variability, e.g. by using tabular structures, different kinds of 
markup structures, or hyper-references. In Internet applications, XML 
(eXtensible Markup Language, [Laurent and Cerami 1999]) and XSLT 
(eXtensible Stylesheet Language Transformation, [Kay and Houser 2001]) 
are commonly used for exchanging and processing text-based documents. 

XML and XSLT can also be applied to enable the explicit documentation of 
variability in textual requirements. XML provides the means to document 
variability and XSLT provides the capability of processing XML documents, 
e.g. in order to generate a document for a specific selection of variants (see 
Fig. 5-4). Thus, the XML-based approach is able to cope with defining as 
well as with binding variability. 

Variability DiagramVariability Diagram
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Textual Requirements 
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Yet, the approach implies adding structural information to natural language 
text in terms of XML tags. For example, it is possible to enclose text frag-
ments by XML tags, include unique identifiers in the tags and thus enable 
establishing links from the orthogonal variability model to the textual 
requirements document. The notation used in Example 5-2 employs tags to 
mark text fragments. It provides an identifier of the corresponding variant 
for each fragment. Consequently, it is possible to select the text fragments 
that belong to specific variants. However, requirements documents of this 
kind are more difficult to write, and their readability is restricted unless they 
are processed, for example, as outlined in Fig. 5-4. For more details on 
XML-based variability documentation, we refer to [John and Muthig 2002]. 

Example 5-2: Text Enriched by XML Tags 

The home security system shall be equipped with 
<text-fragment variant-id= v1 >black and white cameras.</text-
fragment>
<text-fragment variant-id= v2 >colour cameras.</text-fragment>
[…] 
<text-fragment variant-id= v2 >
The video storage system shall compress colour video data by 
approximately 1:200. 
</text-fragment>

5.4 Variability in Requirements Models 

Model-based requirements encompass features (or goals), use case models, 
and traditional requirements models – i.e. functional models, data models, 
and behavioural models. In their basic forms, these models are mostly not 
able to document variability as required by software product line engineer-
ing. Therefore, diverse extensions of model-based requirements artefacts 
have been proposed by research and industry such as the use of stereotypes 
in UML diagrams. Yet, these approaches integrate variability modelling into 
requirements models. The orthogonal variability model allows variability to 
be documented in a common way across different models without modifying 
the existing notations. 

5.4.1 Variability in Feature Models 
Features describe the functional as well as the quality characteristics of the 
system under consideration. The feature modelling approach allows a hier-
archical decomposition of features which yields a feature tree: 

XML tags 
for variants 

Approaches
using extended 
requirements models 

Functionality
and quality 
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Definition 5-9: Feature Tree 

A feature tree hierarchically structures the set of features of a system. 
A feature can be decomposed into several sub-features that are man-
datory, optional, or alternative. 

Figure 5-5 presents an example feature tree for a home security system. 
Besides the features of the system, feature trees typically also define part of 
the variability of the system since they define: 

Optional features, which can be selected or left out at will and 

Alternative features, which allow the choice of one feature out of a 
given set. 

The typical notation used for representing mandatory, optional, and alterna-
tive features is similar to the notation used in our orthogonal variability 
model (Section 4.6.7). 

A shortcoming of the feature tree is its inability to distinguish between alter-
native features that are common to all applications (and therefore should be 
denoted as a commonality of the software product line) and alternative fea-
tures that can be selected separately for a specific application. 

Modelling variability in a feature model may lead to misinterpretations 
(Example 5-3). Moreover, the feature tree lacks a grouping mechanism that 
would allow arbitrary features to be assigned to some variant. 

Defining the variability of a feature tree with the orthogonal variability 
model enhances the expressive capabilities (compared to representing the 
variability within the feature tree). It leads to clearer variability definitions 
and avoids misinterpretations. 
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Fig. 5-5: Feature tree of a home security software product line 
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Example 5-3: Ambiguity in a Feature Tree for Home Security 

Figure 5-5 contains two alternative features that are related to ‘admit-
tance control’: ‘magnet card access’ and ‘PIN access’. ‘Admittance 
control’ itself is a mandatory feature of the ‘home security’ system. 
This part of the feature tree allows different interpretations: 
a) Each application shall support exactly one of the two types of 

admittance control. 
b) Each application shall support both types of admittance control. 

The users are allowed to choose whether they use magnet card 
access or PIN access. 

c) An application shall support either one of the two types of admit-
tance control or both types and allow the users to decide which one 
to use. 

The interpretations a) and c) indicate that the feature tree foresees 
variability which is, however, different in a) and c). According to 
these interpretations, it is possible to build at least two home security 
systems which differ in the realisation of admittance control. In con-
trast, interpretation b) indicates that the admittance control is invariant 
for all applications and thus represents a commonality. 

Example 5-4: Grouping Features of the Home Security System 

The developing organisation might want to offer two variants, ‘camera 
surveillance’ and ‘motion detection’, that apply to ‘room surveillance’ 
as well as to ‘intrusion detection’. The features that belong to each of 
the variants are split across different branches of the feature tree in 
Fig. 5-5. Restructuring the feature tree according to the grouping is 
not always a viable solution as the original decomposition of the sys-
tem is then lost. Moreover, some other variant might require a differ-
ent structure which is in conflict with the structure imposed by 
‘camera surveillance’ and ‘motion detection’. 

Example 5-5: Use of the Orthogonal Variability Model 

Figure 5-6 depicts a part of the variability contained in the feature tree 
in Fig. 5-5 using the orthogonal variability model. The variability dia-
gram consists of the variation point ‘home security by’ with two alter-
native variants, ‘camera surveillance’ and ‘motion detection’. The 
variants are linked to the corresponding subsets of the feature tree by 
artefact dependencies. 
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The variability model enables the selection of parts of the feature tree by 
selecting variants in the variability model. Figure 5-7 illustrates the effects of 
selecting the variant ‘camera surveillance’ in Example 5-5. 

A more detailed comparison of modelling software product line variability 
using the orthogonal variability model vs. using a feature tree is given in 
[Bühne et al. 2004b] and [Bühne et al. 2004c]. 

Fig. 5-6: Feature tree of a home security system 
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Fig. 5-7: Effects of selecting the variant ‘camera surveillance’ 
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5.4.2 Variability in Use Case Models 
A use case is typically documented using template-based use case descrip-
tions, use case scenarios, and/or use case diagrams. In each of these docu-
mentations variability can occur. We elaborate on the documentation of vari-
ability in those documentations. We further illustrate how the orthogonal 
variability model glues together the variability expressed in the different 
types of documentations. 

5.4.2.1 Template-Based Use Case Descriptions 
Textual use case descriptions are typically structured using use case tem-
plates (see [Halmans and Pohl 2003] for an example). In principle, each use 
case slot (such as Primary Actor, Precondition or Main-Scenario) can be 
used to express variability of the product line. The documentation of the 
variability within the slots is in textual form and thus the guidelines for 
documenting textual requirements hold (see Section 5.3). In addition, the 
variability defined in a use case template has obvious relations with the other 
use case documentations like use case diagrams or use case scenarios. Those 
interrelations can be managed via the orthogonal variability model as illus-
trated in Chapter 4. 

5.4.2.2 Use Case Scenarios 
As scenarios document sequences of interactions between two or more 
actors, basically, they are able to describe variability by varying the inter-
actions as well as the constellation of actors. 

A common way to document scenarios is to use a tabular notation as illus-
trated in Fig. 5-8. The scenario in Fig. 5-8 contains the basic steps that are 
necessary to unlock the front door of the intelligent home. As there are two 
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variants for authenticating to the system, namely ‘keypad’ and ‘fingerprint 
scanner’, the scenario contains a variable step. The variants are linked to the 
corresponding scenario steps by artefact dependencies. When a variant is 
selected, only those parts remain in the scenario description that are related 
to this variant. As before, variants can be linked to multiple steps even in 
different scenarios. 

Another way of documenting scenarios is the use of sequence diagrams, e.g. 
as defined by the UML 2 standard. In general, a sequence diagram can be of 
two different types: the generic type documents all conceivable scenarios in 
one sequence diagram, whereas the instance type documents a single scen-
ario [Booch et al. 1999]. Documenting variability in sequence diagrams 
implies using the generic type. Figure 5-9 exemplifies the documentation of 
variability scenarios using sequence diagram notation. 

5.4.2.3 Use Case Diagrams 
Use case diagrams can be used to document variability in terms of use cases 
provided by the system, actors interacting with those use cases, and the 
“includes” and “extends” relations between use cases. Compared with the 
variability which can be represented in use case scenarios or use case tem-
plates, the variability which can be documented in use case diagrams is on a 
more abstract level. Figure 5-10 illustrates the documentation of variability 
in a use case diagram. 
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5.4.2.4 Traceability between Variability Model and Use Case Model 
The definitions of variability in use case diagrams, use case scenarios, and 
use case templates can overlap. For example, an actor of the system is 
defined in all three types of use case documentations. If one introduces a 
variability of an actor in one type of documentation, e.g. in a use case dia-
gram, this variability must be “propagated” to the other documentations, i.e. 
the three types of documentations must be kept consistent. 

In order to manage the overlapping and potentially different definitions of 
variability within the use case model, we use our orthogonal variability 
model. The orthogonal variability model allows to link a variant with the 
different definitions of variability within the use case model. Following the 
traceability links – or, to be more precise – the artefact dependencies 
(Section 4.6), the analyst can determine how a given variant is realised in the 
use case model and check if the different definitions of variability are con-
sistent. In Fig. 5-11 the variant ‘motion detection’ is represented through the 
dark shaded areas of the use case model. Similarly, the variant ‘camera sur-
veillance' is depicted with light grey shading. Without the use of the 
orthogonal variability model it would be much harder or, in a large system, 
close to impossible, to relate the various documentations of the same kind of 
variability. 

5.4.3 Variability in Traditional Requirements Models 
Besides feature models and use case models, traditional requirements models 
still play an important role in requirements engineering for software product 
lines. Therefore, it is necessary to document variability in data flow models, 
class models, and state machine models. 
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Activate Camera
Surveillance

Activate Motion
Detection

Activate Security
System

<<include>><<include>>Inhabitant

Home
Security by

VP

Camera
Surveillance

V

Motion
Detection

V

Fig. 5-10: Example of documenting variability in a use case diagram 

Overlapping
information

Related variability 
definitions

Functions, data, 
behaviour



106 5.  Documenting Variability in Requirements Artefacts 

5.4.3.1 Variability in Data Flow Diagrams 
Since a functional model describes the flow and manipulation of data in a 
system, it can be used to express variability in the flow of data and in the 
functions manipulating the data. 

Example 5-6: Data Flow Diagram for Home Security 

Figure 5-12 shows a data flow diagram describing example data flows 
for the two variants ‘camera surveillance’ and ‘motion detection’ of 
the variation point ‘home security by’. The data flow diagram shows 
the functions, data stores, and data flows that are necessary to realise 
both variants. Two areas of different grey shading highlight the frag-
ments of the data flow diagram corresponding to the variants ‘camera 
surveillance’ and ‘motion detection’. 

Fig. 5-11: Use of the orthogonal variability model to interrelate variability in a use case 
model

Variable data 
flows and functions 
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The graphical notation presented in Fig. 5-12 supports documenting variabil-
ity within a single data flow diagram instead of having to provide multiple 
diagrams for different variants. Yet, fine-grained aspects, such as variability 
within a function, data flow, or data store not refined in a child data flow 
diagram, have to be documented in the corresponding mini-specs or in the 
data dictionary. 

Example 5-7: Selecting Variants 

The selection of a variant within the variability model implies 
choosing the corresponding subset of diagram elements of the data 
flow diagram. Figure 5-13 shows the resulting data flow diagram after 
selecting the variant ‘camera surveillance’ (left) or the variant ‘motion 
detection’ (right) respectively. 

Fig. 5-12: Example of documenting variability in a data flow diagram 
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5.4.3.2 Variability in Class Diagrams 
Class diagrams document structural requirements variability. The structural 
variability within a class model frequently involves variability in behaviour, 
quality, or function. These occurrences of variability are documented within 
other requirements models (e.g. use case models). 

Basically, variability is inherent in class models due to the fact that a class 
model specifies a set of instances. These instances may for example differ in 
the number of objects and their links. The inherent variability of class 
models is typically used to specify the valid instances of the class model that 
exist at run-time. Therefore, product line variability cannot be documented 
using the standard class diagram notations and concepts. For example, a 
multiplicity could denote inherent class variability or product line variability. 
We thus propose to model product line variability in class diagrams using 
the orthogonal variability model. Thereby, we can clearly differentiate 
between product line variability (defined using the orthogonal variability 
model) and the inherent class variability. The relation between multiplicities 
and variability is discussed in detail in Chapter 7. 

In this chapter, we focus on those aspects of variability in class diagrams 
necessary to document requirements variability. This means that we asso-
ciate variants with coarse-grained subsets of classes. However, variability 
may have more fine-grained manifestations, which then requires variants to 
be associated with single elements of the class diagram. Figure 5-14 illus-
trates the representation of requirements variability within a class model 
using the orthogonal variability model. 

Fig. 5-14: Example of documenting variability in a class diagram 
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5.4.3.3 Variability in State Machine Diagrams 
A state machine model documents requirements concerning the behaviour of 
the intended applications. We document requirements variability by linking 
variants to certain parts of a state machine diagram. Like data flow diagrams, 
state machine diagrams also support hierarchical refinement, which allows 
the introduction of variability at different levels of detail. Figure 5-15 pro-
vides an example of modelling the behavioural aspects of variants in a state 
machine diagram. 

5.5 Traceability Between Variability Model and 
Requirements Artefacts 

The orthogonal variability model documents the variability of a software 
product line and defines traceability links between variants and variation 
points and the corresponding definitions of the variability in requirements 
artefacts. Variability in requirements is expressed in different models such 
as:

Feature models 
Textual requirements 
Use case descriptions 
Traditional requirements (data, function, and behaviour) 

Orthogonal to those models, the variability model defines the variations of 
the software product line. Through the relationship between a variant of the 
orthogonal variability model and the associated development artefacts, it is 
possible to document the characteristics of the variant concerned from dif-

Fig. 5-15: Example of documenting variability in a state machine diagram 
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ferent perspectives (e.g. data, function, behaviour, and quality). Furthermore, 
the relationships support the consistent implementation of changes. Starting 
from a changed development artefact, other artefacts affected by the change 
can be found by following the relation to the associated variant and from the 
variant to the other associated artefacts. This procedure is shown in Fig. 
5-16.

The traceability between the variability model and the different types of 
requirements models is established through artefact dependencies. Figure 
5-17 depicts the basic types of relationships between the variants defined in 
the orthogonal variability model and different types of requirements arte-
facts.

The relationship between the variability model and the feature model 
(  in Fig. 5-17) links the variants to the corresponding features. A fea-
ture can be linked to an arbitrary number of variants within the variabil-
ity model and vice versa. 

The relationship between the variability model and textual requirements 
(  in Fig. 5-17) marks aspects of variants that have to be expressed by 
textual descriptions (almost qualitative aspects, e.g. laws and standards). 

The relationship between the variability model and traditional require-
ments models (  in Fig. 5-17) marks aspects of variants that are 
expressed by traditional requirements artefacts (i.e. behavioural, struc-
tural, functional, and qualitative aspects). 
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Fig. 5-16: Use of the orthogonal variability model for performing consistent changes 
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The relationship between the variability model and use case models (
in Fig. 5-17) describes aspects of variants that are documented by use 
cases, use case scenarios, and template-based use case descriptions. 

We illustrate the usage of artefact dependencies in Example 5-8. For further 
reading on interrelating different kinds of requirements (at different levels of 
abstraction), we refer to [Bühne et al. 2004a]. 

Example 5-8: Usage of the Artefact Dependencies 

Figure 5-18 exemplifies the documentation of the variant ‘colour 
camera surveillance’ through feature models, use case models, tradi-
tional requirements, and textual descriptions. The functional, behav-
ioural, structural, and qualitative characteristics of the variant ‘camera 
surveillance’ are described through the associated artefacts. The vari-
ant ‘colour camera surveillance’ influences specific parts within each 
model. When the analyst, changes a use case related to ‘colour camera 
surveillance’, the traceability links indicate the parts of the textual 
description, the class diagram, etc. affected by the change. 

To use case 
models

Fig. 5-17: Relationships between requirements artefacts and the variability model 



112 5.  Documenting Variability in Requirements Artefacts 

5.6 Differences from Single-System Engineering 

In single-system engineering, requirements for each application are docu-
mented separately without keeping track of the commonalities and the dif-
ferences of the applications. In software product line engineering, common 
requirements are documented together with all variable requirements. A 
separate variability model enables keeping track of the variability of differ-
ent kinds of requirements artefacts. Requirements artefacts for a specific 
application can be derived from domain requirements by binding the vari-
ability. 
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Documenting requirements variability in an orthogonal variability model and 
relating this model to requirements artefacts facilitates the usage of the 
requirements documentation in design, realisation, and testing, as well as the 
refinement and realisation of the required variability. 

5.7 Summary 

Software product line engineering implies documenting the variability of 
different kinds of requirements artefacts in a separate variability model. Each 
variant defined in the variability model is related to requirements artefacts 
that describe the implications of the variant on different requirements con-
cerning the functionality, structure, behaviour, and quality of the system. 
The relations between variants and requirements artefacts are represented by 
artefact dependencies. Consequently the variability of requirements artefacts 
is documented clearly and unambiguously: 

Feature models contain variability themselves. Nevertheless, the ortho-
gonal variability model helps to unambiguously document product line 
variability. 

Use case models allow variability to be documented inside a slot of the 
use case template, inside a scenario, or in a use case diagram. In many 
cases, trade-off decisions are possible at which place variability should 
be documented. The orthogonal variability model relates the different 
places at which variability is defined to each other. 

Traditional requirements models allow the expression of variability 
mostly by selecting the subsets of diagram elements related to a specific 
variant. If hierarchical decomposition of the model is possible, variabil-
ity can be modelled at different levels of abstraction. 

Documenting variability in textual requirements by means of the 
variability model is possible, but may hamper readability. 

Finally, the variability model supports the developers in keeping the differ-
ent views of variable requirements artefacts consistent. Likewise, in appli-
cation requirements engineering the variability model is used to create a 
consistent set of application requirements artefacts. 
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Documenting Variability 

in Design Artefacts 

In this chapter you will learn: 

o The origins of the variability to be considered when defining an architecture. 
o How to define variability in different architectural views such as the develop-

ment view, the process view, and the code view. 
o How the orthogonal variability model can be applied to document variability 

in the different views and to keep those views consistent. 

Frank van der Linden 
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6.1 Introduction 

Requirements have to be satisfied in applications to fulfil the users’ wishes. 
Design is the next step towards applications. During design, it is determined 
how the applications are built in a technical sense. In software product line 
engineering, the domain architecture (or reference architecture; see Section 
6.3) is valid for many applications. Hence, one of the main concerns of the 
domain architect is to design for flexibility. The orthogonal variability model 
enables the documentation of variability in design artefacts in a clear and 
understandable manner thus easing the reuse of these artefacts. The sub-pro-
cesses and artefacts closely related to the documentation of variability in the 
reference architecture are highlighted in Fig. 6-1. 

Software design consists of two phases: high-level design and low-level (or 
detailed) design.18 The main result of high-level design is the architecture 
capturing the general design decisions including the main software structure. 

                                                     
18 This is a matter of viewpoint. In fact, design is hierarchical. Each level of design sees itself as high-

level design. It results in a decomposition of the system. For each of the parts, a separate detailed 
design is made. In this chapter, we take the viewpoint of the software architect. 
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Fig. 6-1: The reference architecture is the focus of documenting variability in architecture
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Documenting variability in the architecture is the focus of this chapter. 
Software developers do detailed design and implement the different software 
components. They have to adhere to the architecture. From the perspective 
of the architecture, detailed design is part of the realisation. Chapter 7 is 
concerned with the variability issues of detailed design. 

The domain design sub-process is responsible for creating common and 
variable design artefacts. Domain design gets its main input from domain 
requirements engineering. The reference architecture is used as an important 
guide during domain realisation and application design. 

6.2 Architectural Artefacts 

In this section, we briefly present the different kinds of artefacts used in 
software architecture. Jazayeri et al. define four main concerns which the 
architect has to deal with [Jazayeri et al. 2000] and which lead to the essen-
tial artefacts of architectural design. The first two concerns, namely archi-
tecturally significant requirements and concepts, make up the interface 
between requirements engineering and architecture. The former concern 
means that architects have to identify those requirements that have an essen-
tial impact on the architecture. The latter concern means that architects have 
to create a conceptual architecture prior to building structural models of the 
software. The other two concerns, namely structure and texture, are the main 
ingredients of the architecture. 

The most recognised aspect of the architecture is the structure of a software 
system: 

Definition 6-1: Architectural Structure 

The architectural structure is the decomposition of a software system 
into parts and relationships. 

In addition, the architecture defines the texture of the produced systems.19

While the architectural structure determines which parts are built separately, 
the texture determines the general rules each of the parts has to obey. 

Definition 6-2: Architectural Texture 

The architectural texture is the collection of common development 
rules for realising the system. 

                                                     
19 This term is introduced in [Jazayeri et al. 2000] to give a single name to, and to emphasise the 

importance of, the common rules determined by the architecture. 
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Examples 6-1 and 6-2 illustrate the architectural structure and architectural 
texture for the home automation domain. 

Example 6-1: Structure in Home Automation 

The structure of the home automation applications depicted in Fig. 6-2 
includes four layers (each of which has an internal structure consisting 
of subsystems and components; see Fig. 6-3). The layers can be 
characterised as follows: 
 ‘Basic control’, for common computing platform infrastructure 

involving process, file, database, and communication infrastructure. 
 ‘Device control and management’, which provides a basic domain-

specific infrastructure, for the control and management of all kinds 
of devices. For instance, it controls specific actuators and sensors, 
such as door actuators and smoke sensors. 

 ‘Home functions’, which provide management of basic domain-
specific functions. They combine the control of several devices, 
such as the integrated control of opening and closing of doors. 

 ‘Integrated functions’, which combine the home functions into inte-
grated applications. For instance, a ‘vacation function’ involves 
lighting, heating, and door and window management. 

Within each layer the variability is determined by the variation in the 
functionality provided, and by the variation in the functionality pro-
vided by the layer below it. For the basic control layer variability in 
the layer below is triggered by hardware variability. 

Example 6-2: Texture in Home Automation 

The texture of the home automation applications contains: 
 The use of layering in the structure, as described in Example 6-1. 
 The use of a hierarchy of layers, subsystems, and components as 

described in Example 6-1. 
 The facade pattern [Gamma et al. 1995] that demands a single 

interface at subsystem level. 
 The observer pattern, which decouples user interface issues from 

the data. 
 The presence of an initialisation interface with a prescribed set of 

functions at each component. 
 The use of high-priority processes for user interface handling and 

medium-priority processes for user functions. 
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The texture consists of coding rules and general mechanisms, such as styles 
[Shaw and Garlan 1996] and design patterns [Gamma et al. 1995] to deal 
with the many situations that occur during realisation and coding. The tex-
ture has to be used everywhere in the design of the system. In many cases, 
the texture provides standard ways to deal with quality requirements, such as 
performance, maintainability, and many others. It prescribes detailed design 
issues to simplify the task for the developer by solving common problems 
only once and by determining the way the software infrastructure has to be 
used. As a consequence, it increases commonality and reusability of all 
design and realisation artefacts. 

6.2.1 Architecture Views 
The architectural structure is usually not documented as a single entity. In 
many cases, different views upon the architecture exist, which together 
determine the structure.20 The views describe different aspects of the sys-
tems, but there is not a defined relationship between them, leaving some 
freedom for realisation. Important views are: 

Logical view: This view incorporates the requirements models. 
                                                     
20 Views are defined in [Kruchten 1995; Soni et al. 1995; Obbink et al. 2000] where different names are 

used for the same views. We use the terminology introduced in [Kruchten 1995]. 
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Development view: This view determines the decomposition of the soft-
ware into components, objects, and their interfaces. 

Process view: This view determines the activities during execution. 

Code view. This view determines the distribution of the software over 
files, directories, and processing units. 

Definition 6-3: Logical View 

The logical view describes the applications in terms of the problem 
domain. 

The logical view is typically expressed in terms of requirements artefacts. 
The remaining three views are the focus of this chapter. 

6.2.1.1 Development View 
The development view models the software structure in layers, subsystems, 
components, object classes, interfaces, and their different kinds of relation-
ships.

Definition 6-4: Development View 

The development view shows the (hierarchical) decomposition of the 
system into pieces, each of which is the subject of a separate detailed 
design.

Several notations exist for the development view, all describing the struc-
tural entities graphically with boxes, and their relationships with annotated 
lines, or actual containment of boxes in each other. For instance, object 
classes may be contained in components, which in turn may be part of a 
layer or a subsystem. UML 2 [OMG 2003] has several notations for the 
development view: 

Package diagram describes packages and their relationships. A package 
is a grouping of other diagrams, each with its own internal detailed 
design.

Component diagram describes components and their relationships. 

Class diagram describes classes and their relationships. It is mainly 
used for detailed design of the internals of components and interfaces, 
and thus belongs to detailed design. 

Object diagram describes relationships between objects in a specific 
execution. It belongs to detailed design. 

Structural
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Development view 
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The component diagram is the most important diagram for the architecture. 
It is the main means to decompose the system according to the development 
view, incorporating the high-level decomposition of the software system into 
components and their relationships. Each component diagram is used to 
describe an internal design for a part of a layer or subsystem. Its design is 
mainly based upon experience and partially dependent on the set of require-
ments to be fulfilled. In addition, the architect takes into account the general 
principles of complexity management, resulting in layered abstractions, and 
of the divide-and-conquer strategy. To enable this, the architect needs repre-
sentations for layers and subsystems. The package diagram is not specifi-
cally meant for this. Yet, since it is a means for clustering arbitrary elements, 
it is used to cluster components in subsystems and layers. An important 
quality characteristic of software engineering (and in particular of software 
product line engineering) is to design for flexibility, thereby enabling ease of 
adaptation. By putting similar functionality together in the same subsystem 
and component, changes are kept local, which is crucial for fast adaptations. 

The other two diagrams are less important for architecture. The class 
diagram denotes the decomposition of the system into object classes, which 
is one level below the component structure in the decomposition hierarchy. 
The class diagram gives more details than the component diagram. Such a 
low level of detail obscures the architecture by too much complexity. This 
results in too little emphasis on the general principles and causes problems in 
later adaptations of the architecture. The architect determines only parts of 
the class diagrams to ensure compliance with architectural principles. The 
remainder is the topic of detailed design. The object diagram is less useful as 
it mainly depicts a specific moment in a specific execution of a specific 
application. However, it may be used for analysing difficult relationships, or 
specifying specific crucial parts of the system. 

6.2.1.2 Process View 
The process view describes the behaviour of the systems during actual exe-
cution. It models processes, threads, their interactions, and often resource 
usage.

Definition 6-5: Process View 

The process view shows the decomposition of the running system into 
ordered activities and their relationships. 

The architect uses the process view to model the processing behaviour of the 
system. Choices in this view have an influence upon speed, throughput, and 
reaction times. There are several notations for the process view. UML 2 
provides the following diagrams for documenting the process view: 
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Interaction overview diagram: This diagram describes relationships 
between different process view diagrams. 

Timing diagram: This diagram describes sequences of execution phases. 

State machine diagram: This diagram decomposes the system into state-
charts [Harel 1987]. 

Activity diagram: This diagram describes behaviour in terms of actions, 
control flows, and data flows in a Petri-net-like manner [Peterson 1981; 
Reisig 1985]. 

Communication diagram: This diagram describes a specific sequence of 
interactions in a specific execution of a system focusing on how the 
internal structure corresponds with message passing. 

Sequence diagram: This diagram is another way to describe a specific 
sequence of interactions in a specific execution of a system, yet focus-
ing on the order of messages. 

The most important diagrams for the architecture are those that enable 
abstraction from the details of the observable behaviour of a system. This 
holds for the interaction overview diagram, the timing diagram, and the state 
machine diagram. An interaction overview diagram is used to provide an 
overview of the control flow between interactions through a dialect of activ-
ity diagrams. The interactions themselves can be detailed later, e.g. during 
detailed design. The timing diagram describes the sequence(s) of phases that 
hold for a group of objects. For each phase, a different process view diagram 
may be determined, involving different activities, interactions, and relation-
ships. Designing it correctly separates the concerns of different execution 
phases, which saves a lot of complexity of the behaviour. For instance, start-
up, shut-down, or error-state behaviour may be completely different from the 
normal operational mode. The state machine diagram is able to capture the 
behaviour of the complete system in more or less detail. As long as the level 
of detail is not too low, the state machine diagram is very useful for archi-
tecture. Detailed design uses the state machine diagrams in more detail. 

The other three diagrams are less useful for the architect. The activity dia-
gram is typically used to describe the behaviour of the system following one 
use case. Thus, it is preferably used in requirements engineering, although in 
certain situations the architect may use it to get a first idea of which activ-
ities take place in the system before going into more detail. The communica-
tion diagram and the sequence diagram are used during detailed design as 
they both depict mainly a specific part of an execution in a specific imple-
mentation. However, the architect uses them for analysing difficult relation-
ships, or specifying specific crucial parts of the behaviour. 
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Alternatives for the process view exist in more formal approaches.21 We do 
not consider these approaches, because they presently have a small impact, 
in particular due to insufficient scaling towards large systems. This certainly 
holds for the added complexity introduced by software product line engin-
eering. However, formal methods play a role in detailed design. Several 
formal approaches exist that scale up better, and have proven themselves in 
the development of large embedded system product lines.22 These 
approaches usually combine the development and the process views in such 
a way that the detailed design of the development view mainly involves 
processes and threads, i.e. elements of the process view. The combination of 
the threads into communicating processes and process scheduling is mainly 
dependent on a few predefined mechanisms and can be automated. 

6.2.1.3 Code View 
The code view maps source code and executable code into files and directo-
ries, and their distribution over executable processing nodes. 

Definition 6-6: Code View 

The code view shows the decomposition of the executable code into 
files and an assignment of these files to processing units. 

The mapping of executable code to processing units has to consider the roles 
of the different processing units. Example roles are clients, servers, and 
database processing. Each role is related to a certain set of executable code. 
Certain processing units may have more than one role. UML 2 provides a 
deployment diagram for this purpose. 

The code view is a part of the architecture and should not be intermixed with 
detailed design and realisation, which is the subject of Chapter 7. The code 
view determines the interrelations between the software artefacts after 
development. Detailed design is part of development and produces the code, 
which has to obey the architecture, incorporating the code view. 

6.3 The Reference Architecture 

All decisions on variability in design have to be communicated and docu-
mented for future use. As an important consequence, it is necessary to have 
clear representations for variation points, variants, and mechanisms to realise 

                                                     
21 There are many such formalisms; examples are: CCS [Hoare 1985], CSP [Milner 1980], LOTOS 

[Brinksma 1988], Petri nets [Reisig 1985], and process algebra [Bergstra and Klop 1984; Baeten et al. 
1990]. 

22 For instance, COLD [Feijs et al. 1994] and SDL [Belina et al. 1991; Bræk and Haugen 1993]. 
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variability. The architecture developed during domain engineering is called 
the reference architecture. It is defined as follows: 

Definition 6-7: Reference Architecture 

The reference architecture is a core architecture that captures the high-
level design for the applications of the software product line. 

The reference architecture includes the variation points and variants docu-
mented in the variability model. It provides limits for the architectures of the 
separate applications, i.e. the application architectures. It determines which 
components are reusable and thus have to be developed during domain reali-
sation.

In software product line engineering, the structure of a collection of applica-
tions has to be captured, and this means that the structure itself should 
exhibit variability. In fact, architecture variability is mainly incorporated in 
the structure. The texture captures a common part of the product line. Most 
structure diagrams are able to express variation points and variants, although 
some are more suitable than others. The most important ways of expressing 
variability are discussed in this chapter. 

In the following sections, we discuss the variability in the development, 
process, and code views of architecture. Variability in the logical view has 
been discussed in Chapter 5. 

6.4 Variability in the Development View 

The development view is the most important one to capture commonality 
and variability. In particular, a large part of architecture variability is cap-
tured in the component diagram. 

6.4.1 Subsystems and Layers 
Subsystems and layers are best described in the package diagram, which 
enables the architect to group similar components. The package diagram, in 
fact used as a subsystem diagram, denotes the high-level decomposition of 
the software system into subsystems and their relationships. The structure 
described in the package diagram itself is valid for the entire product line. 
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Figure 6-3 illustrates the documentation of variability in a package diagram 
that describes the layers and subsystems of a software product line. Basic-
ally, layers as well as subsystems may be variable (i.e. associated with vari-
ants). In a layered architecture, each subsystem is assigned to a layer 
matching the abstraction level of the involved functionality. This assignment 
is fixed for all applications of the product line. In order to design for flexi-
bility, the architect typically determines subsystems in such a way that the 
required variability is encapsulated within subsystems. Consequently, the 
variable parts of the package diagram closely correlate with the elements of 
the variability model. Typically, the subsystems in the higher layers deal 
with external variability. They are only present when the customer needs 
them. The variation points realised by the lower level subsystems are caused 
either by detailing external variability or by internal variability. Most of the 
internal variants differ in the use of available technology and performance 
requirements. Usually all these subsystems are present in each application, 
with variants dealing with quality issues and technology choices of the spe-
cific application features. 

The variability diagram in Fig. 6-3 contains artefact dependencies between 
variation points and architectural artefacts. Such a dependency indicates that 
the artefact at the target end has different instances. For example, it abstracts 
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from the fact whether the variants of a variation point imply the variation of 
the entire artefact or variation in the internal structure of the artefact. Hence, 
the dependency can be used to hide this fact or to defer the decision about it. 
This may be due to the abstraction level of the considered model or due to 
notational limitations of the used diagram type. 

Example 6-3: Subsystems and Layers for Home Automation 

The package diagram in Fig. 6-3 shows the subsystems and layers of a 
home automation product line. The layers ‘basic control’, ‘device 
control and management’, ‘home functions’, and ‘integrated func-
tions’ are present in each application. Variability becomes manifest in 
the subsystems. The subsystems in the ‘home functions’ layer deal 
with external variability. They are only present when the client 
requires them. So, a system without any door and window manage-
ment has no ‘door & window management’ subsystem. 
The architect introduces internal variability, e.g. by putting lower level 
functionality related to the actuation of door and window locks in the 
‘device control and management’ layer. Thus, the internal structure of 
the ‘actuator control’ subsystem provides components for the variants 
‘manual’ and ‘electronic’ of the variation point ‘door locks’. The 
internal structure has to be documented in a component diagram. 
The variation point associated with the ‘database’ subsystem of the 
‘basic control’ layer declares two variants: ‘proprietary’ and ‘commer-
cial’. These variants differ mainly in quality issues and are decided on 
for example with regard to the size of the system. 

6.4.2 Components
A subsystem is decomposed into a collection of interacting components. 
UML 2 provides the component diagram for describing configurations of 
components. Figure 6-4 illustrates the documentation of variability in the 
component diagram. Each component may realise a variant and is thus only 
present in an application for which the corresponding variant has been 
bound. Variability in the internal structure of a component is primarily con-
sidered in detailed design. 
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Example 6-4: Components for Door and Window Management 

Figure 6-4 presents a part of the components of the ‘door & window 
management’ subsystem. The subsystem contains common compo-
nents for door and window control such as ‘lock control’. But there 
are also special components only for door or window control. The 
door lock components are shown in Fig. 6-4. 
The variability model describes the external variability of door locks 
provided by the subsystem. The variation point ‘door lock‘ offers an 
alternative choice with two variants, namely ‘manual’ and ‘elec-
tronic’. The former variant is realised by the ‘manual door lock con-
trol’ component. The latter variant requires a decision for the ‘lock 
authentication’ variation point, i.e. one of the variants ‘keypad’ and 
‘none’. Each of them is realised by a separate component in the com-
ponent diagram. All three door lock components use the generic door 
and window lock functionality available in the ‘lock control’ compo-
nent.

6.4.3 The Role of Interfaces 
Components are connected with each other through interfaces. An interface 
describes the functionality in a providing component that is required by 
another. Since the interface is an abstract description of the internal function-
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ality of the providing component, there may be several implementations of 
the same functionality. This is an important way to design for flexibility: the 
same interface is provided by several different designs of a component. The 
different designs typically realise variants of one or more variation points. 
Interfaces hide the variability in the design of the providing components 
from their clients.23

6.4.4 Configurations 
Variability in the component view implies using variable configurations of 
components and interfaces. In many cases, configurations of components do 
not change arbitrarily, but in coordinated ways. The architect provides 
restrictions on configurations that are allowed and those that are not. For 
instance, the architect uses lists to denote which components are common 
and which are variable or optional. Another important tool for restricting the 
number of configurations is the use of a component framework.

Definition 6-8: Component Framework24

A component framework is a structure of components, or object 
classes, where plug-in components or object classes may be added at 
specified plug-in locations. To fit, each plug-in has to obey rules 
defined by the framework. 

The domain architect introduces frameworks to ease mass customisation. 
Variation points are represented by locations in the framework where plug-in 
components may be added. Variants are realised by specific choices of the 
plug-in. A component framework is part of the architectural texture. The 
texture usually also provides additional restrictions on the plug-in, e.g. by 
disallowing connections of the plug-in outside the specified plug-in location. 
This additionally eases the choices to be made by the developer of the plug-
in and facilitates the configuration activity. Many frameworks for basic 
functionality are available commercially, e.g. J2EE [Alur et al. 2003]. The 
domain architect decides on their use. In addition, the architect may design 
additional frameworks for product line specific functionality. 

Example 6-5: Home Automation Framework 

A part of a framework for home automation is depicted in Fig. 6-5. 
The main structure of door lock control is shown here. The parts in 
solid lines compose the common part of the framework. Optional and 

                                                     
23 Still, the different designs may vary in quality aspects, such as resource usage, which is in fact 

observable by the clients. Chapter 7 deals with this issue. 
24 This should not be confused with other frameworks introduced in this book. For a more extensive 

definition and treatment of component frameworks, see [Szyperski 1997]. 
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variant parts are depicted by dotted lines. The framework determines 
the main structure and covers the generic management functions of the 
main parts, ‘lock control’, ‘user interaction’, and ‘authentication’, 
which have a fixed configuration, as shown in the figure. Plug-in 
components are marked by the use of ‘plug-in’ in their names. The 
plug-in locations are required interfaces. The plug-in components are 
connected to these locations through their own provided interfaces. 
At the top right hand side, some plug-in components are depicted that 
are in the ‘device control and management’ layer: ‘lock actuator plug-
in’ and ‘open/close sensor plug-in’. They represent variable plug-in 
components to control different sensors and actuators. As can be seen 
from the solid connection, at least one ‘lock actuator plug-in’ compo-
nent has to be present. However, the presence of an ‘open/close sensor 
plug-in’ component is optional, depicted by the dotted interface and 
connection.
The variable plug-in components for door lock control connect to an 
interface provided by the ‘lock control’ component. At least one of 
them has to be present. The ‘electronic door lock plug-in’ has an 
optional connection to an interface of the ‘authentication manager’ 
component. The ‘authentication plug-in’ represents components for 
different authentication mechanisms such as keypad authentication. 
The plug-in is optional. The ‘authentication manager’, which is part of 
the framework, always grants authentication in the case of absence of 
the ‘authentication plug-in’. In this way, the framework can be used 
for all kinds of situations with more or less complex door control 
functionality, and the ‘user control manager’ is not bothered by the 
presence or absence of authentication. 
Note that authentication variability is present at three places in the 
diagram: the presence of an ‘authentication plug-in’ component, the 
variable presence of an optional interface between the ‘electronic door 
lock-plug-in’ and the ‘authentication manager’ components, and the 
variability of the ‘electronic door lock plug-in’ component, which has 
variants with and without authentication. Thus the single external 
variation point of having authentication leads to many internal vari-
ation points in design, in both the involved components and the con-
figuration itself. The addition to the variability model is shown in the 
new variation point on authentication algorithm. The component 
framework presented in Fig. 6-5 is considered in more detail in 
Chapter 11. 
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The architect assigns plug-in components as variants for certain variation 
points and delegates the binding of variability related to the plug-in compo-
nents to the realisation sub-process. Several plug-in variants are built during 
realisation. Some of them have variability. The ‘electronic door lock plug-in’ 
component in Fig. 6-5 has variants with and without authentication. Domain 
realisation may build separate plug-in components for these different vari-
ants, or there may be variants capable of dealing with both situations, i.e. 
with and without authentication. 

A component framework usually determines for each plug-in location a spe-
cial access interface to be provided by the plug-in component. In addition, 
the framework itself has a registration interface to give the plug-in compo-
nent access to the framework through the registration of the access interface. 
Through registration, the plug-in makes itself known to the framework, 
which afterwards is able to access the plug-in. In many cases, the combina-
tion of a required access interface and a provided registration interface 
makes up the plug-in location.25 So, two-way communication between the 
framework and the plug-in is established without the developer of the 
framework (during domain engineering) having to know which plug-in com-
                                                     
25 More complex configurations of interfaces may be used for a single plug-in location. Alternatively, 

sometimes a single interface is enough. 
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ponents are available, since these are usually developed later than the 
framework itself, e.g. during application engineering. In Fig. 6-5 only the 
registration interfaces are depicted. This reduces the complexity of the pic-
ture. The access interfaces are only connected during run-time and not to be 
used by other components than the one the plug-in is bound to. Adding them 
to the picture may lead to erroneous connections that access the plug-in 
components directly, and not via the framework. 

6.5 Variability in the Process View 

The process view describes the behaviour of the applications during actual 
execution. It models processes, threads, their interactions, and often their 
resource usage. 

Variability in the process view has different manifestations: 

Different groupings of threads to processes. 

Threads and processes, which may be optional, have multiple instances, 
or both. 

Different process scheduling mechanisms and process priorities. 

Different process communication mechanisms. 

Each choice influences the processing behaviour of the applications, and has 
an influence on speed, throughput, and reaction time upon events. Within 
software product line engineering, variable requirements dealing with per-
formance or other quality issues lead to different choices for the process 
view. In addition, internal variability may lead to variability in the process 
view, influenced by the hardware or basic infrastructure used. 

Many of the diagram types used in the process view do not have a notation 
for variability. Most of these diagrams only depict commonality. Apart from 
applying the variability model (this has been demonstrated in Chapter 5 for 
the state machine diagram) the architect has the option to rely upon indirect 
means by using a process table. This assigns processes to priorities and 
threads to processes. Threads are often assigned to components and vary 
together, i.e. each variant of the component has its own variant of the thread. 
If the component is optional, the thread is optional as well. If the component 
can have multiple variants in a single application, the threads have multiple 
instances as well. 
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Example 6-6: Process Table 

Figure 6-6 shows an excerpt of the process table for home automation, 
related to door lock control. Almost all threads in this excerpt are part 
of the ‘door lock process’. They are defined in the ‘door lock plug-in’ 
components. Not all variants define the same threads. Only the variant 
that closes the door automatically (‘active’ variant) defines a thread 
for closing the door. Moreover, the ‘authentication manager’ compo-
nent has responsibility for defining the ‘check authentication’ thread, 
which has different implementations for different kinds of authentica-
tion. Finally the ‘door lock authentication table’ thread is defined in 
the ‘authentication manager’ component only for the ‘fingerprint’ 
variant as fingerprint authentication has higher computational require-
ments than the other variants. It is part of a separate low-priority pro-
cess, the ‘authentication process’. 

6.6 Variability in the Code View 

The code view deals with the distribution of source code over files and di-
rectories and of executable code over processing units. Variability occurs in: 

the decomposition itself, 
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the number and roles of the processing units, and 
the mapping of code to processing units. 

The UML 2 deployment diagram does not provide notational elements for 
variable deployments. Thus, similarly as for the process view, the architect 
may resort to using lists. The drawback of this approach is that the list has to 
be updated for each separate application. Example 6-7 illustrates the docu-
mentation of variability in the deployment using the variability model. 

Example 6-7: Deployment for Home Automation 

A part of the code view of home automation for a specific application 
with fingerprint authentication is shown in Fig. 6-7 together with the 
corresponding part of the variability model. It shows where the exe-
cutables related to the components of Fig. 6-5 are mapped on the hard-
ware. In addition, it denotes the protocol that is used between the 
devices, namely RMI (Remote Method Invocation) between the ‘au-
thentication processor’ and the ‘central processor’. The ‘authentication 
processor’ and the connector ‘<<RMI>>’ are only available for finger-
print authentication. 
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6.7 Differences from Single-System Engineering 
Notations that are used to document software architecture in single-system 
engineering mostly do not provide sufficient means to express variability. 
Software product line engineering is concerned with documenting the refer-
ence architecture which is valid for all applications of the product line. Each 
application may imply a different set of subsystems and a different configu-
ration of components within these subsystems. Consequently, each applica-
tion may consist of a different set of processes and threads and also show a 
different deployment of executable code to processing units. Therefore, in 
contrast to single-system engineering, an additional variability model is nec-
essary that clearly documents the available options and their effects on the 
different architecture views. 

6.8 Summary 
The architect has to provide a reference architecture that is flexible enough 
to cope with the required variability in the design. The variability model 
allows documenting variability in the development view, the process view, 
and the code view of the architecture: 

Development view: This view deals with the decomposition of a system 
into layers, subsystems, and components. Variability in the configura-
tion of layers and subsystems is documented in the UML 2 package dia-
gram. Variability in the internal structure of a subsystem, i.e. in the con-
figuration of components, is documented in the component diagram. In 
both cases, variation points and/or variants of the variability model are 
associated with variable elements of development view diagrams. 

Process view: This view deals (among other things) with the decompo-
sition of system behaviour into processes and threads. Variability in the 
configuration of processes and threads can be documented in a process 
table by associating the variability model with process table entries. 

Code view: This view deals with the decomposition of a system into 
files and their assignment to processing units. Variability in the code 
view is documented in the UML 2 deployment diagram. 

Component frameworks are created and used to restrict the design choices in 
a product line and to cope with variability. Plug-in components are essential 
constituents of a flexible design. However, all other components may have 
variability as well. Subsystems, components, and interfaces at a low level of 
abstraction provide internal variability to support the external variability 
provided by the higher abstraction levels. At these higher abstraction levels 
variability is mainly influenced by requirements variability. 
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Documenting Variability 
in Realisation Artefacts 

In this chapter you will learn: 

o How to document and realise variability defined by the domain design in soft-
ware components. 

o About the mapping of product line variability onto component configurations 
and component interfaces, as well as the internal structure of components. 

Frank van der Linden 
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7.1 Introduction 

As discussed in Chapter 6, we regard realisation from the viewpoint of the 
architect. We focus on variability in detailed design and on the techniques 
that enable the composition of the parts that are developed in domain reali-
sation into different applications. The implementation of variability is crucial 
for software product line engineering. There are many ways to implement 
variability within programming languages and tools that support develop-
ment. For realisation technology, the reader is referred to [Coplien 1998; 
Atkinson 2001; Muthig and Patzke 2003; Greenfield et al. 2004]. Realisation 
mechanisms are not within the scope of this book. 

Fig. 7-1: Domain components are the focus of documenting realisation variability 

The sub-processes and artefacts closely related to the documentation of vari-
ability in domain realisation artefacts are highlighted in Fig. 7-1. Domain 
design provides the main input for domain realisation in terms of the archi-
tectural structure and the architectural texture. The structure determines the 
components and interfaces that have to be designed and implemented. 
Furthermore, it documents external as well as internal variability. The tex-
ture provides common guidelines that, among other things, specify common 
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rules for dealing with variability in component and interface design and 
implementation. The domain realisation sub-process is concerned with cre-
ating common and variable realisation artefacts including the reusable 
components. Domain testing creates the test artefacts for the components and 
performs part of the testing (test activities are distributed over domain and 
application testing). The reusable components and interfaces are provided to 
the application realisation process, which is responsible for realising a spe-
cific application based on the application architecture. This is done mostly 
by assembling a suitable configuration of domain components and partially 
by developing application-specific components. 

7.2 Detailed Design Artefacts 

Detailed design deals with the design of components and interfaces, which 
are determined by the architecture. Figure 7-2 gives an overview of these 
main elements of detailed design. Components are the main pieces out of 
which the applications are built. Interfaces are the externally visible parts of 
the components and are used to connect components. The realisation of a 
single interface can usually not be assigned to the realisation of a single 
component, since many interfaces are provided and required by multiple 
components. Therefore, interfaces are separate entities, distinct from compo-
nents; see Fig. 7-2. For the design, interfaces are of equal importance as 
components and therefore have to be designed carefully. 

Components
and interfaces 

Interfaces
Components

Fig. 7-2: Elements of detailed design 
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The reference architecture is the most important input for the component and 
interface design. The designer of a component or an interface has to know 
the place and role of the component or interface in the architecture. If a 
component is part of the platform, it is used within many applications. A 
failure in such a component has widespread effects and thus has to be pre-
vented by ensuring strict quality requirements. 

Interfaces are the means for connecting components. Components provide 
functionality to other components via a provided interface. On the other 
hand, components use a required interface for accessing functionality pro-
vided by other components. A complete application is configured by 
connecting the required interface of each component to exactly one, 
matching26 provided interface of another27 component. For each involved 
component, all required interfaces, except possibly optional ones, should be 
connected.

The interfaces that a component requires or provides have to be designed 
before the actual internal design of the component can be done. The architect 
usually only determines what interfaces exist, what their role is, and which 

                                                     
26 Matching does not always mean equality; there are cases where a “smaller” required interface may be 

connected to a “larger” provided interface, see e.g. [V. Ommering et al. 2000]. 
27 Although we do not disallow the connection of two interfaces of the same component, this case seldom 

occurs in practice. 
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components should provide or require the interface. Each interface provides 
several elements, which may either be implemented by the providing compo-
nent or subsequently be required via another interface. 

Example 7-1: Interfaces for Lock Control 

In Fig. 7-3 a class diagram of a home automation component for lock 
control is depicted. It has two provided interfaces, one for ‘user con-
trol registration’ and one for ‘lock registration’. The first one contains 
a class ‘User terminal’ to inherit from, and to call methods of, in order 
to bind a specific user terminal to it, and to enable the user to interact 
with the ‘Lock control’. The second one has two classes, ‘Lock’ and 
‘Electronic lock control’, to inherit from and to enable the binding of 
several kinds of locks, and calling their methods. The required inter-
faces are those that define the classes ‘Sensor’ and ‘Actuator’ to 
inherit from. The actual implementations are the ‘Lock actuator’ and 
‘Lock sensor’ classes that inherit from ‘Sensor’ and ‘Actuator’ 
respectively. The ‘Lock control registration’ class is not part of the 
component interface. It is used to connect classes that are registered 
via the provided interfaces to the ‘Lock’ class. 

The internal structure of a component or an interface consists mainly of 
object classes and functions. The designer may use a UML 2 class diagram 
to document them. The design of an interface should preferably be self-
contained, i.e. it should not refer to other designs. The design of a compo-
nent incorporates the design of its required interface as a basis to build upon. 
The provided interfaces should be abstractions of the component designs. 

7.3 Component Interface Variability 

Interfaces are important means to realise variability. Different components 
that provide the same interface can be bound to others that require them. 
This results in a large number of possible configurations of domain compo-
nents in product line applications. A good and stable design of the interfaces 
is crucial for allowing flexible configurations. Interfaces may be variable, 
but that is usually to be avoided. If an interface is variable the components 
providing and requiring the interface have to agree upon the variant to use. 
Although this scheme is possible, its advantage of reducing development 
effort is usually too low with respect to the effort needed to select the proper 
variant consistently. 

The most important constraint on an interface is the variability in the differ-
ent components that have to be connected. The substructure of the interface 
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provides an abstract view of object classes and constants in the providing 
component. The following kinds of variability have effects on the design of 
an interface: 

The use of different algorithms or protocols 

Differences in resources provided 

Differences in application configuration 

Many providing components 

7.3.1 Variability in Algorithms and Protocols 
The same functionality may be implemented in different ways which all 
have to be supported by a single interface. The interface has to provide an 
abstract view of this kind of variability. The interface carries functions or 
object class methods that execute the algorithm or protocol (Example 7-2). 
The argument and result types of these methods have to be chosen in such a 
way that each perceivable algorithm can deal with them. This may involve 
the introduction of additional classes that incorporate certain argument or 
result lists. 
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Example 7-2: Authentication Registration Interface 

Figure 7-4 presents the interface provided by the ‘authentication man-
ager’ component and required by the diverse ‘authentication plug-in’ 
components. Each plug-in component implements a different authenti-
cation algorithm. The ‘authentication registration interface’ allows the 
plug-in components to register at the ‘authentication manager’ compo-
nent (Section 6.4). 
The interface carries the class ‘Authentication’ with enough function-
ality for each class implementing an authentication algorithm. For 
instance, it carries an ‘authenticate’ method. In each ‘authentication 
plug-in’ component (Section 6.4), a sub-class has to be defined that 
performs the authentication according to its own algorithm. Moreover 
the ‘Authentication’ class contains a function to register objects of the 
class at the ‘authentication manager’. This method is defined in the 
‘authentication manager’ component itself to be reused by all ‘authen-
tication plug-in’ components. The interface also carries the class 
‘Key_database’, which is used by the authentication algorithm and has 
to be known by the ‘authentication manager’ for proper functioning. 

Example 7-3: Authentication Registration Interface with Resource 
Information

In the interface diagram of Fig. 7-5 the interface of Fig. 7-4 is 
extended with resource information. If the authentication algorithm 
takes a lot of time, it needs a separate asynchronous process to finish. 
In the meantime it can perform necessary administration tasks, which 
otherwise would have to wait till authentication is finished and which 
keep the lock closed for too long. The interface thus makes a differ-
ence between having the additional asynchronous authentication pro-
cess or not. This is manifested in an additional parameter ‘sync’ in the 
‘register’ method of the ‘Authentication’ class. If a class is registered 
with ‘sync’ being false, the component providing the interface is able 
to deal with this situation in the additional process. The biometrical 
data, like an iris scan, can be collected, and processing starts before an 
actual authentication request is received. The actual request may 
arrive later because the doorknob has not been touched yet. 

7.3.2 Variability in Resources 
Different components deal with the same kind of functionality, but often 
provide (and/or use) different amounts of certain resources. Examples of 
such resources are memory size, processing time, screen space, bandwidth, 
and communication speed. In many cases the component requiring the inter-
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face needs at least some abstract information about the required resource 
size. This often is its value with respect to a given scale. The scale may be 
more or less abstract, such as the absolute screen size in pixels, or only just a 
distinction between large, medium, and small. 

The interface should carry functions, or parameters that distinguish between 
the actual values of the resource (Example 7-3). This enables run-time 
checking, e.g. if the provided resource is large enough. In addition, there 
should be (de-)allocation functions to be able to claim and free the resources. 

7.3.3 Variability in Application Configuration 
In many cases variability is related to the application configuration, includ-
ing differences in hardware and software. Such differences may be, for 
instance, different memory sizes or differences in the availability of certain 
software packages. Requiring components need an abstract view on the con-
figuration. Consequently, the interface should carry functions, methods, or 
parameters that distinguish between the variants (Example 7-4). Differences 
in resources can be seen as a special case of differences in configuration. 
While resources are related to internal properties of hardware and software, 
configuration relates to all kinds of system properties. 

Parameters
for variants 
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7.3.4 Many Components Providing the Interface 
There may be many components providing the same interface. For instance, 
this occurs for system-wide aspects affecting all or most components, such 
as initialisation (Example 7-5), error handling, or software maintenance. The 
interface carries only a few object classes that have few methods which are 
usually very generic. 
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Example 7-4: Lock Registration Interface 

In the interface diagram of Fig. 7-6 a lock registration interface is 
shown. It is used to register both door and window locks. In order to 
be able to differentiate between them, an additional ‘Gate’ class is 
present in the interface. Doors and windows are kinds of gates. In the 
future there may even be other kinds of gates as well, which have to 
be opened and closed, such as sunshades or water taps. Each gate has 
some properties dealing with the way it is closed: 
 User closing means that the gate needs a separate user command to 

close. This is captured in the ‘c-user’ parameter in the ‘Gate’ class 
being equal to “true”. 

 Active closing means that after waiting for a short time, a closing 
command will be issued. This is captured in the ‘c-active’ parame-
ter in the ‘Gate’ class being equal to “true”. 

 Passive closing means that after opening, the subsequent closing 
proceeds mechanically, e.g. through the use of springs. This is 
captured in both the ‘c-user’ parameter and the ‘c-active’ in the 
‘Gate’ class being equal to “false”. 

The interface deals with all variability related to different numbers of 
gates and their way to close. The requirements are such that doors are 
never ‘user closing’ and windows are always ‘user closing’. Each 
registering command is able to register more than one gate of a single 
kind. The interface deals with variability in the gates to be registered 
and controlled by the inclusion of the gate as a parameter. In this way 
lock control uses the parameters of the gate itself to know how to 
close. Many configurations of all kinds of gates can be controlled. To 
select the right gate in the configuration, the ‘open’ method requires 
an identifier of the gate to be opened and an authentication key, which 
has a default value in cases that do not require authentication. The 
‘close’ method needs the identifier of the gate. 

Example 7-5: Initialisation Interface 

The initialisation interface is shown in the interface diagram of Fig. 
7-7. The architectural texture demands that each component provides 
the interface. It is used for initialising and resetting components. The 
interface has generic functions for initialising or resetting the internal 
part of the component, and for initialising or resetting the connections 
to other components. For generic parameters, types like Int, Bool, or 
Char are used. These types are known by all components. Conse-
quently, all components can use the functions. 
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7.4 Internal Component Variability 

Realisation of components deals with the variability requests of the architect 
by using the following mechanisms, often in a mixture: 

Providing different variants of a component 
Providing variability within the component 

Class diagrams are used to document the internal structure of components. 
This structure mainly consists of interacting object classes. Some of these 
classes are defined in provided and required interfaces. Therefore, classes in 
interfaces are usually also part of the class diagram (Example 7-6). 

Example 7-6: Variability in the Components 

Figure 7-8 shows a class diagram of a lock control component. The 
component has several provided and required interfaces. At the top of 
the figure, two classes are depicted that are required for the control of 
actuators and sensors. Through the required interfaces for ‘Sensor’ 
and ‘Actuator’, these classes are used for inheritance28 to ‘Lock sen-
sor’ and ‘Lock actuator’ in the lock control component. The provided 
interfaces carry classes for inheritance themselves. For instance, the 
generic ‘Lock’ class has a sub-class ‘Electronic lock control’ in the 
same interface, which is inherited through the ‘lock registration inter-
face’. In addition to these interfaces and their inheritance relation-
ships, some other occurrences of variability can also be found in Fig. 
7-8. The optional presence of a door lock sensor is modelled by defin-
ing the multiplicity of the ‘Lock sensor’ class as 0..n. Similarly the 
presence of more than one actuator is modelled through the multipli-
city annotation 1..n. Finally, some variability in run-time instances is 
shown in this diagram. The ‘Lock sensor’ class has an attribute 
‘period’ which describes the polling time in microseconds. This 
attribute is adapted at run-time according to the time of day and the 
particularities of the use of the door. 

Inheritance, multiplicity annotations, and class attributes are the main ways 
to describe variability in class diagrams. In particular, inheritance is used to 
provide variants for abstract classes available in required interfaces. Part of 
the variability in the class diagram is variability that relates to the run-time 
instances of the class model. This kind of variability is not related to product 
line variability, which determines the differentiation between the different 

                                                     
28 Note that these classes are depicted at the top of the figure, but appear in the lower level subsystems 

‘Device control and management’. This is a consequence of a flaw in the inheritance notation. The 
interested reader is referred to [Firesmith 1994] for a discussion on this topic. 
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applications. Only the latter one is of importance for software product line 
engineering. Therefore we use the orthogonal variability model to capture 
the variability of the product line. 

Care should be taken to determine what variability means during detailed 
design. As stated in Chapter 5, the variability in the class diagram can be 
used either for defining different run-time instances, for distinguishing be-
tween variants (Example 7-7), or even something in between, i.e. applica-
tions having a smaller range of variability than expressed in the diagram. In 
general the variability model should reflect the available range of permissi-
ble variants. In addition, the designer may resort to other means, e.g. expla-
natory text, to distinguish clearly between these cases. 
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Fig. 7-8: Class diagram of a ‘Lock control plug-in’ 

So far, we have considered the development view (or the static view) of 
detailed design. The process view of detailed design may be documented for 
instance in terms of sequence charts or state machines. The documentation 
of variability in sequence charts and state machines has been covered in 
Chapter 6. However, typically the high level of detail in detailed design 
makes the documentation of variability more difficult than in requirements 
engineering. The designer usually follows the guidelines of the architect, 
assigning threads and processes to objects or object classes. This allocation 
adheres to the required variability. The consequence of this procedure is that 
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process view variability and development view variability are closely 
related.

Example 7-7: Variability in the ‘Lock Control Plug-in’ 

In Fig. 7-8 the relationship between the ‘Lock’ class and the ‘Lock 
sensor’ class shows that there may be zero, one, or many lock sensor 
objects available per lock. This specification allows applications in 
which exactly one such object is available. However, the diagram may 
also be interpreted as “it must be possible to configure the number of 
sensors at run-time in each application”. Then, each application 
should possess the option of having any number of sensors available, 
including none. The exact number is determined at run-time. In this 
case the multiplicity in the diagram does not denote product line vari-
ability. 

7.5 Differences from Single-System Engineering 

The detailed design and the implementation of domain components basically 
have to rely on the notations and mechanisms that are also employed in 
single-system development. The main difference to normal software engin-
eering is the presence of variability, which has to be incorporated in the 
design. The internal structure of a component may differ from application to 
application. The component interface has to be generic to support these dif-
ferences. In order to support systematic development and reuse, the variabil-
ity of the product line provided by the components has to be clearly 
documented in the variability model. 

In addition, the reference architecture is an important constraint, more so 
than the architecture of a single system. This is caused by the fact that the 
architecture governs the similarity of the design of the parts by means of the 
texture. The texture defines rules that guide the realisation and the documen-
tation of component variability. 

7.6 Summary 

Developers have to create a detailed design for each component specified in 
the architecture. In doing so, they document the variability provided by each 
component in the variability model. The variability model provides a con-
sistent view of the available component variability and supports the config-
uration of components. Interfaces provide a common view of variable 
components and an abstraction from their internal details. They are designed 
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in such a way that each (variable) component requiring some interface can 
be coupled to each component providing this interface. 

The internal structure of each component is documented in the class dia-
gram. As the class diagram does not distinguish between product line vari-
ability and the variability of run-time instances, product line variability of 
components has to be documented in terms of variation points and variants 
that are linked to the variable elements of the class model. 

Variability
documentation 
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In this chapter you will learn: 

o How to use the orthogonal variability model to document variability in test 
artefacts.

o The differences between test artefacts in single-system engineering and in 
software product line engineering. 
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8.1 Introduction 

Test artefacts contain the instructions for testers what to test, when to test, 
how to test, and how to document the test results. The test results themselves 
are test artefacts, too. Test artefacts enable repeatable and traceable tests. 
Testing is performed in domain engineering as well as in application engin-
eering and thus test artefacts are created in both processes. A major task of 
domain testing is to develop test artefacts that can be reused efficiently in 
application testing. This is achieved with a clear and unambiguous documen-
tation of variability in test artefacts. In this chapter, we focus on that docu-
mentation. We provide a brief description of important test artefacts and 
show how to employ the orthogonal variability model. The sub-processes 
and artefacts closely related to documenting variability in domain tests are 
highlighted in Fig. 8-1. 

Variability in 
test artefacts 

Fig. 8-1: Focus of documenting variability in test artefacts 
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8.2 Test Artefacts 

The constituents of test documentation known from single-system engineer-
ing are shown in Fig. 8-2. We refer to the test plan, test case, test case scen-
ario, scenario step, and the test summary report as test artefacts (Definition 
8-1), whereas the software artefact under test is called item under test or test
item.

Definition 8-1: Test Artefacts 

Test artefacts are products of the test process containing plans, specifi-
cations, and test results. 

A comprehensive overview of test artefacts can be found, for example, in the 
IEEE standard for software test documentation [IEEE 1998]. In the follow-
ing, we briefly characterise the test artefacts from Fig. 8-2: 

Test plan: A test is conducted according to a test plan, which determines 
the test cases to be performed. The test plan also assigns priorities to the 
test cases, allocates the resources available for testing, and specifies the 
tools to be used. 

Test case: A test case defines the conditions, the input data, and the 
expected output data for a test. Each test case has a defined test goal and 
includes one or multiple test case scenarios, which describe different 
ways of achieving the goal. A test case also defines the required test 
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Fig. 8-2: Software test artefacts, based on [IEEE 1998] 
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environment, information about how to execute the test, and the fail–
pass criteria, i.e. the conditions that must be true for the test item to pass 
the test. There are two levels of abstraction at which a test case may be 
defined. Logical test cases describe the data, conditions, and actions in 
principle, yet without referring to details such as the particular data 
values to be entered within a scenario step (however, the data range 
may be specified). Detailed test cases provide all the details necessary 
to perform the test, leaving no room for interpretation. 

Test case scenario: A test case scenario describes a specific sequence of 
actions. The execution of this scenarios results in achieving the test 
goal. Each action is defined as a scenario step. 

Test case scenario step: A test case scenario step includes instructions 
for the tester to perform a specific action and, optionally, the expected 
result for the test step. 

Test summary report: A test summary report provides an overview of 
the results of a specific test execution. 

8.3 Variability in Test Artefacts 

In software product line engineering, the test artefacts introduced in Section 
8.2 have to include variability or at least refer to it. 

8.3.1 Test Plan 
The test plan is required for domain engineering as well as for application 
engineering. The test plan for domain engineering must unambiguously de-
fine the test activities to be performed in domain engineering and therefore it 
does not contain variability. Nonetheless, a generic test plan for future appli-
cation test processes may be prepared. In the following, we characterise the 
impact of software product line engineering on the generic test plan: 

To determine an appropriate allocation of resources, resource consump-
tion must be estimated based on the variants and the common and vari-
able requirements. At least a rough estimation of resource consumption 
for each common or variable requirement is necessary. Dependencies 
between variants may increase complexity and the required amount of 
resources.

The test plan must specify which common and variable test cases are to 
be performed. To perform variable test cases, the test plan must specify 
which variants to bind. 
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The priority of a reusable test case is typically different in domain and 
application engineering. If tests are performed in domain engineering, 
the corresponding test cases have high priorities in domain engineering 
but low priorities in application engineering. The assignment of priori-
ties can also depend on the selected variants, e.g. to indicate that a test 
case is of a high priority for a particular variant, but a low priority for 
other variants. 

The tool support defined in the test plan must deal with the question of 
how to model variability in test artefacts and how to bind variability in 
application testing. If the available tools do not provide adequate vari-
ability support, custom tags, textual notes, or other available constructs 
for instance may be used to denote variable elements. 

The test plan is specified as a natural language document. Therefore, for the 
attributes of the test plan, we encourage the use of the same modelling tech-
niques as for the natural language requirements (Section 5.3). Figure 8-3 
presents an example of a generic test plan, which is related to a variability 
model. By binding variants in the variability model the related parts of the 
generic test plan are selected for a particular application. 

8.3.2 Test Case 
Common and variable test cases are the most important test artefacts. The 
constituents of the test cases are affected by variability in the following 
ways: 

The test data to be used may be different for each selected set of vari-
ants. The test documentation must include the different test data and its 
relation to variants in the orthogonal variability model. 
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Environmental needs impose restrictions on permissible hardware and 
software configurations in which the item under test is executed. Differ-
ent variants of the test item may have different environmental needs. 
The test documentation must specify the different needs and relate them 
to the corresponding variants in the orthogonal variability model. 

The fail–pass criteria define in which cases the test item fails or passes 
the test. The test documentation must specify which fail–pass criteria 
have to be applied for a particular variant, for instance by defining 
which deviations from the test case scenarios of the considered variant 
are tolerable. 

The specification of test cases is contained in structured natural language 
documents and is therefore similar to natural language requirements and test 
plans.

8.3.3 Test Case Scenario 
A test case scenario contains the expected flow of actions that should emerge 
during test execution. It puts the included test case scenario steps in the right 
order. Product line variability leads to the following three types of scenarios: 

A scenario is common to all intended applications. 

A scenario is specific for one variant. 

A scenario is adaptable to two or more variants. 

Example 8-1: Adaptable Test Case Scenario 

The home security system has three different variants for the elec-
tronic door lock. The test case scenario shown in Fig. 8-4 contains 
common steps as well as variable steps for the particular variants. The 
step ‘enter tester data as valid’ ensures that a precondition is met, i.e. 
the tester is known to the system and authorised to unlock the door. 
The steps ‘lay finger on scanner’, ‘enter PIN in keypad’, and ‘use 
magnetic card’ describe the individual ways for each variant to 
authenticate to the system. The ‘grant access’ step includes the verifi-
cation if the system identifies the tester correctly and permits entry. 
The way the verification is performed depends on the particular vari-
ant. It may, for example, involve checking the internal state of the fin-
gerprint authentication component. The final step ‘open door’ is a 
common step as either variant allows the tester to open the door. Due 
to the common start-up and finalisation steps, this scenario falls within 
the category “adaptable scenario for two or more variants”. 
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The specification of test case scenarios is similar to scenarios used in 
requirements engineering (Section 5.4) and, thus, the notations are the same. 
However, the information in a test case scenario is more detailed than the 
information in a use case scenario. 

8.3.4 Test Case Scenario Step 
The scenario steps are the constituents of a domain test case scenario. They 
are affected by variability in the following ways: 

The input specification may be different for each variant as the selected 
variant can have an influence on the input data of the test item. The test 
documentation must include the different input specifications and their 
relation to variants in the orthogonal variability model. 

The expected output of a scenario step depends on the chosen variants. 
The test documentation has to include the different output specifications 
and their relations to the variants in the orthogonal variability model. 

Execution information gives individual guidance on how to perform the 
test case steps. The execution information details the story line down to 
actions like pushing a specific button, clicking the right mouse button, 
or browsing to a specific line in a log file. As the actions may depend on 
the selected variants, so does the execution information. 
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Fig. 8-4: Example of an adaptable test case scenario for three variants 

Scenario
notations 

Effects of 
variability

Input

Output

Execution
information



156 8.  Documenting Variability in Test Artefacts 

Test case scenario steps and the variability therein may be specified with 
natural language or within sequence diagrams. We provide an example of 
modelling the variability of a test case scenario step in a structured textual 
document in Fig. 8-5 and in a sequence diagram representation in Fig. 8-6. 

8.3.5 Test Summary Report 
The test summary report refers to the tested system, the related test plan, and 
the executed test cases. It documents the results of the execution of each test 
case and provides the overall summary of a test execution, which may 
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include, for instance, a classification of the detected defects. Variability 
affects the test summary report in the following ways: 

The description of the tested system also documents the incorporated 
variants.

Each test case is described with the corresponding variants used in it. 

The classification of defects distinguishes between defects in domain 
artefacts and defects in application artefacts. 

The test summary report has to refer to variants but does not contain vari-
ability itself. Consequently the test summary report can be documented in 
the same way as in single-system engineering but has to include some add-
itional information. 

8.4 Differences from Single-System Engineering 

In single-system engineering developers create test artefacts for a specific 
application and the artefacts are valid for this application only. In software 
product line engineering, test activities are distributed between the domain 
and the individual applications. As the components under test as well as the 
test references used (e.g. requirements) contain variability, the test artefacts 
also must consist of common and variable parts to be reusable. The test 
documentation is responsible for determining which of the variable parts to 
use for which configuration. 

8.5 Summary 

The variability contained in the specification of test artefacts leads to vari-
ability in the test artefacts. In particular, variability affects test cases, test 
case scenarios, test case scenario steps, as well as the test summary report. 
Moreover, to deal with software product line testing efficiently, domain test 
engineers define a generic test plan. The test plan is related to the available 
variants and is reused to derive test plans for specific applications. Using the 
orthogonal variability model, domain test engineers can document clearly 
which variants relate to which test artefacts. 
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Part III: Overview 

In domain engineering the commonality and the variability for a set of envisioned 
product line applications are identified, documented, and produced. The variability 
is explicitly documented in the orthogonal variability model in order to facilitate the 
reuse of product line assets during application engineering. In this part you will 
learn how the sub-processes highlighted in the figure below: 

Construct reusable domain artefacts. 

Define the desired commonality and variability for the succeeding sub-process. 

Detail and refine commonality and variability established in the preceding sub-
process.

Provide feedback about the feasibility of realising variability to the preceding 
sub-process.

Thereby we establish a seamless integration of variability throughout all domain 
engineering artefacts. 

Fig. III-1: Chapter overview of Part III
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9.1 Introduction 

The goal of product management is to make a major contribution to entre-
preneurial success by integrating the development, production, and market-
ing of products that meet customer needs.29 Product management is respon-
sible for enforcing entrepreneurial goals throughout the software engineering 
process. Therefore it has an influence on requirements engineering, design, 
realisation, and testing. The sub-processes and artefacts closely related to 
product management are highlighted in Fig. 9-1. 

The major result of product management with respect to the software prod-
uct line framework is the product roadmap. Note that we did not include the 
product roadmap in the framework picture as it is no development artefact in 
the common sense (Section 2.5.1). The product roadmap outlines the product 
line as far as it is foreseeable at a given point in time. It defines the major 
common and variable features of all applications of the product line as well 
                                                     
29 The definition of the term entrepreneurial success is not quite simple as it depends on the goals of the 

company. Besides measurable quantities like profit, earning power, shareholder value or product 
profitability, this term also covers qualitative factors such as the motivation of personnel. 
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as a schedule for delivering specific applications to customers or for bringing 
them to market. The features defined in the product roadmap directly affect 
domain and application requirements engineering. 

Domain and application requirements engineering have to adhere to the fea-
tures specified in the roadmap. While domain requirements engineering pro-
vides reusable requirements artefacts, application requirements engineering 
creates the requirements artefacts for specific applications, which are envi-
saged in the product roadmap. The following subsections elaborate on the 
basic information flows between product management and its related sub-
processes as shown in Fig. 9-2. 

9.1.1 Interrelation with Domain Requirements Engineering 
The product management sub-process specifies a product roadmap, which 
outlines the scope for domain requirements engineering (first bullet of  in 
Fig. 9-2). The roadmap implements the company’s strategy for providing 
customers with what they need at the appropriate point in time. The schedule 
for bringing out applications is the result of strategic reasoning and effort 
estimation performed jointly by product managers and developers. In add-
ition to the roadmap, product management provides a list of existing 
artefacts (second bullet of  in Fig. 9-2) which could serve as a basis for 
deriving domain requirements. For example, product management could 
provide a set of previously developed products or applications that are rele-
vant for the definition of requirements for the product line. These artefacts 
may be used as a basis for the development of domain artefacts. 

Domain requirements engineering is responsible for working out the 
requirements specification, which describes the problem that must be solved 
by the software architects, designers, and programmers. The insights gained 
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in domain requirements engineering with regard to the major features of the 
product line, especially its externally visible variability, are communicated 
back to product management as suggestions for additional and altered fea-
tures (  in Fig. 9-2). 

During the life cycle of the product line, product management has to react to 
various developments on the market: the change in customer needs, the 
appearance of new technologies, competitors coming up with new features, 
and shifts in demand and prices. These developments necessitate adaptations 
of the product roadmap, such as the introduction of new features or the 
elimination of outdated applications from the product portfolio. Hence the 
interaction between product management and domain requirements engin-
eering is an ongoing task. 

9.1.2 Interrelation with Application Requirements Engineering 
Product management specifies which applications should be derived in 
application requirements engineering (  in Fig. 9-2) by prescribing the 
application features, i.e. which application should possess which of the 
common and variable features. In a steady state of the product line’s lifetime 
many of these features are already accounted for by the requirements arte-
facts produced in domain requirements engineering. Application engineering 
exploits the available variability of domain requirements to derive applica-
tion requirements artefacts according to the features prescribed by product 
management.

In certain situations (e.g. customer-specific application development, pilot 
applications, etc.) the features determined by product management have to 
be realised by application engineering. Later, successful developments may 
be propagated to domain engineering. 

Like domain requirements engineering, application requirements engineering 
provides feedback to product management in terms of suggestions for add-
itional or altered features (  in Fig. 9-2), which result from new insights 
gained in the requirements engineering process. 

9.2 Terminology 

The definition of the term product relates to goods or services offered in the 
market (Definition 9-1). The goods considered in software product line 
engineering are applications. The term application denotes both software and 
software-intensive systems (Section 1.4). Products may also be services or 
solutions offered to the customer. Companies offer a large variety of services 
such as the development and maintenance of customer-specific software, or 
the assembly of a system from configurable components. Complex products 
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consisting of a number of goods and services such as a turnkey-ready indus-
trial plant are called solutions. The kind of products (goods, services, or 
solutions) offered is interrelated with the business type of the company. 

Definition 9-1: Product 

Products are goods or services offered in the market, which are suit-
able by their functions and characteristics to satisfy concrete customer 
needs.

[Sabisch 1996] 

In Definition 9-2, we provide a definition of product management used in 
economics. As this definition is quite general, we provide a more specific 
definition of product management as a sub-process of software product line 
engineering in Definition 9-3. 

Definition 9-2: Product Management (General Definition)

Planning, organising, executing, and controlling of all tasks, which 
aim at a successful conception, production, and marketing of the 
products offered by a company. 

Definition 9-3: Product Management (In the Software Product Line 
Framework)

Product management is the sub-process of domain engineering for 
controlling the development, production, and marketing of the soft-
ware product line and its applications. 

Based on the observation of the market and the organisation itself, product 
management defines a product portfolio with a roadmap and the major com-
mon and variable features of the planned products of the product line. 

9.3 Traditional Product Management Activities 

Basically, product management encompasses the following activities 
[Sabisch 1996]: 

Market and product strategy definition: This activity implies the con-
cretisation of company objectives and strategies defined by corporate 
management.

Product definition: This activity includes developing, rating, and 
choosing new ideas for products. Product ideas that have been selected 
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for realisation are concretised by defining the major features of the 
envisioned product. 

Product support: This activity deals with conserving and enhancing the 
potentials of products that have already been introduced in the market. 

Market introduction: This activity implies identifying suitable distribu-
tion channels and supplying them with new products as well as 
announcing the new products to potential customers. 

Market observation: This activity is concerned with monitoring and 
analysing customer groups, current or potential competitors, trends of 
prices, buying patterns, usage patterns, and technology, as well as bar-
riers to market entry (e.g. legal restriction of permission or high initial 
investments) or market exit. 

Product controlling: This activity is concerned with monitoring and 
guiding the product management process, e.g. by observing the sales 
volume obtained for each product. 

9.4 Portfolio Management 

An essential task of product management is the management of a company’s 
product portfolio. In this section we focus on the strategic aspects of port-
folio management and elaborate on the design of new products as well as on 
the management of existing products in the subsequent sections. The term 
product portfolio is defined as follows: 

Definition 9-4: Product Portfolio 

The set of product types30 that are offered by a company is called the 
product portfolio of this company. 

To decide which amount of resources is allocated to which project a port-
folio management process is necessary (Definition 9-5). 

Definition 9-5: Portfolio Management 

Portfolio management is a dynamic decision process, whereby a busi-
ness’s list of active new product (and development) projects is con-
stantly updated and revised. 

[Cooper 2001] 

                                                     
30 Hence, the product portfolio typically contains classes of products, not all the individual products of a 

company. 
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In the portfolio management process, new projects are evaluated, selected, 
and prioritised, while existing projects may be accelerated, cancelled, or de-
prioritised. The value of portfolio management techniques has been demon-
strated by a study conducted by PRTM Management Consultants [PRTM 
2004]. A survey among 120 companies, including for example Honeywell 
and IBM, revealed: “Companies with advanced product portfolio manage-
ment capabilities have a 10% higher profitability than the industry average” 
and “companies with mature portfolio management practices grow over 50% 
faster than those with only project management expertise”. 

9.4.1 IT Business Types 
The kinds of products (goods, services, or solutions) offered by different IT 
companies show a large diversity. Within the IT industry, there are four 
main business types, which can be determined based on two main discrimin-
ating aspects: 

The amount of time that customers need to make a purchase decision. 

The binding31 of the customer by the purchase decision. 

Figure 9-3 presents the two discriminating aspects and the resulting business 
types.

The four business types depicted in Fig. 9-3 can be characterised as follows: 

Product business: A prefabricated product or service is offered to the 
market. The customer can remain anonymous. The purchasing decision 

                                                     
31 The customer may be bound to the vendor, to a product type or to a technology. 
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is typically quick and not connected to other purchasing decisions. The 
development and sale of standard software like MS Office is an ex-
ample of product business. 

Solution business: A specific product or service is offered to an individ-
ual customer. A service is performed on site or a product is installed on 
site. The purchasing decision is not connected to other purchasing deci-
sions. The development and sale of a stand-alone, customer-specific 
solutions such as the software for a power plant or a postal distribution 
system are examples of solution business. 

System business: A prefabricated set of unspecific, related products and 
services is offered to the market. The purchase decision for one product 
is connected to purchase decisions of other products. The development 
and sale of a software-system consisting of an operating system and 
several integrated software applications is an example of system busi-
ness.

Service component business: A prefabricated but individualised product 
or service is offered to an individual customer. The purchase decision is 
connected with other purchase decisions of the same customer. An 
example is the development and sale of additional modules providing 
extra functionality for software already in use. 

The focus of this chapter is on product business and system business. As the 
customer can remain anonymous in these business types, product manage-
ment is responsible for ensuring a match between customer requirements and 
product features. However, product management is also relevant for the 
solution and the service component business, yet it is shaped towards dealing 
with individual customers in these business types. 

9.4.2 Product Life Cycle 
The product life cycle describes an idealised progression of the profit and 
sales curves of a product. According to this life cycle, each product pro-
gresses through a sequence of stages: introduction, growth, maturity, satura-
tion, and degeneration. Sales and profit can be described as a function of the 
life cycle stages as sketched in Fig. 9-4. 

The different life cycle stages are characterised as follows: 

Introduction: The product is rather unknown to potential customers. 
Hence the sales volume is low. High expenditures, e.g. for setting up 
distribution channels and increasing the popularity of the product, result 
in a negative profit. 
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Growth: As the product becomes better known on the market, sales and 
profit increase quickly. Usually some competitors enter the market at 
this stage. 

Maturity: The rapid increase of sales diminishes. Prices have to be cut 
to win additional market share. Consequently, the profit declines 
slowly. 

Saturation: The sales volume is at its maximum. This stage is often 
characterised by hard competition for market share. The results are even 
further declining profits. 

Degeneration: Increasingly the product is substituted by new products. 
Demand and sales decrease further. Therefore profit also continues to 
decrease. In order to avoid losses the product must be taken off the 
market, or a product relaunch has to be initiated. 

One problem of the product life cycle model is that it does not allow the 
prediction of the length of the individual stages [Sabisch 1996]. In addition, 
the profit and sales development of real products often differ substantially 
from the ideal curve. Nevertheless, the product life cycle model provides 
valuable support for the strategic decisions concerning a company’s product 
portfolio.

Product management has to develop strategies to overcome the fundamental 
difficulties inherent in each stage of the product life cycle. An essential goal 
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of product management is to reach the profitable life cycle stages and to 
avoid premature degeneration. The next section elaborates on this issue. 

A similar model as for the life cycle of a product also exists for technologies. 
Each technology progresses through a sequence of stages from future tech-
nology, through pacemaker technology, key technology, and basic technol-
ogy, to replaced technology [Pepels 2003; Kleinaltenkamp and Plinke 1999]. 
The technology life cycle describes the competitive potential of a technology 
as an S-shaped function of the life cycle stages. The technology and the 
product life cycles are closely related as technologies are incorporated into 
products.

9.4.3 Product Portfolio Analysis 
Portfolio analysis allows a systematic evaluation of the product portfolio. 
During the analysis, each product (or product type) is rated according to two 
variables and thereby its location in a two-dimensional matrix is determined. 
The goal of portfolio analysis is to identify weaknesses in the product port-
folio, to define improvement strategies, and above all to support decisions 
about resource allocation to the projects of a company. 

A balanced product portfolio should contain a conducive mix of products 
across different life cycle stages. Products in the growth or maturity stage are 
necessary since these products yield high profits yet still demand investment 
until they reach the saturation stage. Products in the saturation stage yield 
profits that can be reinvested in products that are in the introduction or 
growth stage. Products in the introduction stage ensure future sales and 
profit. The market-growth/market-share portfolio of the Boston Consulting 
Group (BCG) assigns the products or product groups on the basis of market 
growth and market share to four main categories, each of which represents a 
certain stage in the product life cycle. The BCG portfolio is depicted in 
Fig. 9-5. 
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For each product, standard strategies can be derived due to the position of 
the product in the matrix: 

Question marks: These products have a high market growth and a low 
market share. Products in the introduction or early growth stage are 
assigned to this position in the product portfolio matrix. The standard 
strategy is to invest in these products in order to reach a high market 
share in the growing market so that the former question mark product 
will move to the stars quadrant. As resources are scarce it may not be 
possible to invest in all question marks. In this case it has to be analysed 
which products have the highest potential for evolving into stars. 
However, despite all efforts, question marks may not reach the stars 
quadrant but end up as poor dogs. 

Stars: Stars are characterised by a high market growth and a high mar-
ket share. They are usually in the late growth or maturity stage. To pro-
tect the high market share in a growing market the increasing sales 
volume has to be reinvested in these products. 

Cash cows: Cash cows are products with a high market share but a low 
market growth. These circumstances usually apply for the saturation 
stage, in which the sales volume is at its maximum. As the market 
growth is low and is not expected to rise again, the standard strategy for 
cash cow products is to reduce investments to the degree that is neces-
sary to keep these products in the cash cow quadrant as long as possible. 
Hence, cash cows are the products that yield profits for the company. 

Poor dogs: Products with a low market growth and a low market share 
are called poor dogs. Products in the late saturation or degeneration 
stage are usually located in this quadrant, for which product elimination 
is recommended. 

The BCG method assumes that market growth and market share are the main 
criteria for a high success potential. This is often criticised, since a market 
with a high growth rate can be unattractive because of intensive competition 
or high market power of the customers. On the other hand, a small market 
share is not necessarily connected with little success potential. In addition, 
the factors market share and market growth always refer to a concrete mar-
ket, whose definition is, however, subjective. Hence, although the standard 
strategies of the BCG method provide useful guidance, they should be 
applied with deliberation. For further details see for example [Welge and Al-
Laham 1999]. 
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9.4.4 Product Interdependences 
Formerly, product diversification was common in product portfolios of large 
companies. Product diversification became popular since the mid-1960s by 
the application of the BCG portfolio and was often realised by acquisition. 
The goal was to spread business risk by being present in several markets. 
Thus large conglomerates emerged. Yet, long-term studies revealed that 
these conglomerates are rarely successful. Profound knowledge of the 
acquired business units and the respective markets is crucial for effective 
management, since knowledge from one branch of industry cannot be impli-
citly applied to other branches. Hence, false investments are easily made 
[Plinke 2002]. 

Managers design the product portfolio of a company or business unit in such 
a way that managing the products jointly in a portfolio yields synergistic 
effects. Core competencies provide a potential area for gaining synergistic 
effects through a joint product management [Welge and Al-Laham 1999]. 

Consequently, the product types in the product portfolio of a company or 
business unit are typically related. There are several kinds of interdepend-
ences by which the products in a product portfolio may be related: 

Acquisition interdependence: The products are placed together when 
they are sold or are part of a common sales promotion. 

Usage interdependence: The products are used complementarily. They 
provide a solution for a certain problem field. 

Demand interdependence: Customers buy these products during the 
same purchase process. 

Selection interdependence: The products can replace each other. They 
offer alternative buying solutions for the customer. 

Engineering interdependence: The products originate from the same 
engineering process. 

The effects caused by the different interdependences have to be considered 
especially when new products are added to the product portfolio or removed 
from it: 

When a new product is added, the product manager has to check, for 
example, whether there is usage interdependence with other products. 
These products should be added to the portfolio as well. 

When a product is removed from the portfolio and there is still some 
demand, the product manager must ensure that alternative solutions 
exist (i.e. products related by selection interdependence to the deleted 
product).
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Interdependences can also be proactively designed into new products. For 
example, complementary features between different products cause a usage 
interdependence and induce customers to buy a combination of products 
instead of a single product. 

9.4.5 Product Variants 
Product management literature refers to different solutions for the same 
application problem as product variants. Product variants are typically 
related by selection interdependence. Particularly in stagnating and shrinking 
markets, a high increase of product variants can be observed. This happens 
for different reasons: 

Retaining a high market share necessitates the adaptation of products to 
heterogeneous customer requirements. 

When internationalisation is sought to react to stagnating domestic 
demand, customisation of products is indispensable, since often differ-
ent likings, technical standards, or legal restrictions exist. 

In addition, there is a general trend towards increasing product individual-
isation and thus towards a higher amount of variants. To decide which 
variants are to be offered, the costs and benefits of the variants have to be 
determined. The costs of flexibility (in the view of product management) 
originating from generating variants are considerable. Thus reasonable 
standardisation (in the sense of increased commonality) is imperative for 
obtaining and conserving competitive advantages [Kleinaltenkamp and 
Plinke 1999]. Software product line engineering is a method of systematic-
ally developing variants in a standardised manner. 

9.4.5.1 Costs of Flexibility 
When quantifying the benefits of variants, it is crucial to know which prod-
uct properties are important for the customer. Having a high number of 
variants provides the opportunity to address many customer groups. Further-
more, there are some product types for which the customer-perceived value 
is increased by the sheer variation (e.g. in the food industry). On the other 
hand, a high quantity of variants may confuse customers. For determining 
the cost effects of variants, all company sectors have to be examined. The 
following list shows examples of costs caused by a high quantity of variants 
for the different departments of a company: 

Research and development: The development of customised variants of 
existing products displaces the development of new products. 

Purchasing: The task of the purchasing department is difficult. Instead 
of buying high quantities of a small number of input material types, 
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small quantities of a high number of input material types are required. 
As a result, purchase conditions are bad. 

Production: The storage costs and the risk of shortages are high. 
Production techniques and configuration management are complicated. 

Marketing and sales: The complexity of marketing and sales activities 
is high. The company is faced with cannibalistic effects,32 a high quan-
tity of product descriptions, and extensive price boards. 

Customer service: Service staff have to be trained for a high quantity of 
variants and hence service performance is likely to be low. 

These cost effects may occur with a delay and a non-linear progression. 
Reducing the number of variants again may not reduce costs to the same 
extent. So-called sunk costs, such as the acquisition costs for a flexible pro-
duction facility, still persist after the number of variants has been reduced. In 
spite of the cost increase caused by variants, traditional cost accounting 
unfairly privileges variants [Roever 1994]. In traditional cost accounting, 
overhead costs are apportioned to produced units by amount or weight of the 
units. Having a high number of variants causes a disproportional increase of 
overhead costs in many departments (e.g. marketing etc. as explained 
above). As cost accounting distributes overhead costs proportionally, this 
leads to a distortion of real cost causation that privileges variants with a 
small number of produced units. 

9.4.5.2 Reduction of Costs Caused by Variants 
The necessity to offer customised products is in conflict with the necessity of 
economical production. Herrmann and Seilheimer propose the following 
strategies to cope with this problem [Herrmann and Seilheimer 2000]: 

Upgrading products by standard integration of formerly supplementary 
features: Reducing complexity, which is caused by supplementary fea-
tures, decreases production costs. The achieved cost reduction of inte-
grating supplementary features into the platform might be high enough 
to offer them without an increase of prices. 

Modular structure: A modular structure allows for a high diversity of 
variants under the condition of a low increase of complexity (e.g. soft-
ware with a base module and additional modules). If customer benefit is 
affected by variation, modularisation should be handled with caution. 
Variants with a high degree of modularisation tend to appear too similar 
to customers. In the software industry where customer benefit by vari-
ation used to be rare, modular structures are very common. 

                                                     
32 One product displaces another product of the same company in the market. 
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Platforms: The usage of platforms and non-variable parts lowers the 
diversity of parts and the production complexity. Each product includes 
the functions of the platform plus the functions of its variable compo-
nents. The suitability of a platform concept is determined by the under-
lying product structure. 

For product line engineering, we use platforms to produce variants based on 
planned reuse, but also managed variability to improve the suitability of the 
platform for mass customisation at reasonable cost. We deal with these 
aspects throughout the book. 

9.5 Extension of the Product Portfolio 

Adding new products to the product portfolio allows the company to close 
strategic gaps within the product portfolio. Such gaps emerge if all or most 
existing products are in the saturation or degeneration stage of the product 
life cycle [Brockhoff 1999]. To extend the product portfolio, product man-
agers can embark on a product innovation strategy or a product imitation 
strategy. Both strategies yield a set of product ideas, which has to be 
assessed and from which one or a few ideas are selected for realisation. 

A product can be described by its functional and qualitative features. Product 
development has to ensure that customer needs are realised by the product 
features. There are different criteria for selecting an appropriate bundle of 
features. In this section, we focus on customer satisfaction, which is the main 
criterion of the classification scheme by Kano [Kano 1984]. In addition, we 
briefly deal with quality function deployment (QFD) and target costing, 
which incorporate other criteria such as product differentiation and costs. 

9.5.1 Product Innovation 
A company that follows a product innovation strategy may for example want 
to appear as a pioneer in the market and establish a new brand. A major 
challenge for product innovation is to identify the correct innovation fields 
faster than competitors and to accommodate customer needs better and in a 
more economical way. Within the technical domain, the relevance of product 
innovation is enforced by the following developments: 

The decreasing length of product life cycles. 

The decreasing length of technology life cycles. 

The increasing payoff time. 
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The increasing occurrence of price erosion originating from the market 
to keep older product generations attractive compared to younger gen-
erations.

The increasing importance of the utilisation frequency for market suc-
cess (e.g. mobile phones). 

The central topic with regard to product innovation is the generation of new 
product ideas and concepts. The company can either follow a passive identi-
fication strategy or perform an active search. 

9.5.1.1 Passive Identification 
Passive identification is based on the assumption that even without carrying 
out a systematic, goal-oriented search, sufficient product ideas are available 
from the company itself or its environment. The company just has to support 
the submission and collection of product ideas by suitable information and 
communication systems. On the one hand this procedure is relatively inex-
pensive. On the other hand, the amount and the degree of recentness of the 
obtained product ideas are rather limited. Thus, this procedure is only rec-
ommendable for slight strategic gaps in the product portfolio. 

9.5.1.2 Active Search 
The active search for new product ideas my be driven either by technology 
push or by demand pull [Pepels 2003]: 

Technology push: Refers to the active search for application and 
commercialisation possibilities of available technological knowledge. 

Demand pull: Describes the identification of a demand potential for a 
problem solution that has not yet been realised. Proper technologies are 
searched for in order to meet the identified demand potential. 

Demand pull yields successful product ideas more frequently, whereas prod-
uct ideas initiated by technology push bear a higher degree of recentness. 
However, the distinction between technology push and demand pull is 
sometimes criticised as it is difficult to distinguish for a new product idea 
whether it originates from technology push or demand pull [Brockhoff 
1999]. 

Observations indicate that an unrestricted search for new ideas is rarely 
effective [Brockhoff 1999]. The following topics may be used for an initial 
restriction of the search area: 

Unexpected successes and failures 

Demographic trends 

Shifts of opinion and attitude 
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Changes of market and branch structure 

Dialogues at trade fares 

Evaluation of field service reports 

Encouragement of employee inventions 

Cooperation with a lead user 

For further reading on product innovation, see e.g. [Cooper 2001]. 

9.5.2 Product Imitation 
The term product imitation refers to the development of products that are 
similar to already existing products (with respect to possible uses). The imi-
tation is usually stimulated by a successful product innovation of another 
company. Overcoming market entrance barriers such as patents, customer 
habits, obstructed distribution channels, and dominant competitors is the 
prerequisite of a successful product imitation. Moreover, the incentives of 
development departments often aim at the creation of product innovations. 
Especially in technically sophisticated sectors, it is therefore difficult to 
embark on an imitation strategy and not to drift into a (more risky) innova-
tion of existing product ideas [Schewe 2000]. Companies that embark on an 
imitation strategy must possess the following capabilities: 

Analysis: Successful product innovations have to be identified and the 
concerned market entrance barriers have to be assessed. The products of 
competitors have to be analysed thoroughly. Their special strengths and 
weaknesses have to be understood [Cooper 2001]. 

Technology: In order to achieve a maintainable time to market and a 
high product quality at the same time, a high technological potential is 
required. The imitation is in competition with the products of the tech-
nologically more experienced innovator. 

Marketing: Customers and distribution channels have to be persuaded to 
switch to the new product. 

Production: Since the imitator enters the market in one of the later 
stages of the product life cycle, there is less time for expanding the 
company’s production capacities according to the rapidly increasing 
demand. 

9.5.3 Assessment of Product Ideas 
Once product ideas have been identified (e.g. by innovation or imitation), 
product management has to assess the ideas and come to a decision about 
which products will be actually developed. This strategic decision requires at 
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least some knowledge about the intended features of the products. Hence, it 
is a preliminary stage of product definition (the product definition activity is 
outlined in Section 9.3). However, product definition employs more sophisti-
cated techniques and is performed to elaborate the product ideas that have 
been chosen for development. Examples of such techniques are discussed in 
the subsequent subsections. The assessment of product ideas can be accom-
plished by the following steps: 

1. Coarse screening: All product ideas are initially tested for whether they 
fulfil certain knock-out criteria. The knock-out criteria are usually 
available in the form of yes or no questions that filter out a bigger part 
of the product ideas. 

2. Fine screening: The objective of the fine screening is to evaluate to 
what extent the resources that are required for the realisation of the 
product idea are existent in the company. Scoring models are predomin-
antly used for this purpose. Table 9-1 shows an example of such a 
scoring model. In this scoring model, each product idea is rated with the 
same set of resource-potential criteria (first column on the left side). 
The resource potential is rated with zero points if it is not usable or 
highly insufficient for the realisation of the product idea, whereas ten 
points mean that it is usable and completely sufficient. The multiplica-
tion of each rating with its relative weight and summation yield the final 
score. One point of criticism is that scoring models are a methodically 
naïve approach. Hence, the results of scoring models should not be used 
blindly. They are rather reference points among other information. 
Their advantage is the enforcement of a systematic procedure. 

3. Concept trial: The product concept is explained verbally, in writing, 
with images, or by a prototype to potential customers in order to exam-
ine whether the product concept is understandable and plausible. The 
goal of this step is to determine how important the product features are 
to potential customers. 

4. Profitability analysis: Product ideas that have passed the concept trial 
undergo a profitability analysis. In this context the initial purchases and 
repurchases are based on the forecast of the sales volumes as well as the 
costs for the individual stages of the product life cycle. The final deci-
sion on the realisation of the product idea is made by means of decision 
models (e.g. investing model) [Erichson 2000]. 
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9.5.4 Product Definition with the Kano Scheme 
The Kano method [Kano 1984; Kano et al. 1996; Sauerwein 2000] allows 
choosing a set of product features that yield high customer satisfaction. The 
key element of this method is the classification scheme for customer require-
ments illustrated in Fig. 9-6. The four categories of the Kano classification 
scheme are characterised as follows: 

Basic requirements: Absence of these requirements leads to high custo-
mer dissatisfaction, whereas their presence or further enhancement does 
not contribute to customer satisfaction. For example, in the home auto-
mation domain, high reliability is a basic requirement. If the home 
automation system fails several times a day, this causes strong customer 
dissatisfaction.

Satisfiers: Customer satisfaction is proportional to the degree of imple-
mentation of these requirements. In the home automation domain, 
lighting, door, and window control are examples of satisfiers. 

Table 9-1: Example of a scoring model used in fine screening
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Feature is fully
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completely absent
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Fig. 9-6: Classification of requirements according to Kano 

Delighters: Customer satisfaction levels off if these requirements are 
not realised. But if implemented, delighters have a strong, positive 
effect on customer satisfaction. This category mainly includes require-
ments whose implementations were neither expected nor claimed by 
customers, possibly because they thought them to be technically impos-
sible. Customers are often willing to pay high prices for the implemen-
tation of delighters. In the home automation domain, audio and video 
control are examples of delighters. 

Indifferent requirements: The implementation or absence of these 
requirements has no effect on customer satisfaction. The database to be 
used in a home automation system is an example of an indifferent 
requirement as long as the database does not affect other requirements. 

The definition of a product using the classification scheme consists of the 
following five steps: 

1. Identify the customer requirements 
2. Construct a questionnaire 
3. Perform a survey 
4. Analyse and interpret the collected data 
5. Select the product features 
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The following subsections explain each of the five steps in more detail. 

9.5.4.1 Identifying Requirements 
First, those features that are crucial for product success have to be deter-
mined. Customer requirements may be elicited for example by qualitative 
interviews that cover the following four topics: 

What does the interviewee associate with the processes of buying and 
using this product? 
Which problems, difficulties, annoyances, and complaints exist in the 
context of the buying process and the usage? 
Which criteria does the customer take into consideration when choosing 
the product? 
What would the customer like to change? Which new product features 
could fulfil customer expectations even better? 

According to empirical studies, 90 to 95% of the relevant customer require-
ments can be identified with approximately 20 to 30 interviews ([Griffin and 
Hauser 1993], quoted in [Herrmann 1998]). The elicited customer require-
ments correspond to one or more product features that can also be identified 
by this procedure. For further details, see for example [Condon 2002]. 

9.5.4.2 Constructing the Questionnaire 
Having identified the relevant requirements to be rated in the survey, market 
researchers construct a questionnaire consisting of a functional and a dys-
functional question for each requirement. 

Example 9-1: Functional and Dysfunctional Questions in the Home 
Automation Domain

For the feature “roller shade control” the functional and the dysfunc-
tional questions can be formulated as follows: 

Functional question: Suppose that your home automation system 
could open and close roller shades automatically, what would you 
think about that? 
Dysfunctional question: Suppose that your home automation sys-
tem would not be able to open and close roller shades automatic-
ally, what would you think about that? 

The interviewee has five possible answers for each functional and dysfunc-
tional question (like, expected, don’t care, can live with it, and dislike). 
Answering both questions yields a location in Table 9-2. 
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The numbers in the table are used for interpreting the data. They refer to the 
following categories: 

1. Basic requirements 
2. Satisfiers
3. Delighters
4. Indifferent requirements 
5. Undesired requirements 

No requirement should fall into the “?”-category (Table 9-2). Otherwise it 
must be checked whether the customer misunderstood one of the questions. 
One problem with the classification scheme is that the classification is not 
stable. If requirements for a product are defined which is going to be 
launched a couple of years later, forecasting the proper category-assignment 
is difficult. 

9.5.4.3 Arranging the Survey 
For data collection, written as well as oral interviews are possible. The 
standardised oral interview is recommended due to its high rate of return and 
the possibility to intervene in the case of comprehension problems. 

Table 9-2: First table for data interpretation 
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9.5.4.4 Analysing and Interpreting the Data 
The collected data is analysed by determining the distribution of customer 
ratings over requirements classes for each requirement. The result of this 
analysis is a table like the one presented in Table 9-3. 

A strong statistical spread of category assignments for one requirement is an 
indication that the interviewed customer group is not homogeneous. Techni-
cally versed users may for example rate requirements as basic, which are, 
however, satisfiers for technical laypersons. It may be sensible to offer prod-
uct variants in order to address multiple customer groups. 

If even after market segmentation, requirements cannot be assigned to the 
above-mentioned categories unambiguously, the following rule is applied 
regarding the categories introduced above: 1>2>3>4.33 If more than one 
category is eligible, a worst-case assumption is made with respect to the 
effect of the requirement being absent. For example, if the ratings are spread 
between basic requirement (category 1) and delighter (category 3) the 
requirement is assigned to the former category as the absence of a basic 
requirement would have strong negative effect. 

9.5.4.5 Selecting Product Features 
Often it is not possible to satisfy all requirements in a single product. This 
may be due to technical restrictions, or it may aim at keeping development 
costs and time to market low. Thus a decision has to be made on which 
requirements should be realised by product features. To avoid low customer 

                                                     
33 A>B means: if the collected answers are distributed between categories A and B the requirement is 

assigned to category A. 
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satisfaction, all basic requirements and, after that, all satisfiers should be 
implemented at least at a medium level. By additionally including two or 
three delighters, high-performance products can be developed [Herrmann 
1998]. 

9.5.5 Quality Function Deployment (QFD) 
The QFD method of [Akao 1990] consists of four stages. During these stages 
customer requirements are elicited and refined to the level of directions for 
the development or production process. A speciality of the QFD method is 
the consideration of competitive products. By analysing customer require-
ments and competitive products, unique selling points for product differenti-
ation can be determined (sales focus). Furthermore, problem areas with a 
negative effect on the product or company image can be detected (service 
focus). For further details, see for example [Schröder and Zenz 1996]. 

9.5.6 Target Costing 
When deciding which requirements have to be implemented the costs arising 
have to be considered. The method of target costing allows product compo-
nent costs only at the level at which the components contribute to customer 
benefit. For further reading, see for example [Herrmann 1998]. 

9.6 Management of Existing Products 

In this section, we consider the conservation and expansion of the potentials 
of existing products as well as the elimination of products from the product 
portfolio.

9.6.1 Conservation and Expansion of Potentials 
The goal of conserving and expanding product potentials is to keep the 
product attractive in comparison to competing products and substitutes. 
Hence, in a first step, the potentials for improving the considered product 
have to be identified. Clues for improvement may be gained by observing 
changes regarding usage, customers, competitors, technology, and general 
conditions (e.g. social, legal). The following measures are examples of pos-
sibilities to conserve or extend existing product potentials [Huber and 
Kopsch 2000; Tomczak et al. 2000]: 

Increase of the internal efficiency: This increase is achieved by optimis-
ing the development processes, fixing bugs that have been discovered 
after market introduction, reducing costs, and enhancing quality. 
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Marginal modifications: This measure aims at a slight improvement of 
the perceived value of existing products like rejuvenation of the product 
logo. The modification is made in order to extend the product life cycle. 

Revitalisation: Products at a later stage of the product life cycle are 
slightly modified and offered to the same customer group with the goal 
to reinitiate the product life cycle. The resource needs of a successful 
revitalisation are easily underestimated. The reasons why the present 
products are in the degeneration stage have to be identified and the new 
product concept has to be communicated to potential customers. 

Bundling: Several products are sold together. Benefits expected from 
bundling are lower costs (e.g. due to a simplification of the range of 
products), sales increase (e.g. due to decision anomalies of the customer 
regarding complex product offers), a better solution of customer prob-
lems achieved by a slight adjustment of the products, and the construc-
tion of market entrance barriers (e.g. the bundling of operating system 
software with computers). 

9.6.2 Product Elimination 
In general, products can only be marketed economically during a certain 
time period and have to be phased out subsequently. Since the future devel-
opment of market and development conditions cannot be precisely forecast, 
this is a complex decision. In some cases, there is also an emotional relation-
ship with formerly successful products, especially with those that the com-
pany was founded on. Companies tend to offer a multitude of new products 
without phasing out old ones. Thus products involving loss are carried along 
and are only phased out during a crisis. In order to counter this bias, pro-
cesses should be implemented to assure a regular, structured decision about 
the elimination or continuation of the offered products. In addition to a lack 
of profitability, legal restraints (e.g. in the sectors of health or environmental 
protection) may necessitate the elimination of products. Another reason why 
products are eliminated is the wish to focus the product programme on cer-
tain core sectors to avoid growing complexity. For product line engineering, 
product elimination has to consider the platform. Whenever a product is 
eliminated it has to be determined if platform assets that are part of this 
product can be removed from the platform. This reduces platform complex-
ity and the effort for a managed platform evolution. For platform assets, 
maintenance contracts play a significant role for their evolution and potential 
removal from the platform – an asset for which maintenance has to be pro-
vided must not be removed from the platform, or other assets must be deter-
mined to replace the former one so that the maintenance offer can be 
continued.

Reasons for phasing 
out products 
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Products can be eliminated immediately by sale or closure and scrapping of 
the related facilities. In some cases longer phasing-out processes are neces-
sary because of existing contracts, the necessity to stock spare parts, or 
dependencies with other products of the company [Brockhoff 1999; 
Herrmann 1998]. 

9.7 Scoping 

Product management activities for product lines are sometimes called 
product line scoping. Kruchten describes the formulation of the scope of a 
project in the inception phase as “capturing the context and the most impor-
tant requirements and constraints so that you can derive acceptance criteria 
for the end product” [Kruchten 2000]. This is similar to the descriptions of 
product line scoping, for instance, in [Clements and Northrop 2001]. An 
example of a method that supports product line scoping is PuLSE-Eco 
[DeBaud and Schmid 1999; Schmid 2002]. 

The main goal of scoping methods is to identify the products that will belong 
to the product line as well as to define their major features. According to 
[Bosch 2000b] there are at least three different forms of scoping: 

Product portfolio scoping 

Domain scoping 

Asset scoping 

Product portfolio scoping aims at defining the products that should be devel-
oped as well as their key features. Domain scoping aims at defining the 
boundaries of a domain and closely corresponds to the classical project 
scoping. Asset scoping aims at identifying particular components to be 
developed for reuse. 

Commonality and variability analysis is a basic part of product line scoping 
that has been described in many places, e.g. in [Ardis and Weiss 1997] and 
[Coplien et al. 1998] where it is traced back to Dijkstra [Dijkstra 1972] and 
Parnas [Parnas 1976], to domain engineering in IBM’s 360 mainframe 
series, and to even earlier sources from general engineering. Slightly differ-
ent definitions of the terms commonality and variability can be found in the 
product line scoping literature (see Section 4.3 for our definition common-
ality and variability). Weiss defines commonality as “a list of assumptions 
that are true for all family members” [Weiss 1998], which is also compliant 
with our usage of the word. Weiss describes variability through “variabilities 
define how family members may vary” and “variabilities define the scope of 
the family by predicting what decisions about family members are likely to 
change over the lifetime of the family”. Whereas this implies only feature 
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variability, we consider variability in all kinds of artefacts in this book. 
Coplien et al. define commonality as “an assumption held uniformly across a 
given set of objects” and variability as “the variations among those products” 
[Coplien et al. 1998], where “those” refers to the products of the product 
line.

The product line scoping literature focuses on product definition and on cer-
tain aspects of product portfolio management. Other major activities of 
product management such as market and product strategy definition, product 
definition, product support, market introduction, market observation, and 
product controlling (Section 9.3) are mostly neglected in the scoping 
literature.34

9.8 Differences from Single-System Engineering 

In software product line engineering, the fundamentals of product manage-
ment described in this chapter also apply. Yet, as multiple applications are 
derived from the same platform, the applications are interrelated by engin-
eering interdependence (see Section 9.4.4 for a description of product inter-
dependences). The generation of variants is a major strength of product line 
engineering (Section 9.4.5 describes the economic impact of product vari-
ants). Hence, a company applying product line engineering can manage the 
additional complexity more easily and thus reap the benefits of product vari-
ants.

In portfolio analysis, the product line might be regarded as a single product 
type in the product portfolio but is typically divided into multiple product 
types as illustrated in Example 9-2. 

Example 9-2: Product Portfolio for a Home Automation Product Line 

The home automation product line comprises different product types, 
which can be used in combination: 
 Home security system 
 Lighting control system 
 Remote access extensions 
 Wireless control extensions 
 etc. 

                                                     
34 Clements and Northrop mention that the “market analysis” practices drive the definition of the scope of 

a software product line but do not provide details [Clements and Northrop 2001]. 
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9.8.1 Strategic Role of the Platform 
Product management has to consider the life cycle of the platform as well as 
the life cycles of individual applications. The life cycle of the platform is 
longer than the life cycles of individual applications. The development and 
market introduction of the platform require a large amount of resources. 
Consequently the platform has a considerable strategic relevance for the 
company. 

Preparation for future products: Before new product types can be inte-
grated into the product portfolio, product managers have to make sure 
that the new product can be efficiently developed within the product 
line. In order not to restrict future product ideas too much, the platform 
must be flexible enough to accomplish the demands of future applica-
tions.

Expansion: The expansion of product potentials can be performed in an 
economical manner for all products by implementing new features in 
the platform. To minimise risk, new features can first be realised in a 
lead product and then made available in the platform. 

Elimination: The elimination of a product line is a major step, which is 
mostly done with the intention to substitute a product line by another 
product line. Having to eliminate a product line too early (e.g. due to 
insufficient demand) must be prevented by carrying out soundings of 
market needs, e.g. by pilot applications. 

Platforms as products: Platforms may even become products them-
selves. In this case customers are enabled to derive applications from 
the platform and offer them to the market or use them as an integral part 
of their own products. 

9.8.2 Product Definition 
In product definition, product managers are concerned with the definition of 
the major common and variable features of the product line, i.e. the features 
of multiple applications. Variability has to be taken into account in each step 
of product definition. For the application of the Kano classification, this 
means for example: 

The designers of the questionnaire used for customer interviews should 
put a strong emphasis on identifying variability in customer needs. 

A high statistical spread in customer ratings for a certain customer 
requirement indicates the necessity to introduce variability in product 
features.
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The basic requirements should be implemented as common domain 
artefacts since basic requirements have to be met by each application. 

Delighters need not be part of the domain artefacts, e.g. if they are 
based on a fast-changing technology. 

We provide more details of applying the Kano classification scheme in soft-
ware product line engineering in Chapter 10. 

9.8.3 Output
Product management has to provide a product roadmap that is used by 
domain engineering to create a requirements specification for the product 
line. The product roadmap contains the features identified by the product 
definition activity and a schedule for market introduction. The features in the 
roadmap comprise common as well as variable features. The product road-
map is a plan for the future development of the product portfolio. Hence, it is 
the result of strategic planning. 

Domain engineers need the roadmap to build reusable domain artefacts. 
Application engineers need the roadmap to select the appropriate domain 
artefacts, configure specific applications, and develop application-specific 
artefacts. 

In addition to the roadmap, product management provides a list of previous 
products of the organisation that may be reused for the product line. This list 
contains also partial products, components, and other assets. The decisions 
about what earlier assets may be reused for the domain artefacts of the soft-
ware product line and what features should be realised by the product line 
are mostly made either by product managers or by a group that encompasses 
product managers, platform managers, and architects. 

9.9 Summary 

The goal of product management is to make a major contribution to entre-
preneurial success by integrating the development, production, and market-
ing of products that meet customer needs. Based on the global and very 
abstract company goals, strategic decisions have to be made. 

The portfolio management technique enables well-founded decision making 
about the existing and planned products of a company or business unit. In 
their decisions, product managers have to consider thoroughly the various 
interdependences between products, such as the usage interdependence 
which exists between complementary products. Many companies are faced 
with stagnating or even shrinking markets. In order to win market share, 
companies have to accommodate individual customer wishes by product 
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variants. Yet, variants make up a major challenge for various divisions of the 
company, such as research and development or marketing. 

A product can be defined as a bundle of features. The Kano method enables 
the optimisation of the choice of features with respect to customer satisfac-
tion. It classifies customer requirements into basic requirements, satisfiers, 
delighters, and indifferent requirements. In software product line engineering 
the Kano classification can help in identifying common and variable fea-
tures.

In software product line engineering, product management activities, in par-
ticular, product definition and certain aspects of portfolio management, are 
subsumed under the term product line scoping. Commonality and variability 
analysis is a fundamental technique used in product line scoping. 
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In this chapter you will learn: 

o The challenges of domain requirements engineering. 
o About the interrelations between the domain requirements engineering sub-

process and the product management, domain design, and application 
requirements engineering sub-processes. 

o How to identify common and variable product line requirements. 
o How to document the identified commonalities and the variability in the 

various requirements artefacts using the orthogonal variability model. 
In addition, a comprehensive example illustrates the definition of variability in 
requirements artefacts for a software product line. 
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10.1 Introduction 

The main goals of domain requirements engineering are the development of 
common and variable domain requirements and their precise documentation. 
Domain requirements engineering is a continuous process of proactively 
defining the requirements for all foreseeable applications to be developed in 
the software product line. A particular issue for domain requirements engin-
eering is to identify and explicitly document the external variability. The 
sub-processes and artefacts closely related to the domain requirements 
engineering sub-process are highlighted in Fig. 10-1. 

Domain requirements engineering has to adhere to the specification of the 
product line’s major features provided by product management. Based on 
these features, it creates detailed common and variable requirements suffi-
cient to guide domain design (and thereby also realisation as well as testing). 
In addition, domain requirements engineering provides the input for the 
application requirements engineering sub-process, which is concerned with 
creating application-specific requirements artefacts. 

Goals of domain 
requirements
engineering

Fig. 10-1: Sub-processes and artefacts related to domain requirements engineering 
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In the remainder of this section, we elaborate on the interrelations between 
the sub-processes highlighted in Fig. 10-1. The basic information flows 
between these sub-processes are depicted in Fig. 10-2. 

10.1.1 Interrelation with Product Management 
The key input for the domain requirements engineering process is the prod-
uct roadmap from product management (first bullet  in Fig. 10-2). This 
roadmap includes an initial set of intended products for the product line as 
well as their intended commonalities and variability. It further defines the 
product line with respect to the envisaged applications and a schedule for 
bringing out marketable products. In addition, product management identi-
fies existing artefacts that have been developed in previous projects and 
which should be considered when defining the domain requirements (second 
bullet of  in Fig. 10-2). 

The domain requirements engineering sub-process provides suggestions on 
additional and altered features as well as feature refinements (  in Fig. 
10-2) to product management, based on the analysis of existing products, 
stakeholder needs, laws, constraints, and other requirement sources. 

10.1.2 Interrelation with Domain Design 
The output of domain requirements engineering provided to domain design 
encompasses all defined domain requirements including commonality and 
variability as well as the definition of the product line variability in the 
orthogonal variability model (  in Fig. 10-2). The variability model defines 
at least the external variability but may also specify part of the internal vari-
ability of the product line. 
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Fig. 10-2: Information flows between domain requirements engineering and other sub-
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The interrelation between domain requirements engineering and domain 
design can be characterised by the twin peaks model of [Nuseibeh 2001] 
presented in Fig. 10-3. The figure expresses the interrelation by a spiral 
alternating between requirements (problem view) and architecture (solution 
view) that at the same time progresses from coarse to detailed. While the 
reference architecture increasingly takes shape, the need for more detailed 
requirements arises as well. In addition, existing requirements may for 
example turn out as too ambitious from the viewpoint of domain design, 
which leads to change requests (  in Fig. 10-2). 

10.1.3 Interrelation with Application Requirements Engineering 
Domain requirements engineering provides the predefined common and 
variable requirements artefacts as well as the orthogonal variability model to 
application requirements engineering (  in Fig. 10-2). Consequently the 
orthogonal variability model supports the communication of the product line 
variability and thus the reuse of domain requirements artefacts. We elaborate 
on the reuse of domain requirements artefacts in Chapter 15. 

Application requirements engineering provides feedback to domain require-
ments engineering in terms of requests for additional and altered require-
ments (first bullet of  in Fig. 10-2) as well as application requirements 
artefacts which may be incorporated in the domain artefacts (second bullet of 

 in Fig. 10-2). This feedback may lead to an adaptation of the domain arte-
facts and thus to an evolution of the software product line. The decision on 
whether the feedback from application engineering is incorporated in the 
domain artefacts is made by product managers and other stakeholders who 
decide on the evolution of the product line. However, the feedback can also 
lead to an application-specific adaptation of the product line’s capabilities, 
i.e. it can lead to an application-specific change. The integration of applica-
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Fig. 10-3: The twin peaks model describes the interrelation of requirements and architecture
(adapted from [Nuseibeh 2001])

Reusable
requirements 

Future domain 
requirements 



10.2  Traditional Requirements Engineering Activities 197

tion-specific artefacts in the domain artefacts means that domain require-
ments engineers, domain architects, etc., must reengineer the application 
artefacts and prepare them for reuse. 

10.2 Traditional Requirements Engineering Activities 

Before we elaborate on the details of requirements engineering for software 
product lines, we give a brief overview of the major requirements engineer-
ing activities in single-system engineering [Pohl 1996; Pohl 1997]. 

Elicitation: The goal of requirements elicitation is to understand the 
users’ needs and constraints for the system. The elicitation process un-
covers needs, requirements, and constraints from different sources, such 
as stakeholders (e.g. customers or domain experts), user documentation, 
legislation, and standards. Elicitation also involves the development of 
new and innovative requirements for the intended product (see e.g. 
[Carroll 1995; Gougen and Linde 1993; Hay and v. Halle 2002; Pohl 
1997; Weinberg 1988]). 

Documentation: The goal of the requirements documentation activity is 
the well-structured recording of the elicited requirements with all neces-
sary information. The final requirements specification is the foundation 
for later development phases or changes in the product [Alexander and 
Stevens 2003; Kovitz 1999]. To address different stakeholders such as 
customers and designers, it is often necessary to document requirements 
using different representation formats (see e.g. [Pohl 1994]). 

Negotiation: The goal of requirements negotiation is to achieve a suffi-
cient consensus among different stakeholders with respect to elicited 
and/or documented requirements. The requirements specification is 
more stable during further development phases, if sufficient agreement 
is obtained. Without an agreement on the requirements, the project is 
likely to fail, for instance by running out of time (see e.g. [Wiegers 
1999]). 

Validation and verification: The goal of requirements validation/veri-
fication is to prove that the system requirements are clear, complete, 
correct, and understandable. Validation ensures that the right require-
ments are documented. Verification ensures that the documented re-
quirements are correctly defined (see e.g. [Thayer and Dorfman 1997; 
Sommerville and Sawyer 1997]). 

Management: The goal of requirements management is to maintain the 
requirements continuously throughout the development and system life 
cycle and thus to ensure that a consistent and up-to-date requirements 
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specification is available at all times. This is supported by recording 
trace information between requirements, from requirements to their 
sources, and from requirements to their realisation. It is the responsibil-
ity of requirements management to enforce adherence to the defined 
requirements engineering process. An up-to-date requirements specifi-
cation is a prerequisite for later releases, failure fixes, and requirements 
reuse (see e.g. [Thayer and Dorfman 1997; Hull et al. 2002]). 

The goals of the requirements engineering process can be characterised 
based on the three dimensions of requirements engineering [Pohl 1994]: 

Specification: This dimension characterises the achieved level of under-
standing about the requirements for the system under consideration. 
Initially, the understanding is usually weak. The goal is to achieve as 
complete an understanding as possible of the system requirements. 

Representation: This dimension deals with different kinds of representa-
tions used to document requirements. At the beginning of the require-
ments engineering process, typically informal representations such as 
sketches or natural language statements are used. The goal is to arrive at 
a precise requirements specification documented using as formal a 
requirements modelling language as possible. 

Agreement: This dimension deals with the reconciliation of conflicting 
opinions. Typically, at the beginning of the requirements engineering 
process, the individual stakeholders (managers, users, domain experts, 
etc.) have their own view of the goals and requirements of the system. 
The agreement dimension characterises the gradual integration of the 
different views by uncovering and negotiating conflicts. The goal is to 
arrive at a sufficient agreement on the requirements for the system. 

10.3 Challenges of Domain Requirements Engineering 

Domain requirements engineering has to take into account the variability of 
the product line. This implies additional tasks for the requirements engineer. 
In this section we present the tasks that are unique to requirements engineer-
ing in software product lines. 

10.3.1 Specific Activities 
The explicit documentation of the proper common and variable requirements 
is essential for enabling the planned reuse of requirements in application 
engineering. The required variability has to be documented in the orthogonal 
variability model in order enable its communication to other sub-processes, 
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such as domain design or domain testing. In this chapter, we elaborate on the 
three following activities: 

Commonality analysis: The goal of commonality analysis is to identify 
which requirements are common to all applications of the software 
product line (Section 10.6). 

Variability analysis: The goal of variability analysis is to identify which 
requirements differ among the applications, and to determine the differ-
ences precisely (Section 10.7). 

Variability modelling: This activity is concerned with modelling vari-
ation points, variants, and their relationships. It is closely related to 
modelling variable requirements (Section 10.8). 

The three activities are closely related to each other. This holds in particular 
for the commonality and variability analysis (for additional reading on 
commonality and variability analysis, see e.g. [Weiss and Lai 1999]). 

10.3.2 Variability in Different Views 
In addition to the identification and modelling of variability, domain 
requirements engineering has to establish consistency across the different 
requirements artefacts and their documentations. The incorporation of differ-
ent views facilitates the communication of the commonality and variability 
of the product line to different stakeholders. Examples of requirements arte-
facts are goals, features, scenarios, use cases, data models, behavioural 
models, functional models, and textual requirements (see Chapter 5 for a 
more detailed elaboration on the different requirements artefacts). 

10.4 Overview of Major Steps 

The requirements artefacts developed in domain requirements engineering 
encompass common and variable parts. The representation formats typically 
used for documenting common as well as variable requirements are 
explained in Chapter 5. In the following, we briefly characterise the basic 
steps for defining common and variable requirements. 

10.4.1 Defining Common Requirements 
Before any requirements can be defined as a commonality of the product 
line, a commonality analysis has to be performed in order to determine 
which requirements are actually common to all applications; see Section 
10.6. Defining common requirements consists of two basic steps: 
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1. Identify a set of common requirements. 
2. Document the common requirements in detail in a representation format 

(features, use cases, etc.) that is suitable for the considered view. 

The steps are performed iteratively in the course of detailing and revising the 
domain requirements. Moreover, common and variable requirements are 
closely related and are therefore typically modelled together within the same 
artefacts. 

There are at least two other important issues that have to be considered in 
defining common requirements: 

Common requirements are the basis for all product line applications. 
The work of different stakeholders depends on the quality of these 
requirements. Typically, much effort has to be put into keeping the 
requirements artefacts up to date, consistent across different views 
(Section 10.3.2), and to ensure a high quality (e.g. comprehensibility). 
Reviews help to ensure a high quality for common requirements. 

Common requirements may change to variable requirements. For 
example, the evolution of the product line can cause a common 
requirement to become variable as a consequence of introducing new 
variability. Documenting the rationales and assumptions on why a 
requirement is common helps to understand why a requirement is com-
mon and thus avoid unnecessary changes of common requirements into 
variable requirements. It thus prevents ending up with a fully variable, 
yet overly complex requirements specification. 

10.4.2 Defining Variable Requirements 
Variable requirements are identified during variability analysis. Defining 
variable requirements involves modelling the variability of the product line 
in the variability model and documenting variable requirements in a suitable 
notation. Figure 10-4 illustrates the basic steps for modelling variable 
requirements. The four steps are: 

1. Identify an initial set of variable requirements. 
2. Develop the orthogonal variability model. 
3. Document the requirements in detail in a suitable notation. 
4. Relate each variable elements of the developed requirements artefact 

(e.g. use cases, scenarios, or classes) to the corresponding variants in 
the orthogonal variability model. 

Steps 3 and 4 are repeated until all required views have been considered. 
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10.5 Requirements Sources 

Domain requirements engineering incorporates different requirements 
sources such as stakeholders, existing products, failure reports, or competi-
tors’ products to define the common and variable requirements for the prod-
uct line. These sources are used to detail the features defined by product 
management.

To identify the domain requirements and their variability, domain require-
ments engineers can often make use of existing applications (see e.g. 
[Fantechi et al. 2003]). The development of a software product line rarely 
starts from scratch as product line engineering requires sophisticated domain 
experience (Section 1.4). Consequently different applications already exist 
that serve the markets and customer groups envisaged by the product line. 
These existing applications may be own applications or competitors’ appli-
cations. When performing the commonality and variability analysis as 
explained in the following sections, requirements engineers should use, 
among other requirements sources, the existing applications in their domain. 

10.6 Commonality Analysis 

Along with the elicitation of requirements for the intended software product 
line applications, the commonality of the applications has to be defined. 
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It is important to have as much commonality as possible, and thereby to 
reduce the amount of variability to the required minimum [Ardis and Weiss 
1997]. Common requirements form the basis of every software product line 
application. The higher the amount of commonality, the less effort has to be 
spent in design for flexibility. Nevertheless, the amount of variable require-
ments should at least allow the development of individual applications that 
satisfy the goals and needs of the envisioned customers and/or market seg-
ments.

The identification of common requirements starts with the simultaneous 
exploration of the requirements for all foreseen applications of the software 
product line. Requirements that are identical for all these applications are 
good candidates for common requirements. There are different ways of 
identifying common requirements. A simple way to perform commonality 
analysis is to use an application–requirements matrix. 

10.6.1 Application–Requirements Matrix 
The application–requirements matrix (see Table 10-1 for an example) gives 
an approximation of the commonality (and also of the variability) for a given 
set of software product line application requirements. The application–
requirements matrix details the product roadmap, which typically defines 
common and variable features at a higher level of abstraction. The left 
column of the matrix lists the requirements of the considered applications. 
The applications themselves are listed in the top row. In the body of the 
matrix it is marked for which application a certain requirement is mandatory. 

In the application–requirements matrix presented in Table 10-1 the require-
ment ‘R1’ is mandatory for all applications and is thus a candidate to be 
defined as a common product line requirement. Requirement ‘R2’ is not 
available in ‘App. 1’ and ‘App. 2’. Hence, it is not identified as a common 
requirement for the product line. The same holds for requirement ‘R3’. 
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Table 10-1: Structure of an application–requirements matrix for four applications

Application
Requirements App. 1 App. 2 App. 3 App. 4 

R1 mandatory mandatory mandatory mandatory 

R2 - - mandatory mandatory 

R3 - mandatory - - 

… … … … … 
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10.6.2 Priority-Based Analysis 
A more sophisticated analysis of commonality can be obtained by applying 
the priority-based analysis scheme. Priority-based commonality analysis is 
based on set of requirements in which each requirement is rated by different 
stakeholders according to a certain scheme such as the classification pro-
posed by Kano [Kano et al. 1996] (see Chapter 9 for more details on the 
Kano classification). 

Common requirements encompass at least the set of all basic requirements
that every application for the envisioned domain must fulfil. Example 10-1 
describes such a basic requirement. 

Another indicator for commonality is a requirement having a high priority
for a large group of customers, and the other customers do not reject it. This 
case is illustrated in Example 10-2. 

Furthermore, it is useful to define all requirements that might be of interest 
to many customers in the future as common requirements. We refer to this 
kind of requirements as strategic commonalities. Strategic commonalities are 
foreseeable basic needs that will appear in the product line’s lifetime, and 
thus should be implemented as commonalities to attain a stable set of com-
mon artefacts. Such kinds of commonalities may be important to differenti-
ate from competitors’ products (Example 10-3). 

Example 10-1: Heating Control as a Basic Requirement 

The Kano classification reveals that the requirement “The home 
automation system shall be able to control the heating of the home” is 
a basic requirement. Hence, it is a good candidate to be included into 
the set of common requirements. 

Example 10-2: Access Control as a High-Priority Requirement 

The requirement “The home automation system shall be able to con-
trol access to the home” is rated with a high priority by most custom-
ers. There are no customers who rate this requirement negatively. 
Thus it is likely to be accepted as a common requirement. 

Example 10-3: Wireless Communication as a Strategic Commonality 

The requirement “The home automation system shall communicate 
via a wireless network” is going to become a basic need in the near 
future. Hence, it is defined as a commonality of the product line. 

Prioritised
requirements 

Basic
requirements 

High-priority
requirements 

Strategic
commonality



204 10.  Domain Requirements Engineering 

10.6.3 Checklist-Based Analysis 
A more general approach than the priority-based identification of common 
requirements is the use of checklists. Each item on the checklist represents a 
category of requirements that should be considered as candidates for com-
mon requirements. The basic needs, high-priority requirements, and strategic 
commonalities described in Section 10.6.2 are examples of such categories. 
In addition the following general categories should be considered: 

Requirements that are prescribed by national or international laws and 
standards.

Requirements that are prescribed by organisational standards. 

Requirements that only differ marginally. 

Requirements that do not conflict with each other. 

Requirements that are necessary for the technical support, like error 
handling, maintenance, communication, etc. 

10.7 Variability Analysis 

The goal of variability analysis is to identify requirements variability and to 
define the variation points and their variants related to these requirements. In 
software product line engineering, there is no strict need to harmonise differ-
ent requirements that for example originate from contrasting customer needs 
or from the necessity to support different legacy systems. Rather, require-
ments that differ from each other indicate a need to introduce variation 
points and variants. However, not for every difference a variation point is 
defined. Whether a variation point should be introduced needs careful con-
sideration by the stakeholders involved, as the variation point may, for 
instance, have significant influence on the reference architecture. The 
following example illustrates the introduction of a variation point due to 
different customer needs: 

Example 10-4: Variability in the Home Security System due to 
Different Customer Needs 

The different requirements of customers with regard to the security 
system lead to the introduction of a variation point ‘home security by’ 
with the variants ‘motion detection’ and ‘camera surveillance’. Each 
application of the product line can be customised to provide either 
motion detection or camera surveillance. 
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To extract the necessary variability information, the requirements analyst has 
to examine the requirements for all product line applications. The identifica-
tion of variability starts with the analysis of high-level requirements. The 
analysis reveals those requirements that are unique to a subset of the appli-
cations and those that have different characteristics in different applications. 
As a result of variability analysis, variation points and variants are defined. 

10.7.1 Variability Analysis with the Application–Requirements 
Matrix

Variability analysis is based on the same techniques as commonality analy-
sis. The application–requirements matrix helps to identify variable require-
ments. Requirements that are only mandatory for one or a small set of 
applications are definitively candidates for variable requirements. 

10.7.2 Priority-Based Variability Analysis 
Requirements that have a high priority for some customers but a low priority 
for other customers are candidates for variable requirements. Example 10-5 
illustrates the identification of a requirement with different prioritisations. 

Example 10-5: Variability due to Different Prioritisations 

A study reveals that the requirement “The system shall automatically 
inform the police in case of intrusion” is rated high by a significant 
group of customers but is of less importance for another group of 
customers. Hence, the requirements engineer defines this requirement 
as a variable requirement of the software product line. 

Similarly, requirements that are rated positively by one group of customers 
but are rated negatively by another group of customers can lead to the intro-
duction of variability. 

Example 10-6: Conflicts in Home Security Requirements 

The requirement “the security system shall be equipped with a video 
storage system that records all surveillance video data” is appreciated 
by a significant group of customers. Yet the requirement “The system 
shall not record personal data” also has a high priority for many cus-
tomers. Hence, the requirements engineer decides to define video 
storage as a variable requirement. 

In addition, there may be requirements with high ratings, possibly from dif-
ferent customer groups, which cannot be realised within the same application 
as they are in conflict with each other. This may be due to a real, semantic 
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conflict or due to technical incompatibility. This situation is illustrated in 
Example 10-6. 

10.7.3 Checklist-Based Variability Analysis 
In general each difference in structure, functionality, behaviour, or quality 
between different applications is a candidate for requirements variability. A 
checklist helps in identifying requirements variability. Apart from the cate-
gories defined in Section 10.7.2, a checklist may contain, for example, the 
following items: 

Differences in functionality. 
Different quality attributes, e.g. with respect to safety, security, or 
dependability.
Different interface requirements, in order to allow the exchange of 
information with different legacy systems (e.g. legacy heating control). 
Different requirements with respect to the system’s user interface. 
Different design constraints, such as different databases, network types, 
COTS components, or operating systems. 

10.8 Defining Requirements Variability 

Defining the variability of domain requirements is a prerequisite for the suf-
ficient understanding of, and the communication about, the variability of a 
product line. In Chapter 4, we introduce an orthogonal variability model for 
defining variability in different development artefacts. In Chapter 5, we out-
line how variability in various requirements artefacts should be documented 
using the orthogonal variability model. 

To define the requirements variability of the indented software product line, 
the domain requirements engineer has to: 

Carefully define the right set of variation points and variants. 
Determine their dependencies. 
Define together with product managers which part of the product line 
variability is offered to the customer as external variability. 

10.8.1 Variation Points and Variants 
Initially it is often not clear which variant has to be related to which vari-
ation point. The documented requirements often do not state this explicitly. 
However, by considering the common variability subject of the variants, 
appropriate variation points can typically be identified. Example 10-7 illus-
trates this: 
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variability

Orthogonal 
variability model 

Defining
variability

Related variability 
subjects
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Example 10-7: Finding Correlated Variants 

Application ‘App. 1’ has the requirement “The front door shall be 
secured with a keypad.” whereas ‘App. 2’ has the requirement “The 
system shall provide fingerprint-based authorisation.” These require-
ments refer to the same variability subject, namely the identification 
mechanism used. Hence, the variation point ‘door lock identification 
mechanism’ is defined with the two variants stated above. These vari-
ants are associated with the corresponding requirements artefacts. 

After the variation point and the initial variants have been defined, additional 
variants have to be identified. Reasons for introducing additional variants 
can be the provision of an additional benefit for the customers or the differ-
entiation of the software product line from competitors’ products. Especially 
variants leading to high customer satisfaction should be taken into account in 
this step (we introduced the term “delighters” for requirements that lead to 
high customer satisfaction, see Chapter 9). The identification of additional 
variants can also be performed before the definition of the variation point. 
However, identifying additional variants after the definition of the variation 
point is usually better, since the variation point and the variants, which have 
already been identified, support the identification of additional variants. 

10.8.2 Variability Dependencies 
The types of the variability dependencies between a variation point and its 
variants and the defined alternative choices (Section 4.6) determine the 
permissible combinations of variants for each product line application. For 
some variants the appropriate variability dependency and/or alternative 
choice may be clear from the available requirements sources, such as 
product brochures (Example 10-7). If such information is not available 
directly, the requirements engineer has to involve the relevant stakeholders 
to identify the proper variability dependencies and alternative choices. 

Again, by defining the variability dependencies, the requirements engineer 
should consider the fact that the variability can have a strong influence on 
the reference architecture. For example, designing a reference architecture 
which supports a wide range of optional variants that differ significantly in 
quality may be impossible. Consequently, among other stakeholders, archi-
tects should be involved in the definition of variability dependencies. Or, 
more generally, software architects must be involved in the definition of 
requirements variability. 

Additional
variants

Mandatory, optional, 
and alternative choice 

Software architects 
involved in variability 
definition
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Example 10-8: Identifying the Proper Variability Dependency 

A product brochure for the home security system states that the sys-
tem is always delivered with the feature “acoustic alarm”. In addition, 
the customer may choose the “police information” feature, which 
enables the system to inform the police in the case of an attempted 
burglary. The variability model of the home security product line 
contains the variation point “alarm activation” with the mandatory 
variant “acoustic alarm” and the optional variant “police information”. 

First example 
application 

Goals
G1: Protection against burglary.
G2: Catching the thief.
G...: ...
G5: Video surveillance of the house.
Desired Features
F1: Video surveillance.
Fn: ...
F2.2: Inform police via phone line.
Requirements
R1: The time between the detection of an open window and the 

recording of the video surveillance shall be less than 2 sec.
R2: The alarm signal shall be deactivated by the police, by the 

owner, or automatically after 20 minutes.
R2.1: The alarm signal shall start immediately after the detection 

of the open window or door.
R11: The camera shall have enough storage for 5 minutes’ video 

stream to be stored as alarm buffer.
R11.1: The recording is only initiated if motion is detected.
R28: The system shall be able to generate user-specific reports that 

document the system events.
R77: The stored video streams of the video surveillance system 

shall be safe against misuse and tampering.
R78: The time period between motion detection and start of 

recording shall be less than 0.5 seconds.
R78.1 The password shall consist of at least 10 characters and 

include special characters (such as numbers). The password 
shall be changed every 3 months, and an old password 
cannot be used again.

Goals
G1: Protection against burglary.
G2: Catching the thief.
G...: ...
G5: Video surveillance of the house.
Desired Features
F1: Video surveillance.
Fn: ...
F2.2: Inform police via phone line.
Requirements
R1: The time between the detection of an open window and the 

recording of the video surveillance shall be less than 2 sec.
R2: The alarm signal shall be deactivated by the police, by the 

owner, or automatically after 20 minutes.
R2.1: The alarm signal shall start immediately after the detection 

of the open window or door.
R11: The camera shall have enough storage for 5 minutes’ video 

stream to be stored as alarm buffer.
R11.1: The recording is only initiated if motion is detected.
R28: The system shall be able to generate user-specific reports that 

document the system events.
R77: The stored video streams of the video surveillance system 

shall be safe against misuse and tampering.
R78: The time period between motion detection and start of 

recording shall be less than 0.5 seconds.
R78.1 The password shall consist of at least 10 characters and 

include special characters (such as numbers). The password 
shall be changed every 3 months, and an old password 
cannot be used again.

Fig. 10-5: Example excerpt of a requirements specification for the first application
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10.8.3 Constraint Dependencies 
By defining constraint dependencies (“requires” and “excludes”, see Section 
4.6.5 for the definitions) the domain requirements engineer restricts and/or 
enforces the binding of variation points during application engineering. The 
requirements engineer has thus to determine the essential influences among 
the variants that exist at the requirements level. In other words, the domain 
requirements engineer must elicit and document the variant to variant, vari-
ant to variation point, and variation point to variation point “requires” and 
“excludes” dependencies stemming from domain requirements artefacts. 

10.8.4 Adaptation of Product Line Variability Based on Product 
Management Decisions 

The final decisions on the variability in domain requirements artefacts are 
made by product management. In other words, product management decides: 

If a variation point identified and defined in the domain requirements 
engineering sub-process should be part of the product line or not, or 
even if a new variation point should be added. 
If the variants identified and defined in the domain requirements engin-
eering sub-process should be part of the product line or not, or even if a 
new variant should be added. 
If the variability constraints and dependencies defined in the domain 
requirement engineering sub-process are correct, or if they have to be 
adapted and how. 
Whether a variation point is categorised as external product line vari-
ability or as internal product line variability. 

Domain requirements engineers have to adapt the requirements artefacts 
affected by changes or adaptations of the variability definitions in the ortho-
gonal variability model made by product management. 

10.9 Example 

In this section, we provide an example of how to identify and document 
variable requirements for a software product line. We first provide a simple 
outline of the requirements for the first three foreseeable applications. Sub-
sequently, we demonstrate the major steps performed during commonality 
analysis, variability analysis, and during the documentation of common and 
variable requirements artefacts. Figures 10-5 to 10-7 present excerpts of the 
requirements for each of the three software product line applications. 
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requirements
artefacts

Three example 
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10.9.1 Commonality Analysis 
The identification of common requirements is done top down from abstract 
requirements artefacts to detailed ones. We use the application–requirements 
matrix to document in which applications the requirements are mandatory. In 
Fig. 10-8 a set of common requirements is identified in the application–

Second example 
application 

Goals 
G1: Protection against burglary in the office.
G… ...
G4: Meet clauses of the insurance agency.
G5: Determent of thieves through alarm signal.
Desired Features
F1: Video surveillance.
F1.1: Alarm activation.
F2: Alarm signal.
F2.1: Motion detection.
F2.4: Automatic deactivation of alarm.
F3: Alarm call.
F3.1: Call by SMS (short message standard).
F3.2: Call by internet message.
Requirements
R1: The recording of the video surveillance system shall start no 

later than 1 second after the detection of the open door or 
window.

R2: The police shall be informed about the burglary via radio 
transmission.

R3: The alarm shall be activated in case of burglary.
R3.1: The alarm signal shall only start if the police do not arrive 

within 5 minutes of alarm detection.
R3.2: The alarm (signal) shall only be deactivated by the police or 

by the owner, via password and TAN (transaction number).
R10: The time period between motion detection and start of 

recording shall be less than 2.5 seconds.
R13: The camera shall have enough storage for 5 minutes’ video 

stream to be stored as alarm buffer.
R68: The stored video streams of the video surveillance system 

shall be safe against misuse and tampering.
R68.1: The length of the password shall be at least 5 characters. The 

password shall only be changed if necessary.

Goals 
G1: Protection against burglary in the office.
G… ...
G4: Meet clauses of the insurance agency.
G5: Determent of thieves through alarm signal.
Desired Features
F1: Video surveillance.
F1.1: Alarm activation.
F2: Alarm signal.
F2.1: Motion detection.
F2.4: Automatic deactivation of alarm.
F3: Alarm call.
F3.1: Call by SMS (short message standard).
F3.2: Call by internet message.
Requirements
R1: The recording of the video surveillance system shall start no 

later than 1 second after the detection of the open door or 
window.

R2: The police shall be informed about the burglary via radio 
transmission.

R3: The alarm shall be activated in case of burglary.
R3.1: The alarm signal shall only start if the police do not arrive 

within 5 minutes of alarm detection.
R3.2: The alarm (signal) shall only be deactivated by the police or 

by the owner, via password and TAN (transaction number).
R10: The time period between motion detection and start of 

recording shall be less than 2.5 seconds.
R13: The camera shall have enough storage for 5 minutes’ video 

stream to be stored as alarm buffer.
R68: The stored video streams of the video surveillance system 

shall be safe against misuse and tampering.
R68.1: The length of the password shall be at least 5 characters. The 

password shall only be changed if necessary.

Fig. 10-6: Example excerpt of a requirements specification for the second application 

Requirements 
matrix
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requirements matrix. Those requirements that are mandatory for all applica-
tions constitute the commonality of the product line. 

In a next step, the matrix is analysed for further commonalities between the 
applications. The requirements are analysed, for example, with regard to: 

The same content, represented in different words. 
Requirements that will become common in the near future. 
Requirements that only differ slightly from each other. 
Requirements that should be common from a strategic point of view. 

Detailed
analysis

Third example 
application 

Goals 
G1: Safety against thieves.
G…: ...
G5: Video surveillance of the flat.
Desired Features
F1: Video surveillance.
F1.1: Activation by motion detection.
F...: …
F2.2: Door and window sensor.
F2.3: Manual deactivation of alarm (by owner, or police).
Requirements
R1: The police shall be informed immediately after the detection 

of an open window or door.
R1.1: The police shall be informed via internet message or SMS.
R2: The alarm signal shall start immediately after the detection 

of the open window or door.
R2.1: The alarm signal shall be deactivated by the police, by the 

owner, or automatically after 20 minutes.
R9: The video surveillance shall be active as soon as activated by 

the user.
R9.1: A recording is only initiated if motion is detected. 
R9.2: The camera shall have enough storage for 5 minutes’ video 

stream to be stored as alarm buffer.
R10: The time period between motion detection and start of 

recording shall be less than 0.5 seconds.
R11: The video recording shall continue for 2 minutes after the 

last motion was detected.
R79: The stored video streams of the video surveillance system 

shall be safe against misuse and tampering.

Goals 
G1: Safety against thieves.
G…: ...
G5: Video surveillance of the flat.
Desired Features
F1: Video surveillance.
F1.1: Activation by motion detection.
F...: …
F2.2: Door and window sensor.
F2.3: Manual deactivation of alarm (by owner, or police).
Requirements
R1: The police shall be informed immediately after the detection 

of an open window or door.
R1.1: The police shall be informed via internet message or SMS.
R2: The alarm signal shall start immediately after the detection 

of the open window or door.
R2.1: The alarm signal shall be deactivated by the police, by the 

owner, or automatically after 20 minutes.
R9: The video surveillance shall be active as soon as activated by 

the user.
R9.1: A recording is only initiated if motion is detected. 
R9.2: The camera shall have enough storage for 5 minutes’ video 

stream to be stored as alarm buffer.
R10: The time period between motion detection and start of 

recording shall be less than 0.5 seconds.
R11: The video recording shall continue for 2 minutes after the 

last motion was detected.
R79: The stored video streams of the video surveillance system 

shall be safe against misuse and tampering.

Fig. 10-7: Example excerpt of a requirements specification for the third application 
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Example 10-9: Identifying Similar Goals 

Application 1, G1: “protection against burglary” 
Application 2, G1: “protection against burglary in the office” 
Application 3, G1: “protection against thieves” 
The three goals of the different applications can be described by one 
common goal: “protect against burglary”. 

Application–
requirements matrix 

Requirements App. 1 App. 2 App. 3

The police shall be informed immediately after the
detection of an open window or door.

mandatory

The police shall be informed via internet message or
SMS mandatory

The alarm signal shall start immediately after the
detection of the open window or door mandatory mandatory

The alarm signal shall only start if the police does
not arrive within 5 minutes after alarm detection

mandatory

The alarm signal shall be deactivated by the police,
by the owner, or automatically after 20 minutes 

mandatory mandatory

The video surveillance is active as soon as activated
by the user mandatory

… … … …

A recording is only initiated if a motion is detected. mandatory mandatory

The camera shall have storage for 5 minutes' video
stream to be stored as alarm buffer

mandatory mandatory mandatory

The time period between motion detection and start
of recording shall be less than 0.5 seconds 

mandatory mandatory

The time period between motion detection and start
of recording shall be less than 2.5 seconds 

mandatory

The video recording shall continue 2 minutes after
the last motion was detected mandatory

The stored video streams of video surveillance
system shall be safe against misuse and tampering

mandatory mandatory mandatory

Fig. 10-8: Using the application requirements-matrix to identify variability 
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In Example 10-9 we illustrate three different goal descriptions that can be 
summarised by a single goal “protection against burglary”. 

10.9.2 Variability Analysis 
The application–requirements matrix presented in Fig. 10-8 is used to iden-
tify an initial set of variable aspects among the requirements of different 
applications. The candidates for variable requirements, which we focus on in 
the following, are highlighted in Fig. 10-8 by grey bars. The requirement 
“the alarm signal shall be deactivated…” is variable because it is only man-
datory for applications “App. 1” and “App. 3”. In addition, the requirement 
itself contains variable aspects; see Examples 10-10 and 10-11. 

Example 10-10: Variable Aspects Within a Requirement 

The requirement differentiates among the following variants: ‘The 
alarm signal shall be …’ 
Variant 1: “…deactivated by the police” 
Variant 2: “…deactivated by the owner” 
Variant 3: “…deactivated automatically after 20 min.” 

Example 10-11: Variants Among Different Applications 

For the authentication variant ‘password authentication’ the security 
requirements differ among the applications. App. 1 requires a high 
password quality, whereas App. 2 requires a low password quality. 
Variant 1 ‘high password quality’: Req-78.1, App. 1: “The password 
shall consist of at least 10 characters and include special characters 
(such as numbers). The password shall be changed every 3 months, 
and an old password cannot be used again.” 
Variant 2 ‘low password quality’: Req-68.1, App. 2: “The password 
shall be at least 5 characters long. The password shall only be changed 
if necessary.” 

10.9.3 Defining Variation Points and Variants 
The correct definition of variation points is essential, since a variation point 
provides the central location for binding the variability during application 
engineering. Typically, the variation subject is a good indicator for a vari-
ation point and its name. In Example 10-12, we define the variability subject 
by abstracting from related variants. 

Identifying variable 
requirements 

Determining the 
variability subject 
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Example 10-12: Defining a Variation Point for a Set of Variants

By abstracting from the requirements “the alarm signal shall be deac-
tivated…” we define the variation point ‘alarm deactivation’. More-
over, we define only two variants as manual deactivation can be done 
by any person authenticated by the system. 
Hence, for the variation point ‘alarm deactivation’ the following vari-
ants are available: 
Variant 1: “…manual deactivation by an authenticated person” 
Variant 2: “…automatic deactivation after 20 minutes” 

10.9.4 Defining Variability Dependencies 
After determining the variation point and its variants, the required variability 
dependencies have to be defined. We illustrate this step in Fig. 10-9 for the 
variation point ‘alarm deactivation’ from Example 10-12. 

Example 10-13: Definition of Variability Dependencies

The variants ‘manual’ and ‘automatic’ shall be optional variants for 
deactivating the alarm. Exactly one of them must be selected for an 
application. Hence, we relate them to the variation point ‘alarm deac-
tivation’ using optional variability dependencies and group the 
dependencies by an alternative choice with a range of [1..1]. As this is 
the default range we do not show it in Fig. 10-9. 

10.9.5 Defining Constraint Dependencies 
In Example 10-14, we illustrate the use of a constraint dependency between 
a variant and a variation point. If the variant at the source end of the con-
straint dependency (‘video surveillance’) is selected, the variation point at 
the target end (‘video surveillance quality’) has to be bound by selecting the 
desired variants. The selection thus has to take into account the defined vari-
ability dependencies and alternative choices. 

Alarm
Deactivation

VP

Automatic
V

Manual
V

Fig. 10-9: Example of a variation point with a an alternative choice of two variants 

Variant to variation 
point constraint 



10.10  Differences from Single-System Engineering 215

Example 10-14: Use of the “Requires” Constraint Dependency 

The ‘requires_v_vp’ dependency between the variant ‘video surveil-
lance’ and the variation point ‘video surveillance quality’ (Fig. 10-10) 
means that the video surveillance system is available in different 
quality variants, such as required by the individual applications. 

10.9.6 Documenting Domain Requirements 
Commonality and variability have to be defined in the various requirements 
artefacts and related to the corresponding concepts (variants and/or variation 
points) in the orthogonal variability model. Figure 10-11 illustrates an 
excerpt of a variable use case scenario, which is enriched by XML tags. 
These XML tags structure the textual scenario in different elements. Due to 
the definition of the elements in the scenario the variable parts (e.g. steps, 
preconditions, etc.) of the use case scenario can be related to the corres-
ponding variants in the variability model. 

10.10 Differences from Single-System Engineering 

The main goal of domain requirements engineering is the prospective devel-
opment of common and variable requirements artefacts for the product line 
in order to enable large-scale reuse in application engineering. Consequently, 
the requirements engineering activities (elicitation, documentation, negoti-
ation, and validation/verification) do not deal with a single application but 
with the requirements of all envisioned product line applications. The 
requirements engineer has to involve a potentially large number of different 
stakeholders (product managers, architects, customer groups, maintenance 
staff, etc.) and different requirements sources (legacy systems, country laws, 
etc.) to be able to identify all relevant common and variable requirements. 
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Fig. 10-10: “Requires” dependency between a variant and a variation point 
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<variation point name = "alarm system">
<optional-variant name = "video surveillance">
Use Case Name: activate video surveillance
Precondition: system online 
<variation point name = "alarm activation"> 
<alternative-variant name = "authentication first" >
USER SYSTEM
1. select video surveillance
2. request authentication
3. authenticate
4. provide access
5. request activation of surveillance
6. confirm activation
7. logout
</alternative-variant>
<alternative-variant name = "access first">
USER SYSTEM
1. select video surveillance
2. provide access
3. request activation of surveillance
4. request authentication
5. authenticate
6. confirm activation
7. logout
</alternative-variant>
</variation point>

…

<variation point name = "alarm system">
<optional-variant name = "video surveillance">
Use Case Name: activate video surveillance
Precondition: system online 
<variation point name = "alarm activation"> 
<alternative-variant name = "authentication first" >
USER SYSTEM
1. select video surveillance
2. request authentication
3. authenticate
4. provide access
5. request activation of surveillance
6. confirm activation
7. logout
</alternative-variant>
<alternative-variant name = "access first">
USER SYSTEM
1. select video surveillance
2. provide access
3. request activation of surveillance
4. request authentication
5. authenticate
6. confirm activation
7. logout
</alternative-variant>
</variation point>

…

Fig. 10-11: Example of a variable, textual scenario description

10.11 Summary 

Along with the elicitation of requirements from different sources, the domain 
requirements engineering sub-process has to identify which requirements are 
common to all applications, and which requirements differ among the appli-
cations. Hence, also during domain requirements engineering a commonality 
and variability analysis is performed. The application–requirements matrix 
provides a synopsis of the high-level requirements for several applications 
and can thus be used to support the identification of commonality and vari-
ability. A more sophisticated analysis can be performed on a set of priori-
tised requirements. In addition, checklists can be used to guide the identifi-
cation of common and variable requirements. 

To support efficient communication and to enforce consistency of the vari-
ability of the software product line, the variability is defined in the orthogo-
nal variability model. Variability modelling involves the identification and 
definition of variation points, variants, variability dependencies, and con-
straint dependencies. Variation points and variants are identified by abstrac-
ting from variable requirements and/or by grouping similar requirements 
artefacts. Architects have to be involved in the definition of product line 
variability as the variability has a strong influence on the reference archi-
tecture. External variability is defined together with product management. 

Identification of 
commonality and 

variability

Definition of 
variability
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In this chapter you will learn: 

o About the interrelations of the domain design sub-process with the domain 
requirements engineering, domain realisation, and application design sub-
processes. 

o The key mechanisms to embed variability into a reference architecture. 
o About the consideration of quality requirements, in particular flexibility, 

evolvability, and maintainability, for the reference architecture. 

Frank van der Linden 
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11.1 Introduction 

The main goal of the domain design sub-process is to produce the reference 
architecture, defining the main software structure and the texture. The 
architect determines how requirements, including variability, are reflected in 
the architecture. The sub-processes and artefacts closely related to the 
domain design sub-process are highlighted in Fig. 11-1. 

The most important connections of domain design are the relations with 
domain requirements engineering, domain realisation, and application 
design; see Fig. 11-1. Domain design provides a reference architecture for 
the software product line to domain realisation and to application design. An 
important characteristic of this architecture is the ability to select and con-
figure reusable software artefacts. 

11.1.1 Interrelation with Domain Requirements Engineering 
Domain requirements engineering is responsible for providing common and 
variable requirements together with a variability model that defines the 
external variability of the product line but may also define internal variabil-

Goals of 
domain design 

Fig. 11-1: Sub-processes and artefacts related to domain design 

Requirement
variability
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ity (  in Fig. 11-2). The input from domain requirements engineering is 
used to determine the technical solutions that are chosen in the reference 
architecture. The variability model defines the basis for the variability in the 
reference architecture. It is adapted in domain design by resolving part of the 
variability and adding internal variability. 

Domain requirements engineering and domain design are performed iter-
atively. Due to the decisions made in domain design and the additional 
insights gained, the need for detailed and for revised requirements arises 
(  in Fig. 11-2; Chapter 10 describes this interrelation in more detail). In the 
course of the interplay between domain requirements engineering and 
domain design, the stakeholders assign priorities to the requirements. The 
architects use the priorities to guide the design process. 

11.1.2 Interrelation with Domain Realisation 
Domain design provides the reference architecture to domain realisation 
(  in Fig. 11-2). The reference architecture includes a variable structure that 
is the basis for the structures of all applications. Furthermore, the reference 
architecture provides the texture of reusable components and interfaces (we 
elaborate on the architectural structure and texture in Chapter 6). Along with 
the reference architecture, a selection of reusable domain artefacts that 
domain realisation must build is passed on. The selection of artefacts 
encompasses the reusable components and interfaces as well as their 
traceability to application-specific components and interfaces. 

The most important task of domain realisation is to build the reusable com-
ponents and interfaces. Issues arising in realising domain artefacts, e.g. 
problem reports, are provided as feedback to domain design to improve sub-
sequent design (  in Fig. 11-2). 
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Fig. 11-2: Information flows between domain design and other sub-processes 
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11.1.3 Interrelation with Application Design 
Domain design supplies the reference architecture to application design, 
which has to specialise the reference architecture for a single application 
(  in Fig. 11-2). In doing so, application design has to obey the rules 
defined in the architectural texture. As the application developers must know 
what reusable software artefacts are available, the reusable software artefact 
selection is also passed on to the application design process. 

Application design provides feedback to domain design in terms of requests 
for additional and altered design artefacts (first bullet of  in Fig. 11-2). For 
example, the application architect may find that the architectural structure is 
not sufficient for a particular kind of application. By providing this kind of 
feedback, the application architect initiates improvements in the reference 
architecture. Furthermore, application design may provide domain design 
with design artefacts to be integrated into the platform (second bullet of  in 
Fig. 11-2). Such artefacts are newly developed parts of the application archi-
tecture that are of interest for the product line. To integrate them into the 
reference architecture means initiating an evolution of the product line and 
investing additional effort for reengineering. The reengineering ensures 
flexibility and prepares the corresponding artefacts for reuse. The decision 
on whether the application artefacts are integrated into the product line is 
made by product managers and domain engineers. 

11.2 Traditional Design Activities 

The most important single-system design activity is to define an architecture, 
which determines the way the system is going to be built. Requirements, 
including their variability, have to be mapped to technical solutions, to be 
used during the realisation of the system. The architecture determines the 
structuring of the software into parts and their relationships and the common 
rules to be applied. To support this, the architect performs the following 
supporting activities: 

Abstracting: This activity clusters information of the system in abstrac-
tions by considering certain aspects only. This reduces complexity of 
the design. Separate abstractions deal with different aspects of the sys-
tems. 

Modelling: This activity relates abstractions to each other in order to 
enable reasoning about them. 

Simulating: This activity “executes” certain models in order to measure 
certain system aspects. There is often a software execution theory avail-

Reuse of reference 
architecture

Feedback from 
application design 

Building an 
architecture

Complexity
reduction

Support for 
reasoning

Model 
execution



11.3  Quality Requirements 221

able that allows translating the measurement results into actual system 
properties.

Prototyping: This activity produces fast implementations, covering 
important system aspects. The purpose is to execute the prototype to 
measure how actual systems behave. 

Validating: In addition to the design activities, the architect has a role in 
the validation of the realisation results. The validation considers 
whether the architecture is obeyed by the realisation sub-process. 

11.3 Quality Requirements 

Many requirements do not deal with the functionality. Instead, they are 
related to the quality of the resulting systems, dealing with issues like per-
formance, security, safety, and usability. The architect tries to localise these 
concerns by addressing them in specific parts of the structure or texture only. 
This may be done by having separate components and interfaces dealing 
with the requirement at hand, or the determination of certain aspects, giving 
rise to texture, which applies to all components. 

In addition, requirements originating from the development organisation 
have an impact on the choice of the architecture. For instance, the organi-
sation needs to do early integration and testing, which means that the archi-
tect has to make a system that can be developed incrementally. Whenever 
realisation has finished an increment, integration and testing can proceed in 
parallel with the realisation of the next increment. 

Architecture evaluation is a means to assess the architecture according to 
certain selected quality requirements. The architecture is tested against a set 
of development scenarios [Kazman et al. 2000]. These scenarios deal with 
the quality issue at hand, such as preventing unauthorised intrusion into the 
system, or dealing with a user that does not act according to the manual. 

Certain quality requirements arise just from doing software product line 
engineering. The most important ones are support for variability, flexibility, 
evolvability, and maintainability. Quality assurance also has to ensure that 
these qualities are met, for instance through reviews of the architectural 
design. Architecture reviews are fundamental to ensure a high quality of all 
products.

Variability support is crucial for domain design. The architect determines 
which configuration mechanisms to use and where they should apply. The 
work of application design and realisation relies upon the choice of the right 
mechanism. Only when the adequate configuration mechanisms are chosen 
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can quality products be derived easily and is mass customisation supported 
(see Section 12.5 for a description of configuration mechanisms). 

Software developers have to be aided in finding easily the right way to build 
applications based upon variable requirements. Variability available in the 
requirements has to be designed into variability in the architecture. In add-
ition, technical options may introduce additional internal variability, which 
has to be incorporated as well. 

Flexibility is a quality of the architecture providing easy changes. As not all 
future applications can be envisioned, the architecture needs to have ways to 
cope with that, still keeping its high quality to remain usable for the product 
line. When new applications arise in the product line that have unexpected 
requirements, the architecture should be ready to accommodate such envir-
onments. It is important to distribute different, identifiable pieces of func-
tionality over different components and interfaces. In this way, there can be 
independent solutions for each of these. In addition, variation points where 
unexpected variants may be introduced later are ways to separate them even 
further. Texture that allows late binding times in the realisation sub-process 
increases the flexibility, since variation points may be bound late in the reali-
sation phase. For instance, the use of plug-in components and their specific 
properties is a decision involving the texture. Plug-in components have only 
few dependencies on the remainder of the system, and thus allow late bind-
ing.

Example 11-1: Flexibility in Lock Control 

The architecture of the lock control has incorporated several means for 
flexibility. For instance, the separation of the functionalities of lock 
control, authentication, and user control enables adaptations to each of 
them, independent of the others. This is shown in Fig. 11-3. Improve-
ments stay local, increasing the flexibility. In addition, the use of sepa-
rate plug-in components for each of them improves flexibility further. 
By using the right plug-in components, all kinds of lock control are 
configured even at late binding times. 

Evolvability is the quality of being able to evolve the architecture according 
to requirements changes that will possibly come in future. This quality goes 
further than flexibility, which only demands that new systems can be accom-
modated. Evolvability deals with changes to the architecture itself. The 
architecture has to evolve, since not all future needed solutions are incor-
porated now. However, existing applications in the product line still need to 
conform to the architecture. Otherwise, the product line cannot be managed 
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well and the architecture may deteriorate to a low quality. Evolvability 
ensures that the architecture does not change drastically. 

An important precondition for evolvability is a clear separation of concerns. 
Solutions for certain stable classes of quality requirements should be as 
independent as possible from solutions for less stable classes of quality 
requirements. Solutions for these latter ones should be as independent from 
each other as possible. Mechanisms that help in evolvability are the layering 
of the architecture to separate lower and higher level concerns. Other useful 
techniques are the use of separate frameworks for separate quality require-
ments, and the introduction of separate architecture views for them. Still, 
there is no simple way to measure the evolvability of architectural models. 
The degree of evolvability achieved depends on which kinds of adaptations 
will occur in the future. 

Example 11-2: Evolvability of Lock Control 

Evolvability of architectural models cannot be measured easily from 
the architectural models. It depends on an appropriate separation of 
concerns. Given the separation of concerns depicted in Fig. 11-3, for 
instance, the need may arise to separate user control for entering the 
building and user control for managing information, since both evolve 
differently. Yet, distinguishing too many separate concerns hampers 
evolvability, since each adaptation may affect many different con-
cerns.
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Maintainability is the quality of being able to resolve changes in applications 
in the field. Maintainability is improved by the possibilities to use late-
binding techniques that allow the uploading of new software and the removal 
of unwanted software. As the product line evolves, errors are fixed, and sys-
tems in the product line have to be adapted accordingly, resulting in a good 
quality for all products in the product line. As the product line grows, main-
tainability must be supported adequately. Many present-day commercial 
operating systems have a component infrastructure support to facilitate such 
update actions. Maintainability also deals with the ease of finding errors in 
running systems. The field support may use a separate field support frame-
work to be able to inspect every running component, and/or to have debug 
reports available. 

Example 11-3: Maintainability of Lock Control 

Maintainability of lock control is related to the conformance to stand-
ards of the architectural texture and the availability of rules dealing 
with maintainability in the texture of the architecture. For instance, the 
texture may demand that each component provides a maintenance 
interface; see Fig. 11-4. This interface allows the internal state of the 
component to be read and adapted and to enable logging for actions 
with the component. Actual logging is performed by a different com-
ponent. This enables the plug-in of different logging mechanisms for 
different purposes. Maintainability is improved if maintenance can be 
done remotely through Internet or phone connections. In addition, the 
maintainability is facilitated if components can be replaced on the fly 
with improved ones. The use of a separate initialisation and recovery 
interface for the component allows it to be reset and to initialise an 
updated version of it. 

Reference architecture evaluation is a quality assurance technique. It uses 
scenarios for the above-mentioned product-line-related quality requirements. 
Such a scenario is, for instance, the addition of a new application to the port-
folio with more or less different requirements. For software product line 
engineering, an assessment of the reference architecture is crucial, at least 
for the product-line-related quality requirements. Only an architecture that 
supports the quality requirements sufficiently will survive long enough to be 
a reference architecture. 
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Example 11-4: Evaluation of the Home Automation Architecture 

Assessment of the home automation architecture uses the require-
ments in a systematic way to check the architecture. The software pro-
duct line properties discussed above are part of the requirements. Use 
cases dealing with these topics have to be identified and prioritised. It 
is checked how the architecture behaves under the mentioned use 
cases. Such use cases are described in Examples 11-1 to 11-3. They 
deal with independent improvements of functionality, addition of new 
functionality, and maintenance scenarios. 

11.4 Commonality and Variability in Design 

A large part of the commonality and variability in the reference architecture 
originates from the commonality and variability in requirements. An essen-
tial issue for domain design is to take into account the requirements variabil-
ity in the development of the reference architecture. As the reference 
architecture typically cannot realise all requirements to the same extent, a 
prioritisation of requirements is necessary. Moreover, domain design has to 
add variability for different reasons such as the preparation for future 
changes in requirements (see Section 9.7 and Chapter 10 respectively for 
details on commonality and variability analysis). 

In the following subsections, we elaborate on requirements prioritisation in 
software product lines and describe the resulting mapping between require-
ments and design. Finally, we deal with the basic rules for adding variability 
in design. 
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11.4.1 Requirements Prioritisation 
Based on the requirements prioritisation established during domain require-
ments engineering, the architect prioritises the requirements and considers 
those with the highest priority first. In software product line engineering, the 
design for flexibility, evolvability, and maintainability typically has the 
highest priority. This usually results in common decomposition rules and 
patterns within the architecture [Buschmann et al. 1996]. For instance, the 
decision to use a layered component-based architecture is inspired by these 
requirements. When performance is an important common issue, it should 
result in common patterns for process creation and interaction, for example, 
and in common guidelines for resource usage. When usability is an impor-
tant common requirement, then it is important to have specific subsystems 
dealing with the user interaction. Note that these common solutions are 
applicable if their issues are important for a large group of applications to be 
considered, even if the corresponding requirements involve variability. If 
possible, a single design covering low- and high-end requirements for a 
single issue improves the effort needed to develop and maintain the applica-
tion.

Example 11-5: Commonality in the Reference Architecture 

The home automation reference architecture is layered to differentiate 
between ‘basic control’, ‘device control and management’, ‘home 
functions’, and ‘integrated functions’. The architecture is component 
based. For each of the layers, specific frameworks are present to fix 
the variation points and variation mechanisms. Figure 11-3 shows a 
framework within the ‘home functions’ layer. It defines a fixed con-
figuration of the components ‘user control’, ‘lock control’, and 
‘authentication’. Each of the components has to be specialised by 
plug-in components for the different variants. The framework deter-
mines the presence of interfaces and the components carrying them for 
the required functionality. 

Lower priority requirements have to fit into the structure determined by the 
higher priority requirements. This often leads to the introduction of a frame-
work following the already established rules. Consequently, satisfaction of a 
requirement is distributed over several places in the framework. For in-
stance, the functionality is distributed over several layers. Often it is the case 
that both components and interfaces are needed for satisfying a given 
requirement. The initial requirements may have given rise to common, tex-
tural rules to determine the distribution of the requirements over several 
components. 
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11.4.2 Mapping Between Requirements and Design 
There are several reasons why the traceability relationship between require-
ments and architecture is not a simple one-to-one mapping; see Fig. 11-5. 
There are even circumstances when a common requirement is related to a 
variable architecture asset and vice versa. However, a good architect lets the 
traceability relationship be a few-to-few mapping, where “few” is deliber-
ately a vague word, and is certainly dependent on the circumstances. How-
ever, traceability is only usable when it is comprehensible. Reasons for 
deferring from a simple one-to-one mapping are: 

Interaction of the requirements. 
Product line requirements, like flexibility and adaptability. 
Technology options. 
Availability of development resources (people, tools, etc.). 
Preparation for the future. 

Requirements variability is an important source of variability in the refer-
ence architecture. Variation in requirements often results in variation in 
design and/or realisation. The architect analyses the commonality of the 
variation first, reducing the variation to a minimum to ease flexibility and 
evolvability. Except for this external variability, originating from variability 
in requirements, the design also takes additional internal variability into 
account, which is introduced by the technical solution. Differences in quality 
requirements may lead to differences in hardware devices or basic software 
functionality such as used protocols or data base access. This results in 
variation at several places in the software. The commonality is captured in 

Few-to-few
mapping

Requirements
Common Artefacts

Variation Points

Variable Artefacts

Reference Architecture
Common Artefacts

Variation Points

Variable Artefacts

Traces

Fig. 11-5: Traceability between common and variable requirements and architecture assets

Influence of 
requirements
variability



228 11.  Domain Design 

the texture and in frameworks. The variation is captured in multiplicities and 
plug-in components. 

The trace links in Fig. 11-5 document the relation between requirements 
variability and variability in the reference architecture as well as between 
domain requirements and domain design artefacts. The links enable, for 
instance, the estimation of the impact of changes in the course of a change 
management process. 

Because of the initial design choices on quality requirements, the remaining 
variability is often distributed, for instance because several subsystems and 
layers are involved. The architect has to avoid duplication of the same 
information as far as possible. It is not a good idea to have the parameters of 
a single variation point distributed over several places in the application. A 
possible solution is to store the parameters at a single place, and let other 
parts of the application access this place to get their information. 

Example 11-6: Duplication of Variability Information 

In the lock control software, several parts need to know the number of 
door actuators. The door lock control software needs to know how 
many of them are connected to a single door, and have to be actuated 
in case of opening it. The ‘actuator control’ component in the ‘device 
control and maintenance’ subsystem activates the actuators and regu-
larly checks the correct functioning of them. It needs to know the 
number of all actuators and for each of them the port and address to 
use to submit opening and closing commands. It may even be the case 
that the actuators for both doors and windows are controlled by the 
same component. It is not a good idea to have the number of door 
actuators for each door stored in the ‘lock actuator plug-in compo-
nent’, and independently have the number and addresses of all actu-
ators stored in the ‘actuator control’ component. It is better to have a 
‘lock actuator configuration’ component, storing the number of doors 
(and windows) and store the mapping of actuators and their addresses; 
see Fig. 11-6. The ‘lock actuator configuration’ component provides 
door opening functionality towards the ‘lock actuator plug-in compo-
nent’ that is not interested in the exact number of actuators per door, 
only in the number of doors that can be opened. The ‘actuator control’ 
component needs the number and exact address information, but does 
not need the mapping towards actual doors and windows. 
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11.4.3 Adding Variability in Design 
Future changes in technology find their way into architecture variability. In 
many cases, it is known several years in advance that certain technology will 
become available or change. Often it is clear where the new technology 
should fit. The architect introduces variation points for future variants. The 
variants are designed only as soon as the technology becomes available. 

Example 11-7: Future Technology for Home Automation 

Introducing iris scan authentication affects the ‘basic control’ layer 
through the introduction of a new driver; see Fig. 11-7. The ‘device 
control and management’ layer and the layers above it are adapted at 
selected places, which deal with authentication. ‘Integrated functions’ 
may be unaffected, because they may abstract from the specific 
authentication method used. 

A main concern of the architecture is to deal with unstable requirements. 
This means that it is known or expected that these requirements will change 
over time. In discussion with product management and requirements engin-
eers, it should be made clear which new or adapted requirements can be 
expected in the shorter or longer term. The architecture has to support future 
adoption of these requirements as far as possible. Just as with normal 
requirements, the expected priority of the new requirement influences how 
much impact the requirement has on the architecture, and whether the archi-
tect should take measures at an early stage to deal with them. For instance, 
through the introduction of frameworks and the use of their plug-ins, the 
necessary changes are bound to specific locations. Nevertheless, late changes 
to the reference architecture cannot be avoided completely. 
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Example 11-8: Expected Requirements Changes in Authorisation 

Within the authorisation software, the present systems deal with key 
and card locks. It is expected that in future technology will become 
available that allows authorisation based upon fingerprints, iris scan or 
voice or face recognition. These latter ways of authorising have higher 
storage, processing, and bandwidth requirements than what is neces-
sary for the present applications. The architecture may already intro-
duce measures for dealing with this, e.g. separate authorisation 
variation points dealing with different algorithms and processing 
requirements; see Fig. 11-8. 
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There may be several manufacturers producing a similar piece of equipment. 
However, they all differ more or less. The differences may be visible to the 
clients of the applications, because there are differences in behaviour of the 
equipment, which are related to behavioural variability of the application. 
However, some of these differences are not visible to the clients. They relate 
to the choice of the manufacturer to support a certain protocol, or have dif-
ferent approaches towards ensuring correct functioning, e.g. repeated trig-
gering, or active fault management at the equipment side. It is not always a 
wise choice to reduce this supplier variability. This is part of the risk man-
agement of the home control systems provider. Being dependent on a single 
manufacturer for a specific piece of equipment can mean that the freedom to 
negotiate the price is diminished. Moreover, there is a risk that the manu-
facturer may go out of business, or redesign its own equipment in such a way 
that it becomes less useful. The architecture has to take into account this 
kind of variability. 

Example 11-9: Actuator Variability 

The home automation application developer uses eight types of 
actuators from five different manufacturers, supporting three proto-
cols. They have four levels of robustness with regard to failure. Only 
the latter point is of relevance for the customers. They see this in the 
robustness and guaranteed speed of opening a door. The other vari-
ability is hidden in the ‘device control and maintenance’ subsystem, 
which has variants for all these kinds of actuators; see Fig. 11-9. 

11.5 Designing the Reference Architecture 

In this section, we elaborate on the major topics of designing the reference 
architecture that are related to variability. In particular, we deal with compo-
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nent frameworks, the use of application-specific components, the use of 
aspects, and the role of the architectural texture. 

11.5.1 Use of Component Frameworks 
The reference architecture typically consists of a large number of compo-
nents that can be connected through interfaces. Component frameworks 
(Definition 6-8) restrict the number of component configurations. If the con-
figuration task is completely left up to application developers without any 
restrictions, configurations can be made that are unwanted since they lead to 
unusable or badly performing applications. The application developer may 
not find the right configuration within reasonable time, because the number 
of possibilities is too large. 

Components and interfaces are important domain artefacts. A framework 
provides a common structure of components and interfaces. At predefined 
places, plug-in components may be added. Plug-in components may be 
application specific. In cases where many applications use a specific plug-in 
component, it may be designed as a reusable domain component as well. 
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The reference architecture determines many frameworks to support a diver-
sity of quality requirements. After a framework is chosen, they guide further 
design. Each framework demands a number of plug-in components to be 
provided. Concerns related to the plug-in components can be designed inde-
pendently. However, if in future a new independent concern arises, there is a 
need to adapt the framework, which may be hard to do. This is a drive to 
increase the number of plug-in components. On the other hand, if there is a 
group of plug-in components that always change together, it is not a good 
idea to separate them. Separate realisations cannot profit from each others’ 
knowledge, which may lead to less development efficiency. This is a drive to 
fewer plug-in components. 

Example 11-10: Framework Use 

Figure 11-10 shows a domain-specific framework for home automa-
tion. It contains a fixed configuration of ‘lock control’, ‘user control 
manager’, and ‘authentication manager’ components. In addition, sev-
eral plug-in components are in the diagram to address separate con-
cerns for ‘door lock’, ‘authentication’, ‘user control’, ‘door actuator’, 
and ‘door sensor’. This enhances flexibility since realisation can pro-
vide independent solutions for each of these issues. However, it also 
restricts future adaptations of the application. 
There may be different rules for the use of plug-in components. 
Although the ‘authentication plug-in’ component is optional, the ‘user 
control plug-in component’ has to be available. This means that it has 
to be provided even in cases, not yet conceived, where no user control 
is needed, e.g. because it is triggered by a clock, by weather condi-
tions, or by something else in the environment. Of course, even in 
these cases, a solution can be found in a default ‘user control plug-in 
component’, or a mock-up simulation user control. An even larger 
problem occurs when a future design not only needs actuators and 
open/close sensors, but for instance also a sensor to measure a dis-
tance in which the door is open.35 This needs a redesign of the frame-
work, where also ‘lock control’ may need adaptation. Since such 
applications are not yet envisioned, the framework is not made that 
general, since that would hamper present-day realisation. 

Not all frameworks are domain-specific. Many frameworks, for more or less 
basic functionality, can be acquired externally in the market; see for instance 
the collection of frameworks in J2EE [Alur et al. 2003]. An architect 
chooses to use such external frameworks in the reference architecture to 

                                                     
35 This distance is measured in a certain way, e.g. an angle or an opening width. 
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solve common problems. The choice of such a framework speeds up design. 
However, it restricts the architecture much more than a domain-specific 
framework, since it cannot be adapted at all. Therefore, the use of an exter-
nal framework supports the independent solution of certain concerns from 
each other, whereas for other concerns, no support is available, and the 
architect has to provide solutions. 

11.5.2 Use of Application-Specific Plug-ins 
The reference architecture determines what reusable software assets are in 
the software product line. This covers not only the commonality over the 
applications, but also variants that are chosen often. By using many of these 
prepared variants, application engineering can be very efficient. However, 
there may be cases where reusable assets are not applicable, e.g. because of 
very specific requirements. In that case, the application architect defines 
application-specific variants at places where this is allowed by the reference 
architecture. The domain architect has to prepare for the possibility of such 
application-specific variants. 

Example 11-11: Domain- and Application-Specific Components 

The requirements have a variation point for the support of different 
kinds of door locks. Variants are the distinct door locks, both manual 
and different kinds of electronic locks. Consequently, the reference 
architecture for home automation also defines one or more variation 
points for door locks. If an electronic door lock is chosen, a terminal 
and a key database are necessary, each with its own variability. The 
simplest way to realise the variation point is to define an interface that 
the door lock software has to provide. In this case, the variants have to 
be developed for each application separately, and are not part of the 
reference architecture. This may put a lot of effort on application 
engineering, which hampers mass customisation. Therefore, the 
architect defines generic, reusable components that do not 
differentiate between the different types of locks. The generic terminal 
and database components are optional, but still generic and reusable. 
The variants of locks, terminals and databases can be designed inde-
pendently as variant-specific components. By satisfying mass cus-
tomisation requirements, the single variation point in the requirements 
is spread over different parts of the architecture. 

11.5.3 Use of Aspects 
The domain architect introduces aspects [V.d. Linden and Müller 1995] to 
recurring problems of realisation, thereby both reducing the effort of realisa-
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tion, and improving the commonality over the complete design. Aspects 
provide solutions for several architectural concerns, such as maintainability. 
The texture contains, for instance, realisation guidelines and the rule to sepa-
rate aspects. The architect may require separate interfaces for certain aspects, 
to be provided or required by each component. Although this holds for any 
architectural concern, it certainly holds for rules regarding variability. A 
common treatment of variability eases subsequent application configuration, 
since only a few recognised variability-binding mechanisms are used. 

Example 11-12: Aspect-Related Interfaces in Home Automation

The architecture requires the provision of interfaces for the following 
aspects: enabling a uniform treatment of ‘initialisation & recovery’, 
‘self test’, ‘configuration’, and ‘field service’. In addition, it is 
required that a component uses specified interfaces for certain other 
aspects, for ‘logging’, ‘data access’, ‘error handling’, and ‘process 
handling’. In Fig. 11-11 a component is shown with its aspect inter-
faces.

11.5.4 Role of the Architectural Texture 
The architectural texture consists of coding rules and general mechanisms 
such as styles [Shaw and Garlan 1996] and design patterns [Gamma et al. 
1995] to deal with specific situations that may occur during design, realisa-
tion, and coding. Texture determines the common solution for high-priority 
requirements and decomposition rules for lower priority requirements. It is 
the main set of guidelines used for realisation. 
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In the case of software product line engineering, the texture has to be present 
within all applications. In particular, this means that the texture is defined 
once for all applications, and thus it is a part of the commonality in the 
architecture. Textures are also used to provide a common way to deal with 
variability. We introduce some commonly used textures for variability. 

A framework is part of the texture, since it restricts the variability to using 
plug-in components at predefined places. Inside the framework, there may 
be widespread use of certain patterns. For instance, in the framework we 
have a high-level controller surrounded with specific managers, each con-
trolling a single type of hardware or software device. The specific device is 
implemented through a plug-in component. In addition, the use of registra-
tion of the plug-in components is part of the texture. 

Example 11-13: Textures for Home Automation 

Within the home automation example the texture contains the facade 
pattern [Gamma et al. 1995] for providing a single interface at subsys-
tem level. It uses the observer pattern for decoupling user interface 
issues from the data. With regard to the quality requirements of 
flexibility, evolvability, and maintainability, the texture determines the 
use of layers and components, as well as the role of the layers and 
which piece of functionality has to be implemented in which layer. 
For instance, single-device control has to be done in the ‘device con-
trol and management’ layer; see Example 11-5. In addition, the texture 
requires the presence of certain common interfaces in each compo-
nent, such as a maintenance interface, a debug interface, a reset inter-
face, and an initialisation interface. 

11.6 Architecture Validation 

In this section, we describe the issues for architecture validation that arise 
from domain design. The reference architecture is an important asset that 
determines the design of many software assets. Because knowledge of the 
reference architecture is necessary for the validation, the architect is often 
involved in the validation of these assets. In particular, this holds for the 
application architectures and the results of domain realisation. 

In order to keep the application architecture consistent with the reference 
architecture, it has to be validated. This mainly involves checking the struc-
ture and the texture. Only after the application architecture is validated 
should it be used to build the application. In that case, ease of integration of 
domain assets can be guaranteed. 

Texture is part of the 
common platform 

Frameworks

Validation of 
application 

architecture



11.6  Architecture Validation 237

Example 11-14: Application Architecture Check 

In the home automation case, the domain architect checks whether 
newly provided plug-in components meet the structural rules of the 
virtual plug-in components provided by the reference architecture. 
They should carry the right interfaces, and they should be present in 
the right subsystem. Other components should not call the plug-in 
components directly. Otherwise, it is difficult to replace the plug-in 
components with new ones. 

After domain realisation has finished with the design of a component or 
interface, the design must be validated for conformance to the architecture. 
Both structure and texture should be checked. For instance, the following 
checks may be performed: 

Do interfaces carry the right functionality to the right level of abstrac-
tion?
Are components and interfaces produced according to texture? 
Does each component carry all its interfaces, and no more? 
Do components call only the required interfaces, and all of them? 

If the asset does not conform to the architecture, problems may occur in 
future, both in maintaining the software and in fulfilling all kinds of depend-
ability requirements. In that case, a redesign should be done. 

Example 11-15: The Architecture Review of ‘ Simple Lock Control’

After the design of the ‘basic lock control’ component, the architect 
checks whether it carries all the interfaces it provides. As designed, 
these are the ‘bind authentication’ interface and all interfaces of ‘lock 
control’: ‘bind lock’, ‘lock command’, and ‘bind lock actuator’; see 
Fig. 11-12. In addition, the component should carry all interfaces 
defined by the texture, e.g. for initialisation, field service, or self-test. 
Since the open/close sensor is designed later, the component should 
not carry related interfaces of ‘lock control’ such as a ‘bind open close 
sensor’ interface. Calls to interfaces that are not required should not be 
present. The only calls should be to the call-back interfaces of the 
plug-in components: ‘lock authentication’, ‘lock actuation’, and ‘lock 
command’. Again, the calls to ‘open close status’ are designed later. 
In addition, the interface rules in the texture should be obeyed. It 
should call, for instance, the specified interfaces for error handling and 
logging. Finally, of course, the component is checked to perform the 
required functionality, i.e. performing the right actions on its plug-in 
components. 
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Only when the architect has accepted the asset may implementation start. 
After implementation and unit testing the architect is involved in integration 
testing for the first set of applications using the asset. The first set of applica-
tions shows whether the asset indeed behaves as was planned. If this is not 
the case, the architect has to adapt the architecture, after which detailed 
domain design has to adapt the assets produced. This should be avoided as 
much as possible since it usually takes a lot of time and effort. This is 
another reason for a thorough acceptance check before implementation. 
However, it is often the case that several redesigns are necessary before a 
reusable software asset is stable and reusable in many contexts. 

11.7 Differences from Single-System Engineering 

The domain architect has to provide a reference architecture for the software 
product line. This means that: 

The reference architecture has to support mass customisation. It defines 
common parts of the product line and determines its variability in a 
technical sense. 

The reference architecture determines which software parts are 
reusable. These parts are part of the platform and are reused in the 
development of applications. 

The reference architecture may be under-specified. Certain variants do 
not differ too much, so that it does not make sense to capture them 
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Fig. 11-12: Lock control component interfaces 
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completely in the reference architecture. The specifics of these variants 
can better be designed during application design. 

The domain requirements may conflict with each other, or have 
conflicting priorities to be satisfied for different applications. This is 
captured in variability of the requirements, and the architecture has to 
consider this variability. 

The texture in the reference architecture not only captures the com-
monality within a single system, but also defines commonality that is 
present within all applications. It is defined once for all applications, 
and thus it is a part of the commonality in the architecture. Texture gets 
an additional role by providing common ways to deal with variability 
issues.

Even more than for normal development, an important task for the 
architect is to make the architecture robust and future proof. It should 
support the quality requirements of evolvability, flexibility, and main-
tainability. This provides, together with thorough design reviews, a high 
level of quality assurance. 

11.8 Summary 

The architect has to map the domain requirements to technical solutions. The 
main result of domain design is the reference architecture, involving vari-
ation points, supporting platform and mass customisation. The reference 
architecture has to be flexible, evolvable, and maintainable. Its design incor-
porates the accommodation of future requirements and technology. In par-
ticular, the reference architecture changes over time. The domain architect 
has many interactions with neighbouring sub-processes, i.e. domain 
requirements engineering and realisation as well as application design. 

External variability in the requirements has to be designed into variability in 
the architecture. In addition, technical options introduce internal variability, 
which has to be incorporated as well. The architects are stakeholders in the 
requirements engineering process. They provide feedback on what is easy 
and what is more difficult to vary. Similarly, developers providing the reali-
sation inform the architect where adaptability is most needed. 

With respect to normal single-system software development, the relationship 
to application design is different. Application architects use the reference 
architecture to prepare application development. This means that the domain 
and application architects together have to find a balance between what is 
better done at the domain level and what is done at the application level. 
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Over time, this balance changes, as solutions applicable for a single applica-
tion may become useful for others as well. 

In addition to the normal architecture issues, variability and reuse have to be 
solved by the reference architecture. Moreover, the architecture should solve 
the quality requirements of variability, flexibility, evolvability, and maintain-
ability. For many other quality requirements the architecture has to provide 
solutions that work for a group of applications, not all of which are envi-
sioned.

Quality
requirements 



12
Domain

Realisation

In this chapter you will learn: 

o About the interrelations of the domain realisation sub-process with the 
domain design, domain testing, and application realisation sub-processes. 

o About the role of interfaces of components for defining and realising com-
monality and variability. 

o How to realise configurability of components. 
o About different implementation mechanisms for variability. 

Frank van der Linden 



242 12.  Domain Realisation 

12.1 Introduction 

The goals of the domain realisation sub-process are to provide the detailed 
design and the implementation of reusable software assets, based on the 
reference architecture. The reusable software assets are mainly reusable 
components and interfaces. However, other artefacts like thread designs, 
database tables, protocols, and data streaming formats are also products of 
domain realisation. In addition, domain realisation incorporates configur-
ation mechanisms that enable application realisation to select variants and 
build an application with the reusable components and interfaces. The sub-
processes and artefacts closely related to the domain realisation sub-process 
are highlighted in Fig. 12-1. 

The main relations of domain realisation are those with domain design, 
domain testing, and application realisation. In Fig. 12-2 the relationships 
with the most important neighbouring sub-processes are depicted. In the next 
sections, we briefly describe the relationships of domain realisation with 
these neighbouring sub-processes. 

Goals of domain 
realisation

Fig. 12-1: Sub-processes and artefacts related to domain realisation 
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12.1.1 Interrelation with Domain Design 
Domain design provides the reference architecture, which determines the 
structure and texture of the complete software product line, and a selection 
of reusable software artefacts that determines which are the reusable parts in 
the structure (  in Fig. 12-2). Domain realisation designs and implements 
the corresponding reusable artefacts. 

Domain realisation provides domain design with issues in realising domain 
artefacts designed and implemented according to the architecture (  in Fig. 
12-2). The issues include all kinds of problem reports. 

12.1.2 Interrelation with Domain Testing 
Domain realisation provides reusable components and interfaces ready for 
test to domain testing (  in Fig. 12-2). In addition, domain realisation pro-
vides domain testing with interface descriptions, which serve as test refer-
ences for the design of component tests. 

Domain testing reports back test results, which state whether the object 
under test has passed or failed a test, and problem reports that describe in 
which way the object under test has failed. If domain testing detects defects 
in interface descriptions, these defects are also reported back to domain 
realisation (  in Fig. 12-2). 

12.1.3 Interrelation with Application Realisation 
Domain realisation passes the reusable components and interfaces designed, 
implemented, and ready for reuse (i.e. after having passed the tests per-
formed in domain testing) on to application realisation. In addition, applica-
tion realisation needs configuration support to assemble the specific 
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Fig. 12-2: Information flows between domain realisation and other sub-processes 
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applications (  in Fig. 12-2). The configuration support may be automated, 
e.g. by providing a configuration management tool. 

Application realisation provides feedback through requests for additional 
and altered realisation (first bullet of  in Fig. 12-2). This involves 
functionality or quality that should be provided by the domain artefacts but 
is not realised sufficiently well or not realised at all by the reusable compo-
nents. The feedback initiates an evolution of the software product line. The 
decision on whether the feedback from application realisation leads to an 
adaptation of the domain artefacts and thus to software evolution is made by 
domain architects and other stakeholders who decide on the evolution of the 
product line. Furthermore, application realisation provides domain realisa-
tion with realisation artefacts which may be incorporated into the product 
line (second bullet of  in Fig. 12-2). These are designs and implementa-
tions of application-specific components and interfaces which turn out to be 
actual needs of the domain. The integration of application artefacts into the 
product line usually involves some reengineering as the artefacts are not 
realised primarily with reuse in mind. 

12.2 Traditional Realisation Activities 

The most important realisation activity is to build a working system accord-
ing to the reference architecture. This activity includes the detailed design 
and implementation of software artefacts and compiling, linking, and con-
figuring them to executable code. In single-system engineering, the detailed 
design determines the internal structure of components and software pack-
ages before they are implemented. In addition, other artefacts like threads, 
database tables, protocols, and data streaming formats are the subject of 
realisation. However, the realisation of these artefacts does not differ much 
from the realisation of components. Therefore we do not treat such realisa-
tion activities separately. 

The reference architecture determines the decomposition of an application 
into software artefacts, such as components and interfaces. Detailed design 
provides designs for each of them, and, after validation, they are implemen-
ted. In many cases, the realisation of different software artefacts is done by 
different groups of people, each taking care of some related artefacts. The 
following activities belong to realisation: 

Interface design: Interfaces are designed in close cooperation with all 
developers of components providing or requiring them. This design is a 
compromise between the abilities of the components that provide or use 
the interface functionality. 

Evolution

Detailed design 
and implementation 

Components
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Component design:36 Components are designed to deliver functionality 
of the provided interfaces using the functionality of the required inter-
faces.

Interface implementation: After interface design, its implementation is 
usually rather straightforward. Its elements have to be declared in a pro-
gramming language file, to be included by the implementation of the 
components that provide and require the interface. 

Component implementation: After the design of the components, they 
are implemented in a programming language. Usually the component 
developer performs a unit test before the component is delivered and 
used for application configuration. 

Compilation: All components have to be compiled into object files. 
These object files are linked into working executables during applica-
tion realisation. 

12.3 Realising Interfaces 

In this section, we elaborate on the detailed design of the interface of a vari-
able component. The same interface is valid for a number of components. 
Hence, interfaces deal with common aspects of the components. Variability 
makes it necessary, on the one hand, to abstract from the differences in pro-
viding components and, on the other hand, to offer functions that expose 
certain information related to variability at the interface, e.g. to determine 
the required variant at run-time. 

12.3.1 Variable vs. Invariant Interfaces 
An interface specifies functionality that is provided by certain components 
and required by others. As such, the interface is a contract between provid-
ing and requiring components. Variability is implicit through the independ-
ent abilities of having variability both at the providing component’s side and 
at the requiring component’s side. The interface itself is invariant, as both 
providing and requiring components have to interpret it in the same way. 
The requiring component can only rely on the presence of some variant of 
the providing component but without knowing which variant. The introduc-
tion of variants in the interface itself leads to variable choices by the pro-
viding and requiring components which may lead to incompatibilities. 

Interfaces may be used to access the variability realised in components. A 
provided interface may have functions that adapt internal variant selection. 

                                                     
36 And threads, database tables, protocols, streaming formats, etc. 
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This means that it is possible for the environment to adapt the variant at run-
time. A required interface may be used by a component to enquire about 
variability-related information from the environment [V. Ommering et al. 
2000]. 

12.3.2 Interface Elements 
The interface provides elements that are abstractions of internal details of the 
providing components. These elements may be functions, constants, types, 
exceptions, events, and object classes to use or from which to inherit. How-
ever, the developer of the interface should be careful not to provide too 
many details of the component (Example 12-1). Otherwise, variation may be 
bound too early, ruling out different implementations. On the other hand, the 
requiring component needs at least a minimum level of detail before it can 
actually use the functionality. 

The level of abstraction determines how generic or specific the information 
is that is shown at the interface (Example 12-2). If the level of abstraction is 
high, the interface can be used for many purposes, but the developers of the 
requiring components are in doubt about what is actually going on, and 
whether the provided functionality matches the required functionality. If the 
level of abstraction is too low, too much irrelevant information is exposed at 
the interface. This has to be matched exactly by the providing components. 
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Example 12-1: Interface Details 

In the home automation example, there are several components deal-
ing with lock control and authentication; see Fig. 12-3. The ‘lock con-
trol’ component provides a ‘lock command’ interface to the user 
interface. This interface is meant to issue open/close commands. The 
commands are transferred to the ‘door lock plug-in’ via the ‘authorise’ 
interface to determine whether the open/close command is permitted. 
The ‘door lock plug-in’ requires a ‘bind lock’ interface at the ‘lock 
control plug-in’ to make its ‘authorise’ interface known. In case of 
authorisation, the door lock plug-in is an ‘electronic door lock plug-
in’, which also uses the ‘authorise’ interface of the authentication 
manager as part of its own authorisation procedure. Authorisation key 
data information is passed directly from the ‘user control manager’ to 
the ‘authentication manager’, which is available before an authentica-
tion request is issued. The ‘door lock plug-in’ may also use the ‘lock 
command’ interface in case of a lock that has to be closed automatic-
ally after some period has elapsed. The interfaces carry the following 
information, and no more: 
 ‘Lock command’ interface: open/close commands including infor-

mation to determine the door to be opened or closed. 
 ‘Bind lock’ interface: function for binding the ‘authorise’ interface 

of a specific door. 
 ‘Authorise’ interface: function for getting permission to perform an 

(opening or closing) action. 
 ‘Key data’ interface: function to pass through authentication key 

data.

In certain cases, a low level of abstraction cannot be avoided. Then, a simple 
data type such as a byte stream is transferred between two components. This 
may be the case if all kinds of objects are transferred, e.g. to and from an 
object-oriented database. This works if both sides of the interface have the 
same understanding of the meaning of the byte stream. They share the same 
data dictionary, and are thus able to interpret the information transferred in 
the byte stream. An exchange of such a data dictionary may be the first step 
before the actual data exchange is done. During the design of both compo-
nents, it has to be clear which kinds of data dictionaries may be transferred. 
New dictionaries often result in new designs of the components using them, 
or they cannot produce or transcribe the received data completely. 

Low-level
abstractions
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Example 12-2: Interface Abstraction 

We reconsider the ‘key data’ interface from Example 12-1. The 
authentication information has to be passed through. This information 
is the kind of information provided by the user interface. Making it 
too precise in the interface, e.g. that it shall be an integer, is too low a 
level of abstraction, and may block future, perhaps more complex, 
authorisation algorithms that use a large amount of user data. Alterna-
tively, the designer may give a lot of freedom by defining a byte 
stream as the type of an authorisation parameter. Such an interchange 
format is too high an abstraction level to be able to test adequately the 
components carrying the interface as all kinds of data can be repre-
sented as byte streams. To avoid both too high and too low levels of 
abstraction, it is better to use an authorisation information type or 
class that may be specialised for different cases of authorisation. 

There may be interfaces that are provided by many components. This holds 
for instance for the aspect-related interfaces. Such an interface has to be very 
generic. Otherwise, it cannot be provided by each component. The types in 
these interfaces have to be at a low level of abstraction. Byte streams and 
data dictionaries may be necessary to transfer complex data. Similar restric-
tions on the level of detail hold for interfaces called by many components, 
e.g. an interface for logging actions. 

12.4 Realising Variable Components 

The variability of the product line eventually has to be realised in terms of 
reusable components. In order to enable reuse, domain realisation develops 
high-quality components that provide the required variability. 

12.4.1 Quality of a Component 
Reusable domain components are used in many applications. For their 
design, this means that special attention is given to their robustness. The 
usage context of a component is not known at development time. Thus, only 
assumptions can be made that are justified by the required and provided 
interfaces. Robustness means that the component interacts correctly in many 
circumstances, independent of resource usage and the order and timing 
between calls. This does not mean that a component must be designed to 
perform the called function under any circumstances. An appropriate error 
message may be returned in cases in which the component is not able to 
fulfil a request. However, this means that such behaviour is already declared 
in the interface. 
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The provided interfaces determine the functionality of a component. The 
functions, types, and classes are all provided in the way that is declared in 
the interface. No additional restrictions may be put on them, such as a calling 
order, or limiting re-entrance conditions. Parts of the provided interface typ-
ically also occur in the required interface of a component and thus can be 
used directly by the component. A component may only use external func-
tionality that is made available through required interfaces. 

12.4.2 Distributing Variability over Components 
Component design is constrained by the interfaces provided and required. 
The reference architecture determines most of the variability. Variability 
occurs mainly through different configurations. Domain realisation has to 
provide several variants for a single component having the same interfaces. 
In many cases, several variants of the component are realised, where each of 
them combines certain variants. A balance has to be found between the effort 
for building separate components and the ease of understanding of the vari-
ability internal to the components. The two extreme choices are usually 
avoided since both take too much effort to build: 

A single component containing all variants may incorporate too much 
variability internally, which increases internal complexity and is there-
fore difficult to realise. This only works if the variability is limited. 

Having a separate component for each variant introduces a large num-
ber of components, which require much development and maintenance 
effort. Again, this only works if the variability is limited. 

Example 12-3: Variable Components for Home Automation 

In the home automation example, several ‘door lock plug-in’ compo-
nents are needed. Each of them implements different door lock behav-
iour. Realisation decides to provide six variants, each with its internal 
variability; see Fig. 12-4. They are separated by having ‘auto close’ or 
not, and independent from this by having a lock that is ‘manual’, 
‘electronic without authentication’, or ‘electronic with authentication’. 
The plug-in components with authentication have variability related to 
the authentication functionality. Those with auto close have variability 
with respect to the parameters that are necessary to close the door 
automatically, such as delay times and speed. The product line may 
additionally contain more complex plug-in components, but these are 
designed to be application specific. 
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12.5 Binding Time of Variability 

Implementation is the final step of domain realisation. In this step the actual 
coding is done, based on the design of the components and their interfaces. 
Architectural texture, e.g. coding standards, has to be obeyed. Since there are 
many ways of realising variability, it is important that the architecture pro-
vides clear guidelines on what to do under which circumstances. We provide 
a brief overview of the basic principles of implementing variability. 

The components and interfaces are implemented in program files. These files 
are configured and combined in applications in several steps: 

Compilation leads to object files. 

Linking leads to executables and DLLs (Dynamic-Link Libraries). 

Loading brings several executables and dynamic link libraries together 
in the same system. 

For a more detailed description of the different options for the binding time, 
the consequences for flexibility, and other concerns, see [Coplien 1998]. 

The realisation defines different binding times of variability. Different 
mechanisms are used to bind variants before, during, or after each step. Such 
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mechanisms have to provide the appropriate means to locate variants and to 
determine which variants have to be bound. The choice of binding time and 
the supporting mechanism is independent of variability modelling. It is a 
consequence of decisions made during design and realisation. Demands for 
flexibility and the support of tools allow late binding times or even the use of 
variable binding times [V. Ommering 2004]. The exact technology at hand 
and the competing requests for comprehensibility and flexibility lead to spe-
cific choices of binding mechanisms. As a consequence, these are issues to 
be solved in design. The mechanisms that have to be used are dictated by the 
architectural texture. Some exemplary configuration mechanisms are those 
described in the following subsections. 

12.5.1 Before Compilation 
Automatic code generation is a technique that generates parts of the code 
automatically, based on some design model and/or on parameter lists. Part of 
the components is not programmed in the traditional way, but produced by a 
code generator. Variants are selected by giving values to the available 
parameters. Examples of such approaches are domain-specific languages 
[Batory et al. 2004], generative programming [Czarnecki and Eisenecker 
2000], and model-driven architecture [Kleppe et al. 2003]. 

Aspect-oriented programming is a technique where different views of the 
code, so-called aspects, get their own implementation [Kiczales et al. 1997]. 
Prior to the actual compilation the different aspects are weaved together into 
a single piece of code dealing with the different aspects. Each aspect may 
have its own variability. Choosing a variant for an aspect leads to a variant 
of weaved code. 

There are other realisation approaches that are well suited for product line 
engineering. Atkinson describes a method called KobrA which supports a 
model-driven UML-based representation of components and a product-line-
based approach to their development and evolution [Atkinson 2001]. The 
representation is implementation independent and uses a simple and ortho-
gonal feature set so that feature overload is avoided and the most appropriate 
kind of implementation method can be used. 

The “Software Factories” described in [Greenfield et al. 2004] are also an 
approach to model-driven development. They apply domain-specific lan-
guages and the Extensible Markup Language (XML) to describe their 
models. 
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12.5.2 At Compile Time 
Before compilation, the compiler reads one or more files containing macro 
definitions. A macro can be any fragment of program code and thus be used 
to realise a variation point. The defined code fragments correspond to the 
variants of this variation point. The macros are expanded to their definition 
at every occurrence in the code. Moreover, IFDEF statements may guard 
certain pieces of code; depending on the presence of a definition of the 
macro, a piece of code will or will not be compiled. Thus, generation of code 
is dependent on the definition of the macro. It is a very generic mechanism, 
which may become very complex, since the IFDEF statement can govern 
any piece of code, and the consequences of using it cannot always be deter-
mined easily, especially when IFDEFs are nested. The advantage of using 
pre-compiler macros is the code efficiency obtained. Configuration takes 
place before actual compilation. Code that is not useful for a specific appli-
cation is not present. The complexity can be managed if the macro usage is 
regulated by architecture rules, determining which macros are admissible, 
what their meaning is, and where and how they have to be applied in the 
code.

Conditional compilation is a similar mechanism to pre-compiler macros. In 
this case the macro definitions are not defined in a file, but given as 
parameters to the compiler command. The advantages and drawbacks are 
similar to the pre-compiler macros. 

12.5.3 At Link Time 
The makefile is an executable file that is able to perform a sequence of 
compilations and linkages. Depending on the makefile parameters, different 
sets of compilations and linkages are performed. Variation points can be 
realised by the parameters provided to the make command which executes 
the makefile. The selection of variants is realised by the different sequences 
of the makefile that are executed based on these parameters. For instance, 
depending on the makefile parameters, different compiler parameters are 
used, and/or different macro files are included. In this case configuration is 
performed before actual compilation. However, the mechanism can also be 
used to select different configurations of variable binary components. The 
makefile determines a sequence of dependencies, and is usually very diffi-
cult to read. Therefore, architecture rules are necessary to limit its use. 
Moreover, it is recommended to use makefile generator tools, to generate the 
makefiles from more comprehensible configuration notations. 
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12.5.4 At Load Time 
A configuration file contains a list of files that have to be loaded together. 
The set of files in the selection forms an executable system. The configur-
ation file may have variable content in order to realise different variants of a 
variation point. The configuration file uses the run-time system to locate and 
initiate all files that should be loaded. This mechanism is useful for produc-
ing systems consisting of variable binary component configurations. Usually 
architecture rules are necessary to provide each executable with the right 
mechanisms to enable its localisation, initialisation, and linkage to the 
remainder of the system. 

12.5.5 At Run-Time 
The target machine may host a central registry, in which each compiled com-
ponent registers its interfaces together with their access points within the 
component. If at run-time a certain component needs another component 
carrying a certain interface, it can be found through the registry. No separate 
configuration files are necessary, each component should just know which 
interfaces it needs, and from which kinds of components. After the binary 
components are loaded, an initialisation mechanism makes them known to 
the registry. Components carrying the same interface may realise variants of 
the same variation point. 

12.6 Realising Configurability 

During application realisation, variability in components is bound. Domain 
realisation has to prepare for this. The component designer determines a col-
lection of configuration parameters to be able to select the right component 
variant (Example 12-4). Many mechanisms can be used to deal with config-
uration parameters. Configuration mechanisms such as compiler parameters, 
macros, and parameter files are discussed in Section 12.5. Alternatively, 
certain languages enable components to be parameterised, either through a 
parameter list, or through a separate file with component parameters. Part or 
all of the parameters can be exposed over interfaces towards other compo-
nents, which may use the parameter values to determine their internal vari-
ants, or alternatively may set them to certain values, depending on their own 
parameter values [V. Ommering et al. 2000]. 

Because there are many parameters that belong to a single application, the 
parameters must be related to the variation points and variants in the vari-
ability model. This is crucial for the selection of the right variants. A vari-
ation point may have an impact within several components, and the selection 
and configuration of components is based on the given variants. 
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A component is configuration independent when it does not need much of its 
environment in order to work correctly. The level of configuration independ-
ence of a component or interface is dependent on the role it plays in the 
reference architecture. This means that it should be designed in such a way 
that it provides precisely the functionality specified in its provided interfaces 
and use precisely what is specified in its required interfaces. It should not put 
any additional restrictions on the functions that can be called through its 
provided interface. The component designer should not rely on presently 
available implementations of its required interfaces, e.g. that results are pres-
ently always sorted, while this is not specified in the interface itself. New 
implementations may not sort the results. Knowledge of the role of the com-
ponent in the product line may reduce the effort to make a component more 
or less dependent on the configuration, while it still is robust. 

Two important aspects support configuration independence: level of detail 
and level of abstraction. The level of detail relates to the granularity of the 
functions exposed at the interface. The level of abstraction relates to the data 
types exposed at the interface; see Section 12.3.2. 

Example 12-4: Configuration Variability 

The selection of the door lock plug-in components of Fig. 12-4 is 
related to several parameters. First, there are parameters that select the 
right component to use: 
 Bool: Door_lock_electronic 
 Bool: Door_authentication 
 Bool: Auto_close 

Next, there are parameters that govern the internal variability of cer-
tain of these components: 
 String: Authentication_algorithm, for selecting the authentication 

algorithm. 
 Int: Auto_close_delay, for selecting the delay before auto close 

takes effect. 
The five configuration parameters may also be necessary for selecting 
variants in other components as well. In particular, they are used by 
the ‘lock control’ component (Fig. 12-3). It is the case that all these 
components use the same parameters, and that their value is defined 
only once. 
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12.7 Differences from Single-System Engineering 

Domain realisation provides a coherent collection of reusable software arte-
facts. This means that: 

Domain realisation does not provide a complete application. Therefore, 
domain realisation is not able to build an executable. Instead, domain 
realisation provides mechanisms to application realisation in order to 
configure the domain realisation results with the results of application 
realisation into executables. 

Interfaces have to be designed carefully with the appropriate level of 
detail and the appropriate level of abstraction to be usable in many 
applications. Too much detail or too low a level of abstraction restricts 
the providing components too much. Too low a level of detail or too 
high a level of abstraction makes it too generic for the requiring compo-
nents to do something useful. 

Configuration management is an activity that is more important for 
domain engineering than for single-system development. At any 
moment, there are applications that use different versions of reusable 
components. For maintenance purposes, it is crucial to know which ver-
sion of any component and interface is used in which application. 

Software artefacts have to incorporate variability. Software artefacts 
have variation points and variants. Domain realisation has to provide 
mechanisms to select the variants before the domain realisation results 
are integrated into an application. 

The components and interfaces are more robust than what is required 
for single-system development. Reusable components have to be con-
figuration independent to ensure that they can be used in different 
applications with different variability bindings. 

12.8 Summary 

Domain realisation deals with the design and implementation of reusable 
components and interfaces. In particular, the design of interfaces is crucial, 
since they are the basis for architectural variability based upon configuration 
variants. As different components provide or require a single interface, there 
may be many stakeholders in the component design, having their own inter-
est in moving the level of abstraction. Reusable components should only use 
functionality that is presented by their required interfaces and they should 
provide exactly what is declared by their provided interfaces. 

No executable 

Interface
design

Variability in 
time and space 

Variable software 
artefacts

Quality

Component and 
interface design 



256 12.  Domain Realisation 

The component developer has different mechanisms available to implement 
the variability of components. The choice is guided by the architectural tex-
ture, thus allowing a high degree of uniformity to be achieved in the imple-
mentation. The variability has to be presented to the application developer in 
order to enable the selection of the proper variants. For instance, this can be 
done by relating component parameters to the variability model. 

The components and interfaces have to be designed for robustness and con-
figuration independence to be reusable. Interface adaptations have to be 
reduced to a minimum. Each such adaptation results in many component 
adaptations. Components do not always have to be designed from scratch. 
Often a component that was originally designed for a single application is 
promoted to a domain component. This involves redesign to remove the 
dependency of the component configuration in the specific application. In 
addition, variability has to be added in order to get the application-specific 
components as variants. 
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In this chapter you will learn: 

o About the interrelations of the domain testing sub-process with domain 
requirements engineering, design, and realisation as well as with application 
testing.

o Strategies to accomplish testing in software product line engineering. 
o About the embedding of variability in domain test artefacts. 
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13.1 Introduction 

The goal of domain testing is to validate the output of the other domain 
engineering sub-processes. Our main focus is on the validation of the realisa-
tion artefacts. The derivation of test cases is based on the input from domain 
requirements engineering, domain design, and domain realisation. The goal 
of domain testing is to establish an efficient overall testing process. This 
involves testing early and often what can be tested within the domain engin-
eering process and providing reusable test artefacts. Testing aspects have to 
be considered right from the beginning of the development, e.g. to ensure 
that requirements and design support testing. For instance, testing requires 
that the state of a component can be evaluated at run-time to be able to com-
pare the expected results of an action with the actual results. Consequently, 
component interfaces need to be designed to enable the introspection into a 
component’s state at run-time. The sub-processes and artefacts closely 
related to the domain testing sub-process are highlighted in Fig. 13-1. 

The main challenge for domain testing is to deal adequately with both the 
separation between domain engineering and application engineering and the 

Goals of 
domain testing 

Fig. 13-1: Sub-processes and artefacts related to domain testing 

Variability
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presence of variability. The variability of the product line and its relation to 
domain artefacts are documented in a variability model throughout domain 
engineering. In domain testing the variability model is used to derive test 
artefacts for the domain artefacts under test. 

Variable artefacts pertaining to only one or a few applications are not real-
ised in domain engineering. They are defined during application engineering. 
For example, plug-in components that are required only for one specific 
application are designed during application engineering (Section 11.5). We 
refer to variants for which no realisation is available in domain engineering 
as “absent variants” (Section 13.5). The absence of a variant complicates 
domain testing, as part of the component interactions cannot be tested easily. 

In order to test the interactions between a common component and an absent 
variant, a stub can be used. The stub simulates the behaviour of the corres-
ponding plug-in component during integration testing. Yet, stubs have three 
major shortcomings. First, the creation of stubs requires considerable effort. 
Second, a stub is often no adequate substitute for the plug-in component. 
The actual component’s behaviour may be quite different from the stub’s 
behaviour and thus may cause errors that do not occur in the integration test 
with the stub. Third, the stub itself is a source of errors and must be tested. 
Consequently, the interactions of common components with plug-in compo-
nents cannot be regarded as sufficiently tested in domain engineering even if 
stubs are used. 

In order to achieve the goals of domain testing and avoid the problems 
related to the handling of variability, we employ specific software product 
line engineering test strategies. These strategies consider both the separation 
between domain testing and application testing and the presence of varia-
bility. The activities performed in domain and application testing strongly 
depend on the strategy pursued. 

The essential interrelations between domain testing and the other domain 
engineering sub-processes are shown in Fig. 13-2. The results produced dur-
ing domain requirements engineering are used as input for the domain sys-
tem test. The architecture resulting from the domain design is required for 
the domain integration test, and the components produced during domain 
realisation are validated in the domain unit test. Moreover, the application 
that is finally delivered must be validated. Application testing reuses domain 
test artefacts to test specific applications. Test levels, i.e. system test, inte-
gration test, and unit test, are explained in more detail in Section 13.2 along 
with other test foundations. 
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13.1.1 Interrelation with Domain Requirements Engineering 
The input stemming from domain requirements engineering for domain 
testing consists of the domain requirements artefacts and the variability 
model (  in Fig. 13-2). The domain requirements artefacts contain the 
specifications of common and variable domain requirements. The variability 
model defines the variability of the software product line. Domain testing 
uses the domain requirements artefacts to develop system tests. As the plat-
form merely contains a set of loosely coupled components but no complete 
applications, the test engineer can only perform system tests on the parts of 
the system that realise common requirements and are not affected by the 
variability of the software product line. Thus, strategies are necessary to deal 
with the lack of an executable application and the variability in requirements 
and components respectively. Part of such a strategy is the use of the vari-
ability model for developing test cases that contain variability themselves 
(Chapter 8). 

It may be the case that system tests cannot be derived from the requirements, 
because the requirements are not clearly stated or there are unwanted 
dependencies between the requirements that prevent the creation of tests. 
Such requirements defects are reported back to domain requirements engin-
eering (  in Fig. 13-2) so that the defects in the requirements artefacts can 
be corrected. Consequently, domain testing contributes to the validation of 
domain requirements, and thus, to the overall quality assurance of the soft-
ware product line. 
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Fig. 13-2: Information flows between domain testing and other sub-processes 
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13.1.2 Interrelation with Domain Design 
The input from domain design consists of the reference architecture and the 
selection of reusable software artefacts (  in Fig. 13-2). Integration tests use 
the reference architecture as a test reference for validating the interactions 
between components. Such interactions are, for example, evident from the 
architectural structure and, in particular, from the component frameworks 
(Definition 6-8), or from the use cases defined in the domain requirements 
engineering sub-process. 

Integration tests cannot validate all interactions between the components as 
there may be variable components that are not realised during domain engin-
eering. The reusable artefact selection indicates which component realisa-
tions are part of the platform and sets the scope for the domain integration 
tests. As stated above, the interactions with components that are realised in 
application engineering cannot be sufficiently tested in the domain testing 
sub-process. However, it is possible to define reusable test artefacts for such 
interactions.

The design of integration test artefacts leads to some kind of validation of 
the reference architecture. Defects in domain design artefacts such as incom-
pleteness and ambiguity prevent the definition of test artefacts. They are 
reported back to the domain design sub-process (  in Fig. 13-2). 

13.1.3 Interrelation with Domain Realisation 
The input from domain realisation consists of interface descriptions and the 
reusable components and interfaces implemented and ready for test (  in 
Fig. 13-2). Domain testing uses the interface descriptions as a test reference 
for the unit test. Again, testing can be performed only for the components 
that are implemented within the domain realisation sub-process. 

Domain testing provides domain realisation with the test results including 
acceptance or rejection as well as the corresponding problem reports (  in 
Fig. 13-2). Defects in interface descriptions detected in domain testing are 
reported back as well. The test results capture which test cases have been 
performed and whether the object under test passed or failed the test. The 
problem reports capture the observed deviations from the expected behav-
iour, which the object under test should possess according to the test refer-
ence. Defects in interface descriptions hamper test case design and must be 
corrected before testing can be completed. 

13.1.4 Interrelation with Application Testing 
Domain testing provides application testing with reusable test artefacts (  in 
Fig. 13-2) such as test cases. As domain tests may have to be performed 
again in application testing, all test cases, including those already performed 
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in domain testing, are delivered to application testing. Like other domain 
artefacts, domain test cases may contain variability. Application testing 
binds the variability to obtain test cases for the specific application. 

Application testing returns defects in domain test artefacts as well as test 
artefacts to be integrated into the domain artefacts (  in Fig. 13-2). Test 
artefacts are developed in application testing, for instance to test application-
specific features. If application-specific features are integrated in the domain 
artefacts, the test artefacts, along with the design and realisation artefacts, 
have to be integrated as well. 

13.2 Software Testing 

In dealing with software testing, the notion of software defects and the 
notion of software test levels are essential. 

Software testing (Definition 13-1) allows the stakeholders to determine the 
quality of the software. It is an essential part of the quality assurance pro-
cess, which also includes reviews of all requirements and design specifi-
cations, code reviews, acceptance procedures, etc. 

Definition 13-1: Software Testing 

Software testing is the process of uncovering evidence of defects in 
software systems and is a necessary part of any quality assurance 
process.

[McGregor and Sykes 2001] 

Examples 13-1 and 13-2 present two cases of software testing. Testing is 
performed before the delivery of an application. It does not include debug-
ging and fixing bugs. The defects detected in testing are reported back to the 
development team in charge. 

Example 13-1: Software Testing – Positive Case (Release) 

Three software testers perform testing for a whole week and find three 
defects in the components of the “door & window management” sub-
system. After the defects are corrected, the subsystem is released as 
the defects were hard to find and did not impede the use of the soft-
ware components. The testing results give rise to the assumption that 
the components are free of serious defects. 
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Example 13-2: Software Testing - Negative Case (Further Testing) 

Three software testers perform testing on the “security & safety man-
agement” subsystem for a week and each tester finds one defect per 
hour. The defects are recorded in a protocol and passed on to the 
domain realisation team that developed the components. The amount 
of defects makes further testing necessary after the detected defects 
have been corrected. 

13.2.1 Defects
A defect (Definition 13-2) can be interpreted as a difference between a 
requirement, which defines the desired behaviour, and its realisation in the 
software.37

Definition 13-2: Defect

Defects occur when a software system does not behave as desired or 
specified.

Example 13-3: Defect in the User Interface 

The specification of the smart home user interface requires that the 
icon for lighting control is always visible. Yet, in the implemented 
user interface components, there are some dialogs, in which the icon is 
hidden behind other elements. This behaviour is a defect as it does not 
fulfil the specification. 

13.2.2 Test Levels 
Techniques and methods for software testing typically distinguish between 
different test levels such as system testing, integration testing, and unit test-
ing, see e.g. [Burnstein 2002; McGregor and Sykes 2001; Spillner and Linz 
2004]. Before we elaborate on the different test levels, we define the term 
test level: 

Definition 13-3: Test Level 

A test level is defined by the granularity of the items to be tested (test 
items) and the requirements used as the test reference. 

                                                     
37 We define the term defect in analogy to [IEEE 1990]. The definition in [IEEE 1990] additionally 

distinguishes between error, fault, failure, and defect. We only use the term defect in this book as our 
focus is on testing issues that are specific to software product line engineering. 

Defect
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The key terms and their relationships used in the definition are shown in Fig. 
13-3. A ‘test’ validates a ‘test item’ with respect to the test reference. The 
test reference is called a ‘requirement’ in Fig. 13-3 but, in fact, can be any 
kind of specification. For example, a signature (or interface description) can 
be used as the test reference to validate a single component. This shows that 
the requirement and the specified item are on the same level of development. 
In the context of testing these two artefacts determine the test level. 

Test Level

Requirement

TestItem

specifies behaviour Test

test reference

validates

Fig. 13-3: The test dependency model  

Definition 13-4: Unit Test 

The unit test validates the behaviour of a component, method, or class 
against its input/output behaviour specified in the corresponding sig-
nature.

Example 13-4: Unit Test Case 

A method of the LockActuator class, which is a part of the basic con-
trol subsystem, has the signature “bool unlock(Lock l, Authentication 
auth)”. The documentation of the method explains the parameters and 
the return value and describes the method’s behaviour. A test case for 
the “unlock” method ensures that the initial state of the lock object is 
“locked” and the authentication object contains valid authentication 
data. Subsequently the test case calls the unlock method, and checks 
whether the return value is “true”, i.e. whether the method reports that 
unlocking the door succeeded. Finally, the test case checks the internal 
state of the lock object to verify that the lock is unlocked. 

Test, test item, and 
test requirement 
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The unit test is a test level that is often performed by the programmer of the 
unit. The programmer tests each implemented method, procedure, or func-
tion. The test validates the behaviour of the implemented code against its 
specification.

Definition 13-5: Integration Test 

The integration test validates the behaviour of two or more compo-
nents that together form a configuration specified in the architecture. 

The integration test is usually performed on units or components that have 
successfully passed the unit test. Therefore, one can assume that the units 
behave as specified. Nevertheless, the functionality of the configuration may 
deviate from the specified behaviour. 

Example 13-5: Integration Test Case 

An integration test case of the home security product line checks the 
interaction between the ‘authentication plug-in’, the ‘authentication 
manager’, and the ‘electronic door lock’ components (Section 6.4). 
The test case authenticates a test user against the ‘authentication plug-
in’ component and checks the interaction with the ‘authentication 
manager’ component to ensure that the test user is authenticated prop-
erly. Subsequently, the test case requests the ‘electronic door lock’ 
component to unlock a door and checks the interaction between the 
‘electronic door lock’ and the ‘authentication manager’ components to 
verify that the ‘authentication manager’ authorises the ‘electronic door 
lock’ component to unlock the door. 

The system test is performed after the integration test has been successfully 
passed (at least partially). 

Definition 13-6: System Test 

The system test validates the behaviour of a whole system against its 
system requirements specification. 

The internals of the system are usually not considered during a system test. 
The system requirements define the desired behaviour of the system. System 
tests validate the implemented system against the specification. 
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Example 13-6: System Test Case 

A system test case for the home security product line includes a scen-
ario with the following steps: the user approaches the authentication 
terminal of the front door and inserts a magnetic card into the card 
reader. The terminal checks the data on the magnetic card against the 
list of authorised users, acknowledges that the user may enter the 
home, and unlocks the front door. The user opens the door, enters the 
home, and shuts the door. After 5 seconds the security system locks 
the door again. 

In practice38 there are even more test levels. The architecture provides layers 
or subsystems that can be tested incrementally. Thus, there may be several 
incremental integration test levels. Incremental integration testing reduces 
complexity since earlier increments have already been tested and can thus be 
assumed to be correct during the test of the next increment. Incremental 
integration tests do not differ much from normal integration tests. We there-
fore do not consider incremental integration tests in the remainder of this 
chapter.

13.3 Domain Testing and Application Testing 

Testing is performed in domain and application engineering. Domain testing 
deals with loosely coupled, reusable components, whereas application test-
ing deals with complete applications. Both testing processes have to cooper-
ate to reduce complexity and to establish synergies. 

Domain testing uncovers the evidence of defects in domain artefacts and 
creates reusable test artefacts for application testing (Example 13-7). 
Domain testing encompasses the same activities as single-system software 
testing but additionally has to deal with variability and the fact that there is 
no executable system. 

Example 13-7: Domain Testing for Home Automation 

In the home automation system, domain testing validates the door 
control functionality. The test encompasses functions such as check-
ing the status of a door, opening, and closing a door. 

Application testing reuses domain test artefacts to uncover evidence of 
defects in the product line applications (Example 13-8). In spite of the tests 

                                                     
38 See [V.d. Linden and Müller 1995] or [Reuys et al. 2004a] for case studies of industrial test approaches 

and intermediate test levels. 
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performed in domain testing, each application has to be tested extensively. 
Common artefacts may have interdependencies with variable artefacts, 
which have to be retested. 

Example 13-8: Application Testing in Home Automation 

An installed home automation system is tested for a correctly working 
door control. All installed doors are tested with respect to the require-
ments specification, which includes status information, open, close, 
and automatic close functionality. 

Retesting domain artefacts during application testing has some commonal-
ities with regression testing in single-system engineering. The goal of regres-
sion testing is to detect defects that are caused by modifications to the soft-
ware. In regression testing, test cases of older versions of a software product 
are reused to test a new software version. Testing only the modified parts of 
the software is not sufficient as changes to one part of the software may 
cause errors in other parts. An impact analysis is used to determine the sub-
set of test cases to be reexecuted depending on the changes made to the 
software. Although regression testing does not offer adequate means to deal 
with variability in space, the basic ideas of regression testing can be adapted 
to support application testing. For further reading on regression testing, see 
e.g. [Binder 1999]. 

13.4 Testing Variability at Different Test Levels 

Variability has an impact on all test levels. Figure 13-4 below shows a part 
of the V-model [V-Model 1997; Dröschel and Wiemers 2000; V-Model XT], 
which is a commonly used development process in single-system engineer-
ing. The left branch of the “V” shows the different development steps. The 
test items, which are defined considering the development artefacts, are 
shown in the different test levels on the right branch of the “V”. The grey 
bricks at each test level represent common software units or components. 
The white bricks indicate variability. The black ellipses indicate test cases 
that cover some parts of the specific test item. In the following, we discuss 
the impact of product line variability on the different test levels in more 
detail.

13.4.1 Domain Unit Test  
The techniques used for the domain unit test depend on the realisation of the 
variability. If the variability is realised, for example, by IFDEFS (Section 
12.5), the unit under test has to be built with each defined variant once and 
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each build is tested as in single-system engineering. The units to be tested 
can embed variability. Since this type of variability is local to the test object, 
there is typically no problem in performing the unit test during domain 
engineering.

Example 13-9: Unit Test for the Electronic Door Locks 

The unit test for the electronic door locks tests each unit separately. 
One unit containing variability is the authorisation database. The test 
checks whether the component is capable of accepting and rejecting 
simulated inputs from magnetic card readers, fingerprint scanners, etc. 
Therefore, the methods for the variants, e.g. magnet card reader, must 
be linked to the unit at first. Second, the methods are tested with valid 
and invalid data to validate the unit’s behaviour against its signature. 
The test is carried out for each variant separately. 

13.4.2 Domain Integration Test
Variability influences components and component interactions in three ways. 
Variability may occur within a component, in the way components interact, 
or the component itself may realise a variant. Due to variability, it is typi-
cally impossible to test all component interactions during domain testing. 
One reason is that not all components that participate in these interactions 
are realised during domain realisation (Section 13.1). Even if all the compo-
nents were available, there would still be many optional or alternative inter-
actions. Testing all component pairs and all possible interactions is thus 
close to impossible. Existing product line test approaches therefore perform 
only the test cases for common interactions and those that contain few vari-
able interactions with already realised components. 

Example 13-10: Integration Test for Electronic Door Locks 

During integration testing in domain engineering, the units are inte-
grated in pairs. The server is connected to the fingerprint scanner, the 
keypad, or the magnetic card reader. More combinations between 
these units, e.g. one fingerprint scanner, one keypad, and the server for 
both of them, are possible, but in the foreseeable future there will not 
be an application with this configuration. Therefore, these combina-
tions are not tested during domain testing. 

13.4.3 Domain System Test  
The variability relevant for system tests is defined in domain requirements 
artefacts. They are the test references for system testing (Fig. 13-4). It is 
impossible to perform a complete system test in domain engineering due to 
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the presence of variability, and due to the fact that domain engineering does 

not deliver a complete system. The variability poses similar problems for the 

system test as explained for the integration test. The part of the system tested 

by a system test case is typically much larger than the part of the system 

tested in an integration test. It is thus difficult to find test cases that do not 

include variability. Consequently, system tests cannot be performed on 

domain artefacts. To perform a system test a defined configuration of vari-

ants is required. This may be a fictive configuration or an application defined 

by product management. Without a configuration, system test case scenarios 

can be defined (e.g. with the means provided in Chapter 8), but not executed. 

Example 13-11: System Test for the Electronic Door Locks 

The system test for the electronic door locks can only be performed on 

a particular application. The system test requires one specific config-

uration of fingerprint scanners, keypads, card readers, and one or more 

control devices. This configuration is not available during domain 

testing. It is defined during application engineering. 
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13.5 Criteria for Product Line Test Strategies 

The description of the three test levels in Section 13.4 shows that variability 
has a high impact on testing. While unit testing can be performed relatively 
well, higher test levels suffer from several problems related to variability. 
For example, either variants may be not fully implemented in domain engin-
eering or there may be a huge number of configurations. Finally, there is no 
executable system to test. 

This impact of variability on the integration and system test stresses the need 
for a software product line test strategy. Before we elaborate on possible 
strategies, we define five essential criteria for evaluating a product line test 
strategy. 

13.5.1 Time to Create Test Artefacts 
A large part of the testing effort is spent on the creation of test artefacts. Test 
artefacts, e.g. test cases, are created in domain engineering as well as in 
application engineering. The time to create test artefacts is influenced by the 
amount of test artefacts as well as by the difficulty of creating them. Vari-
ability in requirements makes the creation of domain test artefacts a complex 
task. This increases the time to create them, but reuse helps to compensate 
for the increase in development time. This holds particularly for the planned 
reuse of domain test artefacts in application testing. 

The time to create test artefacts criterion (see Definition 8-1 for the defini-
tion of “test artefacts”) is the estimation of the overall time required for cre-
ating test artefacts in domain and application testing. The main questions 
related to this criterion concern how far the test strategy supports the reuse of 
test artefacts, and how far it accelerates the development of test artefacts. 

13.5.2 Absent Variants 
During domain engineering, some variants might not be realised as they are 
developed on demand during application engineering. We call such variants 
absent variants since they are not available during domain testing. The abil-
ity to deal with the situation of absent variants is important in domain test-
ing. If techniques or workarounds are defined, the test engineer is able to 
perform the integration and system test cases that involve variability at least 
partially. This enables the test engineer to test more than just the common 
parts during domain testing, which yields a high quality of the product line. 

The absent variants criterion evaluates how well a test strategy copes with 
absent variants. 
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13.5.3 Early Validation 
One important aspect to ensure a high quality of the product line is to per-
form an early validation of development artefacts (by performing reviews, 
tests, etc.). This helps to keep the costs for repairing defects low. The costs 
rise the later the defects are detected and repaired in the development life 
cycle [Davis 1993]. Therefore, the development artefacts, especially the 
domain artefacts, should be tested as soon as possible. 

The early validation criterion is an indicator for the elapsed time between 
the finalisation of an artefact and its validation. The time should be low to 
ensure that defects are detected early, preferably in domain testing. 

13.5.4 Learning Effort 
The separation between domain and application engineering and the pres-
ence of variability lead to an adaptation of the testing process and testing 
products, e.g. test cases. A test engineer who is only familiar with single-
system testing has to learn how the software product line test process works 
and how to deal with variability. A good strategy makes only few adapta-
tions to the test process and test products, but enable the test engineers to 
perform their task in product line engineering. 

The learning effort criterion assesses product line test strategies with regard 
to the time it takes until a software test engineer is able to perform the test 
activities associated with the considered test strategy. 

13.5.5 Overhead
Overhead may be caused by producing the same artefact more than once or 
by performing additional activities which are not necessary, for instance for 
a single-system test process. Modelling variability can be overhead, and 
insufficient test artefact reuse can lead to overhead as well. 

The overhead criterion evaluates the amount of activities performed and/or 
the amount of artefacts produced unnecessarily as the same result could be 
achieved with lower effort. 

13.6 Product Line Test Strategies 

In contrast to single-system engineering, testing activities in product line 
engineering have to consider product line variability as well as the differ-
entiation between the two development processes, i.e. domain and applica-
tion engineering. In this section, we define and evaluate four fundamental 
test strategies for testing product line artefacts. 
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13.6.1 Brute Force Strategy 
The goal of software product line testing is to assure a sufficient quality of 
domain artefacts as well as all product line applications. Therefore, a 
straightforward idea is to ensure the quality as early and as completely as 
possible, which is in line with the early validation criterion. The brute force 
strategy aims at assuring the quality of the product line by performing an 
extensive domain test for all possible applications (Definition 13-7). This 
includes tests at all test levels (unit test, integration test, and system test) for 
all possible configurations. 

Definition 13-7: Brute Force Strategy (BFS) 

Perform all test activities at all test levels and for all possible applica-
tions during domain testing. 

As the BFS takes into account all possible applications, no application test-
ing has to be done during application engineering (Fig. 13-5). The inability 
to deal with the absence of components implies a longer domain realisation 
process that includes the implementation of all components. As the early 
validation criterion is fulfilled, the strategy seems quite attractive. 
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Nevertheless, it is not usable in practice. The number of possible configur-
ations is by far too large. Example 13-12 shows this for a very small case. 
Industrial projects may involve a huge amount of variation points and vari-
ants. The respective number of possible applications prevents the application 
of the BFS. 

Table 13-1 summarises the evaluation of the BFS. A “+” indicates that the 
strategy yields positive results for a criterion, a “-” indicates that the strategy 
yields negative results for a criterion, and a “0” indicates that advantages and 
disadvantages are almost balanced for a criterion. For the BFS, the time to 
create test artefacts criterion is rated with a “-” due to the large amount of 
test artefacts that must be created. The learning effort is rated with a “0” as 
the BFS requires learning how to deal with different configurations, but 
avoids having to learn how to deal with variability in test artefacts. The 
inability of the strategy to deal with absent variants leads to a “-” for the 
absent variants criterion. Early validation gets a “+” as all tests are per-
formed in domain testing. The overhead is rated with a “-” as most configur-
ations are tested unnecessarily. 

Example 13-12: Amount of Possible Configurations 

Following the discussion in [Kolb and Muthig 2003], a product line 
with only ten variation points, each of which has three possible vari-
ants, leads to 310 = 59,049 possible configurations or applications. 
This is an artificial example with independent variation points and 
variants, where exactly one variant must be chosen per variation point. 
If the variants are optional and the application may be used without a 
variant or with up to three variants per variation point, eight possibil-
ities exist per variation point, leading to 810 = 1,073,741,824 possible 
applications.

13.6.2 Pure Application Strategy 
The opposite strategy to BFS is to neglect domain testing, and to perform 
application testing only (Definition 13-8). 
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Table 13-1: Evaluation of the BFS 
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Definition 13-8: Pure Application Strategy (PAS) 

Perform tests only in application engineering. Here, only application-
specific tests are created and performed. No reusable domain test arte-
facts are created during domain testing. 

PAS considers only the artefacts used in the actual application (Fig. 13-6). 
This approach resembles applying single-system software testing in software 
product line engineering. The defects found during application testing are 
forwarded to the application engineering team. The development team is 
responsible for determining whether a defect is application-specific or per-
tains to the domain artefacts. 

The pure application strategy is not suitable for application in practice either, 
as it performs poorly in two of the criteria. The first problem is the high 
overhead. The test artefacts for the applications are developed all over again 
for each application. Such a product line test strategy does not have an 
advantage over single-system testing. Consequently, the PAS causes a 
bottleneck in the software product line engineering process. Whereas all 
development stages are able to assemble the reusable artefacts, testing has to 
start from scratch for each application. 
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The second problem with the PAS is the lacking early validation. Nothing is 
tested until the first application is built. The stakeholders cannot trust the 
quality of the platform and it may take a lot of time and money to repair the 
defects.

We summarise the evaluation results of the PAS in Table 13-2. The time to 
create test artefacts is rated with a “0” as it is roughly equal to the time 
needed in single-system engineering. As test engineers neither have to deal 
with absent variants nor with variability, the absent variants criterion and the 
learning effort are both rated with a “+”. Early validation is rated with a “-” 
since no tests are performed in domain testing. The overhead is rated with a 
“-” since similar test cases have to be defined for each application. 

13.6.3 Sample Application Strategy 
The following strategy achieves an early validation at reasonable cost. 
Instead of testing all applications like in the BFS, in this strategy only one or 
a few sample applications39 are assembled and tested (Definition 13-9). 

Definition 13-9: Sample Application Strategy (SAS) 

Use one or a few sample applications to test the domain artefacts. 
Application testing is still required for each application. 

The SAS aims at ensuring a sufficient quality of the domain artefacts. With 
the sample application, a representative system is created that can be tested. 
This sample application has one particular configuration. All common com-
ponents are tested in the context of the selected variants of the sample appli-
cation(s). Furthermore, the selected variants themselves are tested. Since not 
all possible applications are tested, application testing has to be performed, 
too. This is depicted in the right part of Fig. 13-7. The application may reuse 
some test artefacts produced in domain testing. 

                                                     
39 The sample applications may stem from product management or from development. The development 

team may choose a configuration that is easy to realise in order to speed up testing if product 
management does not define suitable samples. 
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One speciality of the SAS is that the sample application not only enables an 
early validation of the domain artefacts, but also enables the validation of the 
commonalities of the whole product line (Example 13-13). Moreover the 
definition of the sample applications ensures that the derivation of an appli-
cation is possible and that the binding mechanisms work correctly. 

The evaluation of the SAS regarding the criteria is as follows. The time to 
create test artefacts in domain engineering is as high as in single-system 
engineering as the sample application is tested in a single-system-like 
manner. However, it is possible to reuse test artefacts during application 
engineering, e.g. for the common parts or variants. This reuse reduces the 
time to create the test artefacts in application engineering. However, as the 
artefacts have been developed specifically for the sample application, they 
have to be adapted. The SAS thus gets an average rating for the time to 
create test artefacts criterion. 

The ability to handle absent variants is not directly addressed by this strat-
egy. The problem of absent variants is avoided by creating a sample applica-
tion. This leads to a good evaluation result for the absent variant criterion. 
Early validation is achieved with this strategy, as the common parts and even 
some typical variants can be tested during domain engineering. 
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The learning effort criterion is also positive for this strategy since the test 
products and activities are very similar to the products and activities in 
single-system engineering. Variability does not occur in the documents the 
test engineer receives for a sample application. 

The SAS has a negative evaluation for the overhead criterion. This is due to 
the fact that one or more complete applications have to be realised to enable 
testing. Nevertheless, realising the applications proves that applications can 
be derived from the platform. Therefore the overhead is costly, but may be 
worth doing. 

Table 13-3 depicts the evaluation results of the SAS. This is only a rough 
evaluation as the values depend on the detailed method that is used to realise 
the strategy, e.g. on the number of applications used as samples. If the num-
ber of applications is high, the time for creating the test artefacts increases, 
leading to a “-” for the time to create test artefacts criterion. 

Example 13-13: SAS for the Home Automation System 

The sample application for the home automation system includes the 
following configuration of realised variants. The application is 
equipped with automatic window control, central heating control, and 
central air-conditioning control. For each room, camera surveillance is 
installed, and for each door, a lock secured by a magnetic card reader 
is present. Based on the configuration, the quality of the product line 
is validated. The sample application is tested at the different test 
levels. The domain integration test validates the interactions of the 
components. The domain system test validates the meaningful behav-
iour of the entire application. 

13.6.4 Commonality and Reuse Strategy 
The fourth strategy distributes test activities between domain engineering 
and application engineering and facilitates systematic reuse of test artefacts 
(Definition 13-10). Available domain artefacts are tested during domain 
engineering. This usually applies to common artefacts, as depicted by the left 
arrow in domain testing in Fig. 13-8. 
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Definition 13-10: Commonality and Reuse Strategy (CRS) 

Domain testing aims at testing common parts and preparing test arte-
facts for variable parts. Application testing aims at reusing the test 
artefacts for common parts and reusing the predefined, variable 
domain test artefacts to test specific applications. 

In addition, domain testing prepares test artefacts for test items that contain 
variability. Consequently, the test artefacts themselves must include variabil-
ity definitions. Test artefacts that contain variability are added to the domain 
artefacts (depicted by the right domain testing arrow in Fig. 13-8) thus estab-
lishing a test artefact repository. 

An application is defined during application engineering. At this stage, the 
configuration of variants for the application is known (Example 13-14). In 
application testing, the test of the common artefacts is conducted with the 
test artefacts created during domain testing. This ensures that the common 
parts work correctly for the specific application with its specific plug-ins. 
For the variable parts, the corresponding test artefacts from the test artefact 
repository are adapted according to the binding of the variability and then 
used to perform the tests. 
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The evaluation of the CRS with respect to the time to create test artefacts 
criterion is positive. The inclusion of variability in the test artefacts signifi-
cantly reduces the amount of test cases that must be created from scratch in 
application testing. For instance, a domain test artefact may define how a 
variation point with all its variants has to be tested. In application testing, the 
test artefacts can be reused by binding the appropriate variants for the appli-
cation artefacts under test. 

The handling of absent variants is excellent as variability is included in the 
test artefacts. The evaluation of this criterion is thus a “+”. Concerning the 
early validation criterion, the CRS has a shortcoming since test cases can be 
executed only after the variability has been bound, i.e. in application engin-
eering. However, test cases that affect only commonalities can be executed 
during domain testing. We rate the early validation criterion with a “0” as 
the development of reusable test artefacts involves at least a partial valida-
tion of the test references used (domain requirements, reference architecture, 
and interface descriptions). 

The learning effort is higher than for the other three strategies as it takes 
some time to teach test engineers how to specify test artefacts that contain 
variability. Nevertheless, as test artefacts for variants preserve the variabil-
ity, they can be reused in all applications. Therefore, no overhead is pro-
duced during domain engineering. Table 13-4 gives a rough summary of the 
strategy regarding the criteria. 

Example 13-14: CRS for the Home Automation System 

During domain testing, tests are performed to ensure that the door 
locking hardware can interact with the server and that the windows 
can be opened and closed automatically. Reusable test cases are 
developed to enable the creation of application-specific test cases for 
the interaction of the three locking mechanisms in specific homes. 
Application testing must perform tests to ensure that the home auto-
mation system has a sufficient quality. The home security subsystem 
must work correctly in the given configuration, i.e. it must not contain 
defects. When there are two fingerprint scanners and one keypad 
interacting with one server in a specific home automation system, 
application testing must test the interaction of these components in the 
given configuration. 
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13.6.5 Conclusions for Strategy Selection 
As two of the strategies have obvious shortcomings (BFS and PAS) we do 
not recommend their use. The two remaining strategies, namely the sample 
application strategy (SAS) and the commonality and reuse strategy (CRS) 
are reasonable approaches. This leads to the question of when to use which 
strategy. 

The SAS performs very well in all criteria except the time and the overhead 
criteria. The overall time to create test artefacts is unsatisfactory as the SAS 
does not produce variable test artefacts and does not establish a systematic 
reuse of domain artefacts. The overhead stems from the additional effort to 
create the sample application. When a software product line is initiated, in 
many cases, the management already has a market or one or more customers 
in mind. In this case, the intended applications for the market or the custom-
ers can be used as samples so that there actually is no overhead. 

The overhead is the main reason for using the CRS in any other case. No 
overhead is produced with this strategy. Furthermore, test artefacts for all 
possible combinations of variants can be derived from the test artefacts that 
include variability. 

However, if one combines the two strategies, the strengths of both strategies 
can be retained. The composite strategy enforces the creation of reusable test 
artefacts in domain testing and the reuse of these artefacts in application 
testing. This leads to a good rating for the time criterion. In addition, an early 
validation is performed with fragments of a sample application. This means 
that no complete application is built, but only parts that are large enough to 
perform the tests. This indeed implies a minor overhead, but the overhead is 
significantly lower than the overhead of the SAS. We provide a summary of 
the strategies in Table 13-5. 

Table 13-4: Evaluation of the CRS

Evaluation of the CRS strategy 
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variants
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Learning
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13.7 Domain Test Activities 

The software test process typically consists of the five activities of test plan-
ning, test specification, test execution, test recording, and test completion, 
see e.g. [Spillner and Linz 2004; British Standards 1998]. In domain testing, 
these activities cannot be performed directly, since variability hampers test-
ing, for instance due to the absence of variants. 

The application of the SAS does not influence the traditional test process – it 
is just one execution of application engineering during domain testing. 
However, the CRS results in a test process that includes the variability 
defined in the orthogonal variability model in the test artefacts. Consequent-
ly, the CRS affects all activities dealing with the development of test arte-
facts for common and variable components. In the following, we briefly 
explain the single-system test process and sketch the adaptations required to 
realise the CRS. 

13.7.1 Domain Test Planning 
To perform the test planning activity, the test references, i.e. the specifica-
tions of the test items, must be available. For making a schedule it is import-
ant to know when the specified items become available for testing. 

In software product line engineering, test planning is based on domain arte-
facts, i.e. on the domain requirements, the reference architecture, the detailed 
design artefacts, and, most notably, the variability model of the product line. 
The product roadmap determines the schedule when the product line appli-
cations have to be finished. It is therefore relevant for the testing schedule. 

In domain testing, there is no single, executable application to be tested. 
Following the SAS, test engineers may specify a sample application, e.g. one 

Table 13-5: Strategy summary
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that can be realised with very few, simple application-specific plug-in com-
ponents. Alternatively they may create an application that is specified in the 
product roadmap in order to enable testing. This typically requires more 
effort, i.e. the entire application engineering process has to be performed, but 
reduces the overhead as the created application is not a throwaway product. 
Only the sample applications are the testable configurations. Nevertheless, 
potentially many more other applications can be built from the common and 
variable parts of the platform. 

The first step of test planning is to select the test strategy. This may be the 
SAS, the CRS, or a composite strategy. Depending on the selected strategy, 
the resources are allocated, and the test cases are defined (Example 13-15) 
and prioritised. To complete the test planning, the tool support should be 
defined.

Example 13-15: Planning the Home Automation Domain Test 

The test engineers of a home automation product line plan to follow 
the CRS in combination with a small sample application. The unit test 
is performed on all components. Additional tests are performed on the 
common components. Moreover, a test application is set up to perform 
the remaining test cases, which are currently not accounted for by the 
test plan. A team is allocated to create reusable test cases. 

13.7.2 Domain Test Specification 
The test specification activity aims at creating reusable test cases. The test 
cases are created in two steps. In the first step, logical test cases are created, 
which lack concrete details like data, GUI elements, etc. (Section 8.2). In the 
second step, the logical test cases are refined to detailed test cases, where the 
missing information is defined. 

In domain testing, test cases are created for both common and variable 
domain artefacts. Detailed test cases are created only for common artefacts. 
The effort of creating detailed test cases (including test case scenarios) for 
each possible binding of the product line variability typically is significant 
and leads to a high overhead. Nevertheless, logical test cases and generic test 
case scenarios can be created that reflect the requirements and design vari-
ability defined in the variability model (we deal with the documentation of 
variability in test artefacts in Chapter 8). For details on the derivation of 
domain test case scenarios that contain variability, see [Kamsties et al. 
2003a; Kamsties et al. 2003b] and [Reuys et al. 2003]. 

For each test artefact, a traceability link is established to the corresponding 
test references. Traceability links between domain test artefacts and the 
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underlying test references are required to support the reuse of test artefacts in 
application testing. For instance, when system test cases are derived from 
use cases, each system test case is related to the corresponding use case by a 
traceability link. If application test engineers know the requirements that 
have been reused for the considered application, they can easily identify the 
appropriate domain test cases by following the traceability links between 
domain requirements and domain test artefacts. In Chapter 18, we show in 
more detail how to exploit the established traceability links. 

13.7.3 Domain Test Execution, Recording, and Completion 
During test execution, the test cases are applied to the test items. A test pro-
tocol with the test results is created. The protocol includes the test case, the 
version number of the object under test, and the test result. Documenting the 
test execution in this way makes the tests repeatable and the test results veri-
fiable. During test completion, the test record is analysed and the error 
classes and the origins of errors are determined. Finally, a test summary 
report (see Sections 8.2 and 8.3) is created. 

In domain testing, only the test cases for common domain artefacts and for 
the sample applications are executed. Only for those items are detailed test 
cases available. The tests not covered by domain test execution are the 
responsibility of application testing. Moreover, as stated in Section 13.3, test 
cases performed in domain testing may have to be repeated in application 
testing.

13.8 Differences from Single-System Engineering 

There are two key differences between testing product lines in software pro-
duct line engineering and testing applications in single-system engineering: 

Two test processes: domain testing and application testing 

The consideration of variability in domain and application testing 

The main difficulty of domain testing is that there is no single, executable 
configuration of components that can be tested. Hence, appropriate strategies 
are necessary to ensure early validation of the product line as well as planned 
reuse of test artefacts by application engineering. 

Test activities are distributed between domain engineering and application 
engineering. To avoid creating test artefacts for each application from 
scratch, domain testing provides variable test artefacts. Variability in test 
artefacts originates from the variability introduced in requirements, design, 
and realisation, but may also take into account additional variability, e.g. in 
the execution environment. 
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13.9 Summary 

In this chapter we establish the foundation for testing in software product 
line engineering. Domain testing is characterised by the need to provide an 
early validation of the product line, to avoid a bottleneck in the testing pro-
cess, and to reduce the learning effort for test engineers. 

Two strategies are recommended that can also be applied in combination. 
The first strategy, the SAS, involves building one or more sample applica-
tions. This enables an early validation of the software product line. In add-
ition, testing can be performed in the same way as in single-system 
engineering. The second strategy, the CRS, performs tests for the common 
artefacts in domain engineering and provides variable test artefacts for reuse 
in application testing. The reuse of these artefacts reduces the effort during 
application testing. We elaborate on the effects of the strategies on applica-
tion testing in more detail in Chapter 18. 
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14.1 Introduction 

In order to select a COTS component, candidate components that are avail-
able in the market or which exist in the organisation have to be evaluated 
and ranked according to defined criteria. We distinguish between high- and 
low-level component selection. The key discriminator is the fraction of 
functionality that a COTS component is supposed to provide with respect to 
the overall functionality of the software product line. Low-level components 
provide a minor part of the overall functionality and have little influence on 
the reference architecture. They are selected during domain realisation. The 
focus of this chapter is on the high-level components. Since they provide a 
significant fraction of the overall functionality they must be considered in 
the design right from the beginning. When we speak about COTS selection 
in this book, we refer to the high-level COTS selection process. The sub-
processes and artefacts closely related to high-level COTS selection are 
highlighted in Fig. 14-1. 

High- and low- 
level selection 

Fig. 14-1: Sub-processes and artefacts related to COTS selection 
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A COTS component is evaluated and selected either during application 
engineering or during domain engineering. Evaluating the component in 
application engineering means to consider its integration into only one appli-
cation of the software product line. This kind of evaluation resembles the 
single-system engineering case. More important for software product line 
engineering is the evaluation and selection of a COTS component within the 
domain engineering process. That is, to consider the integration of a COTS 
component as a domain artefact into the software product line. Such a com-
ponent must fulfil domain requirements and be integratable into the refer-
ence architecture (Fig. 14-1). In addition, it has to provide variability in 
order to be adaptable to different applications. 

The high-level COTS selection process is closely interrelated with domain 
requirements engineering and domain design. It takes requirements, archi-
tecture, and the variability model as input to find the best-fitting COTS com-
ponent for use as a domain artefact in the product line. In addition to the 
identification of strengths and weaknesses of the examined components, 
COTS selection may also reveal necessary adaptations of requirements, 
architecture, and the variability model [Pohl and Reuys 2001]. Figure 14-2 
depicts the main interrelations between the COTS selection process and the 
domain requirements engineering and domain design sub-processes. 

14.1.1 Interrelation with Domain Requirements Engineering 
Domain requirements engineering defines the required component features
(first bullet of  in Fig. 14-2) which are considered during the COTS selec-
tion. They define the required functionality and quality that a component 
should offer. COTS components usually realise basic requirements or satis-
fiers and rarely provide delighters (Section 9.5.4 classifies requirements into 
indifferent requirements, basic requirements, satisfiers, and delighters). 

In addition to the requirements artefacts, a component must match the varia-
bility desired for the software product line. Besides the requirements arte-
facts, the required variability is thus the second important input from the 
domain requirements engineering process (second bullet of  in Fig. 14-2). 

COTS selection 
for a product line 

High-level
COTS process 

Domain
Design

COTS
Selection

Domain
Requirements
Engineering

Required component 
features
Required variability

Candidate components
Evaluation results
Design flaws

Architecture constraints
Requirements 
adaptations

3

42

1

Fig. 14-2: Information flows between high-level COTS selection and other sub-processes

Required
features

Required
variability



288 14.  Selecting High-Level COTS Components 

As a result of a COTS selection process, adaptations of requirements can be 
required (  in Fig. 14-2). One reason for such an adaptation is the 
identification of functionality or quality offered by a COTS component that 
was not considered by the product line, but which will improve the product 
line and is thus added as a new feature. Another reason for an adaptation is 
the fact that it is quite unlikely for a COTS component to match all the 
desired requirements artefacts and/or to comply fully with the desired vari-
ability. Also in this case an adaptation of the requirements or the variability 
is required. 

14.1.2 Interrelation with Domain Design 
The output of COTS selection includes the identified candidate components 
(first bullet of  in Fig. 14-2). Typically, rankings of the components with 
regard to several criteria are provided. A detailed evaluation is conducted 
only for components that perform well in a preliminary screening activity. 
The evaluation results of each component (second bullet of  in Fig. 14-2) 
are passed on to domain design. In addition, the analysis of the candidate 
components may unearth design flaws (third bullet of  in Fig. 14-2) in the 
current reference architecture and thus initiate design adaptations. 

As the selected COTS has to become an integral part of the reference 
architecture, domain design imposes architecture constraints (  in Fig. 14-2) 
to be considered during COTS selection, such as the architectural styles and 
patterns that the component must conform to, compatibility constraints, and 
constraints caused by the process structure of the reference architecture. 

14.2 The CoVAR Process 

CoVAR (Component Selection considering Variability, Architectural Con-
cerns, and Requirements) is a process for selecting high-level COTS compo-
nents during domain design [Pohl and Reuys 2001; Ulfat-Bunyadi et al. 
2005]. CoVAR supports COTS component evaluation and the identification 
of the most suitable COTS component for a software product line from a 
technical point of view. In the final decision for or against some component, 
the stakeholders have to consider other aspects such as cost, ROI (Return On 
Investment), legal aspects, etc. Such aspects are considered and decided by 
product management. CoVAR focuses on the engineering and thus only on 
the technical aspects. 

Each COTS component has some built-in variability, its so-called provided 
variability. One goal of the component selection process is to determine the 
component that achieves an adequate fit between required variability and 
provided variability. 
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A selection process that has to take into account provided and required vari-
ability of a component differs from traditional COTS selection. In order to 
investigate a conventional component it is often sufficient to check the 
documentation and an evaluation copy of the executable component. When 
evaluating a component with regard to its provided variability, several prob-
lems occur that are specific to software product line engineering: 

Information regarding the variability provided by a COTS component is 
often hidden. In most cases, the documentation of a candidate compo-
nent does not explicitly state all variation points as components today 
are usually not developed with the goal in mind that they should 
become part of a software product line. Despite this fact, designers and 
developers usually have envisioned different usage situations and pre-
pared the component for them. Moreover, there is often a mismatch in 
terminology between a customer looking for a component and a sup-
plier offering one. 

Conventional information sources are not sufficient. The issues arising 
from the insufficient documentation of a component require a deeper 
examination of the component itself. The variability implemented in the 
component has to be identified. Different mechanisms exist for imple-
menting variability; see Section 12.5. This makes an evaluation diffi-
cult. Depending on the configuration mechanism used, variants are 
bound at different times (e.g. before compilation or during linking). 
These binding times make it necessary to investigate not only the exe-
cutable component, but also its source code and its compiling and 
linking instructions. For example, if the binding time of a variation 
point is implementation time, then this variation point cannot be 
detected in an executable component. Instead, only the bound variant 
can be spotted. Moreover, because of the variability, not all features 
exist in parallel in one executable version of the investigated compo-
nent. That is, several configurations of a component must be evaluated 
because the provided functionality and quality vary. 

The bottom line is that the usual documentation, such as marketing material, 
is not sufficient, especially when variability is considered. Thus, besides the 
executable evaluation copy of the component, more artefacts such as config-
uration mechanisms and information must be evaluated. The evaluation is 
performed in two ways: 

1. The artefacts must be checked for the existence of required features, 
required variation points, and required variants. 

2. Configurations of the component must be checked for the functionality 
and quality they provide. 
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To cope with these problems, CoVAR defines three main activities: compo-
nent screening, detailed component evaluation, and component selection (see 
Fig. 14-3). During the component screening activity, the most promising 
candidate components are identified on the basis of available documentation. 
The detailed component evaluation provides a detailed evaluation of the 
components on the basis of development artefacts and evaluation copies. An 
evaluation copy denotes an executable version of a component that is pro-
vided by the component vendor for evaluation purposes. The final compo-
nent selection activity produces a ranked list of components so that the best-
fitting component can be selected. 

The interaction between domain requirements engineering and COTS selec-
tion described in Section 14.1.1 occurs mainly during the activities of 
component screening and detailed component evaluation. The following 
detailed descriptions of each activity show that interaction is supported and 
even promoted. Thus, the understanding of already specified requirements, 
variation points, and variants is increased and is then reflected in the respec-
tive artefacts. 

Note that, although the sub-activities of each activity are explained in a 
sequential order, they may be iterated, if necessary, or performed in parallel. 
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14.2.1 Component Screening 
During component screening, a first evaluation of candidate components is 
performed on the basis of available component documentations, e.g. mar-
keting material, technical manuals, experience reports. The goal is to reduce 
the number of candidate components for the subsequent detailed evaluation 
to three to seven components and consequently reduce the time and effort 
needed for the whole evaluation. The components are mainly checked for 
providing the required basic functionality and quality. Only if too many can-
didate components pass this check are the requirements considered in the 
examination extended to additional functionality and quality in order to be 
able to exclude more candidates. Figure 14-4 provides an overview of the 
steps of the component screening activity. 

The steps of the component screening activity should be performed in the 
following way: 

Step 1.1: Conduct technical market study. In order to identify candidate 
components, a market study is conducted on the basis of the domain 
requirements. Sources may be the public market or in-house. Available 
documentations about the candidates are collected. The result of this sub-
activity is, thus, a set of potential candidates for reuse along with the infor-
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mation that could be gathered about these components. The market study 
may lead to an update of domain requirements, e.g. if no components can be 
identified that satisfy them. 

Step 1.2: Derive required component features. Based on the domain 
requirements that address the whole software product line, required compo-
nent features are derived that specifically describe what is expected from the 
COTS component. Variability is inherent in required component features 
just as it is in domain requirements. Thus, we distinguish between common 
and variable features. Variable features express two kinds of expectations: 

1. Required variation points, which express the fact that certain variability 
subjects have to be accounted for. 

2. Required variants, i.e. the choices that should be possible for variability 
subjects.

Required component features, just as, at a later stage, actual component fea-
tures, and their dependencies (e.g. excludes or requires) should be docu-
mented to ensure traceability from the expected features defined at the 
beginning of the evaluation to the results of the evaluation. Features are 
often captured in feature models (Section 5.2). These models serve as a basis 
for discussions between stakeholders, i.e. the evaluation team consisting of 
the domain analysts, the domain designers, and the domain experts. 

In addition to the feature model containing the required component features, 
an accompanying textual description is provided for each feature. The text-
ual description of a feature should contain the following information: 
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Name: name of feature. 
Description: description of feature. 
Class: class of feature: basic | satisfier | delighter. 
Constraint dependencies: “excludes:” <list of feature names>, 
“requires:” <list of feature names>. 

Example 14-1: Required Component Features for a Word Processor 

The home automation system offers two variants: a standard and a 
professional variant. The standard variant is able to generate protocols 
and summary reports. The professional variant provides additional 
functionality: it comes with an integrated email program that allows, 
for example, the system to be called by phone and let one’s mails to 
be read out via the phone. Furthermore, it provides the services of an 
integrated secretary such as dictating letters, etc. to the home automa-
tion system. For these purposes, both the standard and the professional 
variant require a word processor component. For the standard variant, 
the component is configured as a simple text editor whereas, for the 
professional variant, the component is configured as a more sophisti-
cated word processor. An excerpt of the feature model with the 
required component features is depicted in Fig. 14-5. 

Step 1.3: Derive evaluation criteria. A set of evaluation criteria is derived 
from the required component features. More precisely, an evaluation crite-
rion is developed for each feature that represents a leaf of the feature model. 
When a feature is not fully refined by its child features, an evaluation crite-
rion is developed for this feature and not for its child features. If a feature is 
not detailed enough for deriving an evaluation criterion from it, it is refined. 
The textual description of an evaluation criterion should contain the follow-
ing information: 

Identifier: a unique identifier for the evaluation criterion. 

Definition: the definition of the evaluation criterion. 

Rationale: a description of the rationale of the criterion and how it 
relates to required component features. 

Scale: the definition of the scale of measurement for the criterion. 

Unit/classes: the definition of the unit of measurement for the criterion. 

Screening rule: the definition of a possible threshold that is required for 
a component to be selected for detailed component evaluation (this 

Documentation of 
evaluation criteria 
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attribute is used for documenting which criteria were used in the com-
ponent screening activity). 

Baseline: the baseline represents the minimum required level of 
functionality and features that a component must satisfy when it is inte-
grated into the software product line. 

Qualitative description: guidelines on how additional information gath-
ered about the criterion should be documented. 

Feature interaction: a description of features that influence each other 
(e.g. efficiency and user-friendliness) and should therefore be evaluated 
in close relationship to ensure that an acceptable level of both can be 
reached at the same time. 

Priority: a description of how important the evaluation criterion is (pos-
sible classes are required, recommended, optional). 

Step 1.4: Verify and validate features and criteria. Before features and 
evaluation criteria are used for evaluation, they are verified and validated 
with all relevant stakeholders. 

Step 1.5: Check existence of features. For each component, the documenta-
tion is analysed with regard to the existence of the required component fea-
tures. The existence of variable features is checked independently of their 
variability dependency (Section 4.6). That is, features are considered from 
the viewpoint of the evaluator. A required optional feature, for example, is 
first checked for existence and second for the type of required variability 
dependency (optional in this case). If the feature does not exist, the evaluator 
documents this fact as – despite being optional – the feature is required for at 
least part of the product line applications. The same holds for a group of 
alternative features. This check for the existence of required features results 
finally in a feature model of the actual component features (see Example 
14-2) and accompanying textual description of these features. 

Step 1.6: Check configurations for functionality and quality. During the 
component screening activity, the candidate components are not part of the 
intended configurations. However, possibly information is available about 
configurations which are similar to the intended configurations. The avail-
able information is investigated with respect to the functionality and quality 
provided by the configuration. The results are recorded in an informal way in 
the accompanying textual description of the provided component features. 
The feature model may be extended during this step. 

Step 1.7: Check compliance. For each component, the required and actual 
component features are compared, and a rough quantification is given such 
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as “passed”, “not passed”, or “deferred”. The result is a component compli-
ance tuple for each component. 

Step 1.8: Reduce number of components. Based on the component compli-
ances, those components are screened out that received one or more “not 
passed”.

Example 14-2: Provided Component Features (from Documentation)

TX Text Control from The Imaging Source Europe GmbH is an ex-
ample of a word processor component. The analysis of its documenta-
tion leads to the feature model with provided component features 
shown in Fig. 14-6. Apparently, a lot of features that were required 
from the component in Example 14-1 are not supported. 

14.2.2 Detailed Component Evaluation 
During detailed component evaluation, evaluation scenarios are developed 
and performed on the candidate components. Figure 14-7 provides an over-
view of this activity. At the beginning of detailed component evaluation, a 
pilot component evaluation is conducted on a subset of two to three candi-
date components. The aim of the pilot component evaluation is to develop 
evaluation scenarios that are applicable to all candidate components that 
successfully passed component screening. That is, initial evaluation scenar-
ios are developed, applied to the two to three candidates, reviewed, and pos-
sibly adapted. Next, the revised evaluation scenarios are used to evaluate the 
remaining components (see Fig. 14-7). If the changes to the scenarios invali-
date the evaluation results made so far, the two to three candidate compo-
nents used during the pilot evaluation must be evaluated again using the 
revised scenarios. 
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Evaluation copies and other development artefacts of the candidate compo-
nents are used for the detailed component evaluation. The components are 
checked for the fulfilment of the basic requirements and satisfiers, the qual-
ity, and the support of intended variation points and variants. The following 
steps are performed: 

Step 2.1: Select initial candidates. Two to three candidate components for 
the pilot component evaluation are selected. It is suggested to select the 
components with the largest differences in their realisation of requirements 
and variation points so that the resulting evaluation scenarios can be 
expected to hold for the other components as well. 

Step 2.2: Check existence of features. Using the evaluation copies and 
development artefacts of each component, the components are checked for 
the existence of the required component features. The feature model and 
feature descriptions developed during component screening are used as 
input. The first goal is to check if the required component features are actu-
ally provided by the component under evaluation. That is, all required 
component features (regarding basic functionality as well as satisfiers) are 
checked using the development artefacts and the evaluation copies. The 
second goal is to identify additional functionality, additional variation points, 
and additional variants of expected variation points. 
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Validating that required variation points are supported by a component, and 
identifying new variation points as well as new variants that belong to an 
already known variation point, require knowledge about how variation 
points are realised in the different development artefacts. Variation points 
can be implemented using different configuration mechanisms offering dif-
ferent binding times. The binding time allows categorisation of the variation 
points. For example, a variation point may have been realised in a compo-
nent by using the IFDEF statement in its source code (written in the C/C++ 
programming language). In this case, variants are bound at compile time. In 
the cases when the support of a required variation point is validated or add-
itional variants are identified, the region of the artefact to look at can be 
limited. In addition, identifying new variation points necessitates browsing 
through the whole artefact. 

Example 14-3: Provided Component Features (from Evaluation) 

Figure 14-8 shows the feature model of the actual component features 
of the word processor component TX Text Control. It becomes appar-
ent that the component actually supports significantly more features 
than could be found in the documentation. 
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In this way, the feature model and the accompanying documentation of each 
component (resulting from component screening) are validated and comple-
ted. Thus, performing the step yields an updated feature model and updated 
textual description. 

Step 2.3: Develop evaluation scenarios. For each evaluation criterion deter-
mined during component screening, an evaluation scenario for measuring it 
in a precise and repeatable fashion is developed. Sometimes, it is useful to 
cover several evaluation criteria using a single scenario, if the concerned 
features are closely related and interfere with each other. This case is indi-
cated by the feature interaction attribute of the respective evaluation criteria. 
Evaluation scenarios are usually narrative scenarios that describe actor 
actions and desired component responses (see Example 14-4). 

A traceable decision-making process is performed in parallel with the com-
ponent evaluation. Therefore, for each evaluation scenario, measurement 
rules for ranking the component’s behaviour are defined. Different levels of 
scenario fulfilment are distinguished. The overall goal is to define scenarios 
and evaluation criteria in such a way that component evaluations can be per-
formed by different stakeholders. That is, to ensure as far as possible that: 

1. Two evaluations of the same component by different people lead to 
almost the same result. 

2. Two evaluations of different components by different stakeholders lead 
to comparable results. 

Example 14-4: Evaluation Scenario for the Word Processor

Figure 14-9 illustrates an evaluation scenario that is developed for the 
criterion “inserting an existing file as OLE object”. Since the develop-
ers of the evaluation scenario know that a word processor’s stability 
may suffer from inserting OLE objects into a document, they evaluate 
the two criteria together. 

Step 2.4: Determine and generate configurations. During detailed compo-
nent evaluation, configurations of the candidate components can be genera-
ted using evaluation copies. In most cases, it is impossible to check all fea-
tures on all possible configurations of all investigated components. Even 
though only three to seven candidates are left for detailed evaluation, the 
effort might be unreasonably high. A more efficient solution is to check each 
common feature and each variable feature only once on a configuration of a 
candidate component. In order to minimise the number of configurations, the 
number of features that are checked on one configuration of a component is 
maximised. 
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Another problem that may occur is that dependencies between variants 
cannot be identified by investigating the component. A component can be 
checked for required dependencies, but it must also be assured that a compo-
nent under investigation does not restrict the combination of variants more 
than required. To this end, a number of foreseeable configurations are gener-
ated. This helps to ensure that there are no hidden dependencies among vari-
ants built into a component prohibiting certain configurations. As a result of 
this step, these foreseeable configurations of the candidate components are 
generated. Furthermore, each evaluation scenario is assigned to the configur-
ation it is executed on. 

Step 2.5: Apply scenarios to configurations. As specified by scenario 
assignment, the evaluation scenarios are applied to the component configur-
ations. The results are also captured in scenarios. These result scenarios 
describe the actual behaviour of the components and thus concretise the 
actual component features. Therefore, they should be related to the respec-
tive features of the feature model of the actual component features. 

Step 2.6: Check compliance. Required and actual component features are 
compared just as during component screening. But this time the compliance 
vector is supplemented by a detailed quantification for each feature covered 
by an evaluation scenario. The quantification results from applying the 
measurement rule that is assigned to each scenario. 

Step 2.7: Review scenarios. Based on the experiences gained during steps 
2.5 and 2.6, the evaluation scenarios and accompanying measurement rules 
are reviewed to ensure that they can be applied to all components. If neces-
sary, they are adapted. 

Scenario for the Criterion ‘Inserting an existing file as OLE object’

Primary goal: check criterion ‘Inserting an existing file as OLE object’
Secondary goal: check criterion ‘Stability of the Word Processor’

Actor: Evaluation team member

Scenario step sequence:
1. The evaluation team member edits a text comprising 150 pages manually into a newly 

created Word document.
2. Below the text, the team member inserts an OLE object created from an existing file.
3. The team member opens the OLE object within the Word application in its server 

application and makes some changes.
4. The team member closes the server application and returns to the Word application.
5. The team member checks if the OLE object in the Word application has been adapted to 

the changes made in the server application.
6. The team member saves the document.

Fig. 14-9: Example of an evaluation scenario 
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Step 2.7 represents the final step of the pilot component evaluation. The 
revised evaluation scenarios can then be used for the evaluation of the 
remaining components. As stated above, if the changes to the scenarios 
invalidate the evaluation results for the two to three candidates used for the 
pilot evaluation, these components must be re-evaluated using the revised 
scenarios. For this subsequent evaluation, only steps 2.2 (“Check existence 
of features”), 2.4 (“Determine and generate configurations”), 2.5 (“Apply 
scenarios to configurations”), and 2.6 (“Check compliance”) have to be per-
formed with the components. 

14.2.3 Component Selection 
Component selection is the final activity of the CoVAR process. During this 
activity, evaluation criteria are prioritised and a final ranking of the compo-
nents is computed based on the component compliances. To determine the 
final ranking, an established multi-criteria decision-making process such as 
the AHP (Analytic Hierarchy Process, see e.g. [Saaty 1990]) may be used. In 
contrast to the other two main activities of CoVAR, the component selection 
activity typically does not lead to new insights about domain requirements 
and variability therein. 

The result of the component selection activity is a ranking of components 
from which the highest ranked component should be selected. All informa-
tion that was gathered about the selected component is then used during 
further activities of software product line engineering, such as the integration 
of the component into the domain architecture. 

14.3 Differences from Single-System Engineering 

The main difference between the integration of a COTS component into a 
single system and its integration into a software product line as a domain 
artefact is variability. Since variability is inherent in domain requirements 
and architecture, it has to be taken into consideration as a third facet (besides 
requirements and architectural concerns). Considering variability during 
COTS component evaluation and selection in turn results in new problems 
that have to be solved: 

Provided variation points and variants are often not specified explicitly 
in component documentations, although they are often present in order 
to allow the adaptation of a component to different modes of usage. 
This situation requires a closer examination of the component itself. 

For investigation purposes, conventional information sources, such as 
documentation and evaluation copies, are not sufficient – a second 
problem that results from considering variability during evaluation. An 
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evaluation copy is executable and, thus, contains bound variants. Conse-
quently, depending on the binding time of variation points, more arte-
facts of a component must be investigated, such as source code and 
compiling and linking instructions. 

Because of the variability provided by a component, not all features 
exist in parallel in one executable version of the component. That is, a 
component’s provided functionality and quality may vary from one con-
figuration to another. This third problem requires an evaluation of com-
ponent configurations with respect to the provided functionality and 
quality. 

14.4 Summary 

The CoVAR process supports an evaluation team in evaluating COTS com-
ponents for a software product line. CoVAR consists mainly of two evalu-
ation activities and a component selection activity. 

During the first evaluation activity, the component screening, candidate 
components are evaluated on the basis of available documentations and the 
number of components is reduced to three to seven candidates. 

During the second evaluation activity, the detailed component evaluation, 
these candidates are evaluated on the basis of evaluation copies and devel-
opment artefacts. In each evaluation activity, the components are checked in 
two ways. First, they are checked for the existence of required component 
features as well as required variation points and variants. Second, specific 
configurations of the components are checked for the functionality and qual-
ity they provide. Based on the results of the component screening and 
detailed component evaluation, a ranking of the examined components can 
be determined in order to select the component that fits best. 
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Part IV: Overview 

The main goal of application engineering is to derive a software product line appli-
cation by reusing as many domain artefacts as possible. This is achieved by exploit-
ing the commonality and the variability of the product line established in domain 
engineering. In this part you will learn how the orthogonal variability model is used 
in the application engineering sub-processes highlighted in Fig. IV-1 to: 

Consider the commonality and the variability of the product line when defining 
the requirements for a specific application. 

Document the selected variants. 

Bind the selected variants from requirements to the architecture, to the compo-
nents, and to the test cases. 

Estimate the impacts originating from differences between application require-
ments and domain requirements on architecture, components, and tests. 

The orthogonal variability model supports the consistent reuse of the domain assets, 
i.e. the domain requirements, architecture, components, and test cases. 

Fig. IV-1: Chapter overview of Part IV 
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In this chapter you will learn: 

o About the interrelations of the application requirements engineering sub-
process with the product management, domain requirements engineering, and 
application design sub-processes. 

o How to communicate the external variability and the commonalities of the 
product line to the stakeholders. 

o How to identify deltas between stakeholder requirements and product line 
requirements. 

o How to analyse and document changes such as adding new features or 
adapting product line features for a particular product line application. 
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15.1 Introduction 

The goal of application requirements engineering is to elicit and to document 
the requirements artefacts for a particular application and at the same time 
reuse, as much as possible, the domain requirements artefacts. The reuse of 
domain requirements artefacts for each application supports the overall goal 
of obtaining a high degree of domain artefact reuse. 

The sub-processes and artefacts closely related to the application require-
ments engineering sub-process are highlighted in Fig. 15-1. Application 
requirements engineering is related to product management, domain 
requirements engineering, and application design. Product management 
defines the major features of the applications to be developed. Domain 
requirements engineering creates the domain requirements artefacts, which 
are reused for the application under consideration. The application require-
ments engineering sub-process reuses the domain requirements artefacts to 
define the application requirements artefacts. The application requirements 
artefacts serve as a basis for application design. 

Goal of application 
requirements
engineering

Related
sub-processes 

Fig. 15-1: Sub-processes and artefacts related to application requirements engineering 
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An essential activity of application requirements engineering is the commu-
nication of the domain requirements artefacts to the stakeholders. Hence, 
product managers and customers are typically involved in the application 
requirements engineering process. 

Product managers determine the major features of the applications in the 
product portfolio based on their market and product (line) strategy. Custo-
mers demand an application that satisfies their individual needs at an afford-
able price. In cases where customers are known to the organisation, applica-
tion requirements engineering communicates the commonality and external 
variability of the software product line to them. In the more common case 
where the customers are not personally known, product managers and mar-
keting experts represent the customer as stakeholder of the application 
requirements engineering sub-process.40 The communication about domain 
requirements artefacts41 enables customers, or their representatives, to evalu-
ate the extent to which the software product line can satisfy their needs. 

Software product line applications can be divided into two basic categories 
with respect to the degree of domain artefact reuse. The first category com-
prises applications which have only requirements artefacts that are a subset 
of the domain requirements artefacts. The second category comprises appli-
cations which have requirements artefacts that are not part of the domain 
requirements artefacts. For applications of the first category, the domain 
requirements artefacts are communicated to the stakeholders, and the appro-
priate requirements are selected and documented. The second category asks 
for more effort for application engineering. As the applications of the second 
category cannot be realised by reusing domain requirements artefacts exclu-
sively, the differences or deltas between domain requirements artefacts and 
application requirements artefacts have to be detected and documented. 
Requirements deltas lead to adaptation effort in all application engineering 
sub-processes and thus increase the price of the application. 

Figure 15-2 shows the interrelations between application engineering and its 
related sub-processes. In the following, we describe each interrelation in 
detail.

15.1.1 Interrelation with Product Management 
Product management defines the major application features (  in Fig. 15-2) 
for all applications of the product line. The development of the applications 

                                                     
40 A distinction can also be made between the derivation of individual applications and the derivation of 

mass-market applications [Halmans and Pohl 2002]. Here, we distinguish between customers and 
product managers as stakeholders of the application requirements engineering process, which largely 
correlates with the differentiation between individual applications and mass-market applications. 

41 In the following, we use the term requirements as a synonym for requirements artefacts (Definition 
5-2). 
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is supported by the commonality and variability of the platform. Application 
requirements engineering reuses the common parts and chooses the variant 
parts that are suitable to match the features defined by product management 
for the application. Certain features are application specific, i.e. they only 
apply for a single application. As the corresponding application requirements 
artefacts do not yet exist, application requirements engineering has to define 
them. 

Application requirements engineering leads to new insights about required 
features, e.g. by communicating with different stakeholders. Based on the 
new insights application requirements engineering makes suggestions for 
additional and altered features that might be incorporated in the software 
product line (  in Fig. 15-2). 

15.1.2 Interrelation with Domain Requirements Engineering 
Domain requirements engineering provides application requirements engin-
eering with common and variable requirements artefacts and the domain 
variability model (  in Fig. 15-2). Application requirements engineering 
employs the variability model to determine the variants as well as the cor-
responding domain requirements artefacts that can be reused for the applica-
tion.

Application requirements engineering passes on requests for additional and 
altered domain requirements artefacts to domain requirements engineering 
(first bullet of  in Fig. 15-2). The requests typically originate from insights 
and experiences gained in assembling a specific application. In addition, 
customer requirements should be evaluated if they also affect other product 
line applications (i.e. if they rather represent needs of the domain than of a 
single application). If so, the requirements are passed on to domain require-
ments engineering to be elaborated further. 

Product management designates application-specific features to be worked 
out during application requirements engineering, e.g. if a lead product strat-
egy is followed. If application-specific requirements address actual needs of 
the domain, they might be integrated into the domain artefacts. For this pur-
pose, the application requirements artefacts are passed on to domain 
requirements engineering (second bullet of  in Fig. 15-2). Before these 
artefacts can be integrated into the product line, a decision within the domain 
engineering process has to be made and, if the decision is to integrate them, 
the domain artefacts have to be adapted to incorporate the new requirements. 
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15.1.3 Interrelation with Application Design 
The main output of application requirements engineering is the application 
requirements specification (  in Fig. 15-2) which is a complete specification 
of the application. It includes the application variability model, which is 
derived from the domain variability model, the requirements artefacts that 
are reused from the domain artefacts, and the requirements deltas. Require-
ments deltas are determined by analysing the requirements posed by the 
customer or product manager and comparing them with domain require-
ments artefacts. The application requirements specification is described in 
more detail in Section 15.5. Based on the application requirements specifica-
tion (and the reference architecture), application design derives the applica-
tion architecture. 

Application requirements engineering typically involves trade-off decisions 
with regard to the requirements posed by a customer or representative. The 
realisation effort for the requirements depends on the degree of reuse that 
can be achieved. Requirements deltas, such as performance requirements 
that are tighter than anticipated by the product line, may involve significant 
modifications of the architecture and the reusable components. As such 
modifications affect the development costs for the application, trade-off 
decisions are necessary on whether to accept a higher price or to abstain 
from the specific requirement that causes cost-intensive modifications. 
Application design has to support such decisions by providing an effort 
evaluation of requirements deltas (  in Fig. 15-2). 
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Fig. 15-2: Information flows between application requirements engineering and other sub-
processes 
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15.2 Application Requirements Engineering Activities 

In the following, we do not distinguish whether the need to develop applica-
tion-specific requirements artefacts originates from product management, 
from customer needs, or from any other source. We treat the different cases 
similarly by the assumption that there are some stakeholders who pose 
requirements with respect to the considered application. We define these 
requirements as stakeholder requirements:

Definition 15-1: Stakeholder Requirements 

Stakeholder requirements are requirements that stakeholders state for 
a particular application, i.e. requirements that the stakeholders expect 
to be fulfilled by the application. 

Due to trade-off decisions made in the application requirements engineering 
process, the initial stakeholder requirements are not necessarily identical 
with the resulting application requirements. We define application require-
ments as follows: 

Definition 15-2: Application Requirements

Application requirements are requirements that completely specify a 
particular product line application. 

The agreement about the application requirements is a result of the applica-
tion requirements engineering process. The following options exist with 
regard to a particular stakeholder requirement: 

The stakeholder requirement can be completely fulfilled by an applica-
tion requirement or set of application requirements. 

The stakeholder requirement can be partially fulfilled by an application 
requirement or set of application requirements. 

The stakeholder requirement cannot be fulfilled by any application 
requirement or set of application requirements. 

The decisions about stakeholder requirements affect the interrelations 
between stakeholder requirements, application requirements artefacts, and 
domain requirements artefacts: 

Interrelation between stakeholder requirements and application re-
quirements artefacts 
Normally, stakeholder requirements should be fulfilled by the applica-
tion requirements artefacts. Yet, if the realisation of requirements deltas 
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leads to a significant effort, the stakeholders may decide that their 
requirement should only be partially fulfilled by the application or not 
fulfilled at all. We address this topic in Section 15.4.4. 

Interrelation between stakeholder requirements and domain require-
ments artefacts 
The requirements engineer maps stakeholder requirements to domain 
requirements artefacts with the goal to find domain requirements arte-
facts that satisfy the particular stakeholder requirement. In case a spe-
cific domain requirements artefact satisfies a particular stakeholder 
requirement, the domain requirements artefact can be reused. In case a 
particular stakeholder requirement cannot be fulfilled by domain arte-
facts, adaptation effort is necessary to satisfy the stakeholder require-
ment. Then, a trade-off decision is necessary on whether the application 
requirements artefacts must fully comply with the stakeholder require-
ment or may be adapted to eliminate the delta (or at least reduce the 
adaptation effort). In the latter case, the stakeholder requirement is not 
fulfilled (completely). 

Interrelation between application and domain requirements artefacts 
An application requirements artefact is identical to a domain require-
ments artefact if the domain requirements artefact satisfies a particular 
stakeholder requirement and thus can be completely reused. An appli-
cation requirements artefact has a delta to a particular domain require-
ments artefact in case the stakeholder requirement cannot be completely 
satisfied by a domain requirements artefact. 

For the elicitation and documentation of application requirements, the fol-
lowing three activities are essential: 

Communicating the commonality and external variability of the product 
line42

The goal of this activity is to make the stakeholder aware of the cap-
abilities of the product line and to elicit application requirements. By 
considering the commonality and variability of the product line in 
application requirements engineering, the level of domain artefact reuse 
can be increased [Halmans and Pohl 2001]. The orthogonal variability 
model plays a central role in this activity as it enables the requirements 
engineer to communicate the relevant variation points, variants, and 
their dependencies to the stakeholder (  in Fig. 15-3). Additionally, the 
variability model and its traceability links to domain requirements arte-
facts enable the requirements engineer to describe the functionality and 
quality of a particular variant. The stakeholders survey the product line 

                                                     
42 Depending on the knowledge the stakeholder already has about the commonality and variability of the 

product, the steps of this activity are more or less distinct. 
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commonality and the external variability and communicate their 
requirements for the application to the requirements engineer (  in Fig. 
15-3). The requirements engineer collects the domain requirements arte-
facts to be reused for the application. The result of the activity is a set of 
domain requirements artefacts, which may not completely fulfil the 
stakeholder requirements. 

Evaluating deltas between domain and application requirements 
Deltas between domain and application requirements occur when stake-
holder requirements cannot be completely satisfied by domain require-
ments artefacts. These deltas have to be evaluated with respect to the 
required realisation effort. During the evaluation process, first, deltas to 
the domain variability model caused by the stakeholder requirements 
are analysed. Second, the impact of the variability model deltas on the 
corresponding domain requirements artefacts is analysed. The results of 
this analysis are variability model and requirements artefact deltas. 
They are communicated to the application architect who estimates the 
realisation effort based on the deltas. The feedback on the estimated 
realisation effort (  in Fig. 15-3) allows the stakeholder to decide 
whether the requirements artefact deltas should be realised or not. The 
stakeholder communicates the decision to the requirements engineer (
in Fig. 15-3). As a result of the delta evaluation activity, the application 
requirements, and the corresponding requirements artefact and variabil-
ity model deltas, are defined. 

Documentation of application requirements 
The two activities described above result in a documentation that 
includes the application requirements artefacts, the deltas between 
application and domain requirements artefacts, and the traces between 
application requirements artefacts and the corresponding domain 
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requirements artefacts. In addition, the application variability model 
(which is the result of incorporating the variability model deltas) and 
the traceability links of application requirements to the application-
specific variability model are documented. Moreover, the estimated 
realisation costs are related to the deltas to keep decisions about the 
deltas traceable. The resulting application requirements specification is 
the basis for the later development phases. 

15.3 Communication of the Product Line Variability 

This section focuses on the communication of external variability, using the 
orthogonal variability model, to the stakeholders. The variability model pro-
vides a coherent view of the variability of the product line. The requirements 
engineer navigates between the variability model and the different require-
ments artefacts to supply stakeholders with more detailed information, e.g. 
about the functionality and quality of the variants under consideration. 

15.3.1 Variation Points and Variants 
The communication of external variability based on the orthogonal varia-
bility model typically starts with the variation points that provide the top-
most level of abstraction. Communicating a single variation point involves: 

1. Communicating the variants related to the variation point as well as the 
variability dependencies and the alternative choices defined for the 
variation point. 

2. Communicating dependent variation points and/or variants by following 
the existing constraint dependencies. 
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Fig. 15-4: Variation points ‘security standard’ and ‘authentication’ 
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Example 15-1 illustrates the communication of variation points and variants 
to a stakeholder. For a more detailed description of communicating the vari-
ability of the software product line, see [Halmans and Pohl 2003]. 

Example 15-1: Communicating a Variation Point

Figure 15-4 depicts an extract of an orthogonal variability model. It 
shows the two variation points ‘security standard’ and ‘authentica-
tion’. The stakeholder is interested in the variation point ‘authentica-
tion’. The following information can be communicated to the stake-
holder:
 The product line provides two authentication mechanisms. Exactly 

one of these has to be selected: authentication via ‘Password’ or 
authentication via ‘fingerprint’. 

 In case of the variant ‘password’, additionally, the variation point 
‘security standard’ has to be bound. The stakeholder has to select 
either ‘basic’ or ‘advanced’ security. 

15.3.2 Domain Requirements Artefacts 
To make a decision for or against a variant the stakeholder may need more 
detailed information concerning the functionality or quality associated with 
the variant. For instance, the features related to the variant under consid-
eration are used to provide a management view. The related model-based 
requirements such as a class diagram provide a more detailed, solution-
oriented view. Example 15-2 illustrates the communication of the domain 
requirements artefacts that are related to the variant ‘password’. 

Having considered the domain requirements artefacts of a certain variant, 
different strategies can be followed to find the next variation point and vari-
ants to be considered. Two basic options are: 

The requirements engineer can communicate the next variation point at 
the topmost level of abstraction, which has not yet been considered. 
Thus the variation points that may affect coarse-grained properties of 
the resulting application are bound first. 

If a certain domain requirements artefact is associated to more than one 
variant, the requirements engineer can communicate all associated vari-
ants and thereby bind the variability related to the considered artefact 
before considering other artefacts. 
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Example 15-2: Communicating the Details of a Variant

The stakeholder is interested in more details about the variant ‘pass-
word’ depicted in Fig. 15-5 . By following the traceability link to the 
domain requirements artefacts, the requirements engineer finds the use 
case ‘authentication by password’. By considering the use case 
description, the stakeholders get a more detailed idea of the benefits of 
this use case (the use case description is not depicted in Fig. 15-5). 
The variant ‘password’ is interrelated with the variation point ‘secur-
ity standard’. Thus, to explain the considered variant ‘password’ in 
more detail, the requirements engineer shows the associated security 
requirements of the ‘basic’ variant and the ‘advanced’ variant to the 
stakeholder (see Fig. 15-5). 
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characters. The password shall only be changed if 
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15.3.3 Result of the Communication Activity 
The result of the communication activity is a classification of stakeholder 
requirements: 

a) Stakeholder requirements that can be satisfied by binding variability 
defined in domain requirements artefacts. 

The domain requirements artefacts that satisfy these stakeholder re-
quirements are documented as application requirements in a way that 
supports the reuse of domain artefacts in application engineering. We 
deal with this issue in Section 15.5. 

b) Stakeholder requirements that do not correspond to domain require-
ments artefacts. 

In this case, deltas between domain requirements artefacts and the 
application requirements artefacts that satisfy the stakeholder require-
ments exist. Section 15.4 deals with the analysis of these deltas. 

15.4 Analysis of Requirements Deltas 

The main goal of delta analysis is to support the decision on whether the 
deltas should be realised for the application or not. We analyse the deltas 
caused by application requirements with respect to the variability model, 
domain requirements artefacts, and the application architecture. Based on the 
results of the analysis, the stakeholders decide whether the delta shall be 
realised in the application or not. 

15.4.1 Variability Model Deltas 
Variability model deltas are differences between the domain variability 
model (see Section 2.5) and the application variability model (Section 2.7). 
There are two types of such deltas: 

Part of the existing external variability has to be modified: A new vari-
ant must be added, or a variability or constraint dependency must be 
modified. 

An invariant part must be turned into a variable part: Part of the com-
mon requirements must be made variable. In this case, the external vari-
ability is extended by the introduction of a new variation point. 

15.4.2 Impact on the Variability Model 
In case the stakeholder requires, say, new functionality or quality with 
respect to a given variation point, a new variant must be included in the 
application variability model (Example 15-3). In case the stakeholder wishes 
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to change the functionality or quality of an existing variant, a new variant 
(representing the changed variant) representing the changed functionality or 
quality is defined. Thus, the two variants (the original one and the changed 
one) are selectable. 

The stakeholder may also demand modifications of the variability or con-
straint dependencies. For example, the following cases may occur: 

The stakeholder rejects a mandatory variant. 

The stakeholder selects a different number of variants than the range of 
an alternative choice permits. 

The stakeholder selects two variants that are related by an “exclude” 
dependency. 

The stakeholder selects only one out of two variants that are related by a 
“requires” dependency. 

Example 15-3: Adding a New Variant

The stakeholder might demand an additional notification mechanism 
that enables the home automation system to notify the owner of the 
home about alarms via SMS (Short Message Service). This delta can 
be realised by adding the new variant ‘SMS information’ (Fig. 15-6). 

Modifications of variability and constraint dependencies often occur when 
the stakeholder uses the application as a component of a larger system, 
which itself is offered in different variants. Then, the permissible combina-
tions of variants have to be aligned with the variability of the larger system. 
Example 15-4 illustrates the removal of an alternative choice. 
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Example 15-4: Removing an Alternative Choice

Figure 15-7 shows an alternative choice with two variants ‘password’ 
and ‘fingerprint’. The stakeholder requires an application that can be 
configured to support any combination of variants, including no 
authentication. In order to satisfy these requirements, the alternative 
choice is removed resulting in two independent optional variability 
dependencies. Note that the same result could be achieved by defining 
the range [0..2] for the alternative choice. 

Stakeholder requirements may also require that a commonality is defined as 
variability in the application variability model. Making common parts vari-
able is reflected in the variability model by adding a new variation point 
together with the required variants. 
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Example 15-5: Introduction of a New Variation Point

A home security product line provides a common mechanism to set up 
the home security system via a local user interface. The stakeholder 
needs a home security system that also offers remote user interfaces. 
Hence, the stakeholder requires a variation point ‘home security inter-
face’ with two variants ‘local’ and ‘remote’. Local access must be 
available in each home automation system while the remote variant is 
optional. The corresponding excerpt of the variability model is shown 
in Fig. 15-8. 

15.4.3 Impact on Requirements Artefacts 
For each change to the variability model, the application requirements arte-
facts that are affected by the change have to be determined. The application 
requirements artefacts as well as the artefact dependencies to the variants 
may need to be adapted. In the following, we analyse the required changes of 
application requirements artefacts with respect to the different kinds of 
changes in the variability model. 

The first type of requirements artefact deltas comprises changes caused by 
the introduction of new variants and/or new variation points. An example of 
such an adaptation is depicted in Fig. 15-5 and described in Example 15-6. 
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Example 15-6: Introduction of a New Scenario

The upper half of Fig. 15-9 shows a variant ‘acoustic signal’ and its 
associated scenario. The scenario includes an actor ‘acoustic signal’ 
and an interaction that activates the acoustic signal. As the stakeholder 
requires an SMS notification, the variant ‘SMS to owner’ is intro-
duced (lower half of Fig. 15-9). The variability model delta is 
incorporated into the new scenario by changing the scenario elements 
that deal with the acoustic signal in the original scenario. 

The second type of requirements artefact deltas comprises changes caused 
by adaptations to variability and constraint dependencies. Changes to vari-
ability dependencies may lead to restrictions on the permissible combina-
tions of variants. Grouping a set of optional variability dependencies by an 
alternative choice with a range of [1..1] is an example of such a restriction. 
Some of the combinations of variants that were originally permitted become 
invalid. Requirements artefacts that describe such combinations have to be 
adapted. Changes to dependencies may also result in an extension of the 
possible combinations. This case is illustrated in Example 15-7. 

Example 15-7: Impact of Variability Dependency Changes

In Example 15-4 the alternative choice for the two variants ‘password’ 
and ‘fingerprint’ is removed resulting in two independent optional 
variability dependencies. Consequently, requirements artefacts are 
needed that describe each combination of variants: no authentication, 
one kind of authentication, or both. For instance a scenario can be 
defined that describes unlocking a door using both password and fin-
gerprint authentication together. 

Each requirements artefact may be associated with more than one variant. 
Hence, the requirements artefact delta to a particular application requirement 
may influence other associated variants. The requirements engineer stops the 
impact analysis when the influences of all changes in the variability model 
on the requirements artefacts have been analysed. For all changes, the stake-
holders are involved to decide how the application requirements should be 
adapted.

15.4.4 Impact on the Architecture 
For the stakeholder, it is important to get feedback about the consequences 
of the deltas on the realisation effort. The realisation effort of a particular 
variability model delta and the respective requirements artefact deltas are 
evaluated with respect to: 

Changes in 
dependencies

Impact on 
associated variants 

Feedback about 
realisation effort 
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The adaptation effort for the product line architecture. 

The realisation effort for the components. 

The maintenance effort 

The variability model delta and the associated requirements artefact deltas 
are provided to the application architect who maps them to the reference 
architecture using the traceability links established between domain 
requirements artefacts and domain design artefacts in the domain engineer-
ing process.43 The adaptation effort for the reference architecture is roughly 
estimated by determining the category into which the architectural changes 
(e.g. changes of interfaces, the structure or the texture of the architecture) 
fall. For a more detailed estimation, the realisation effort for components has 
to be taken into account as well. 

We distinguish between the following four categories of architectural adap-
tation:

Category A – No adaptation effort: A particular variability model delta 
belongs to this category if no adaptation of the reference architecture is 
needed. In other words, the realisation of the delta has no impact on the 
architectural structure and texture.

Category B – Moderate adaptation effort: A particular variability model 
delta is assigned to this category if only local architectural adaptations 
are required, e.g. changes to single components. Deltas that lead to 
slight adjustments of cross-cutting aspects belong to this category as 
well. This includes the adjustment of design quality requirements and 
simple changes of the architectural texture (but no significant change of 
architectural structure). 

Category C – High adaptation effort: Variability model deltas lead to a 
high adaptation effort if the reference architecture needs global changes. 
A change is considered to be global if, for example, a significant num-
ber of components and/or interfaces have to be changed. 

Category D – Too high adaptation effort: A variability model delta that 
falls into this category means that no economically reasonable realisa-
tion of the delta is possible within the software product line. The devel-
oping company has to reject this delta unless the option exists to realise 
the desired application in a separate development project. 

                                                     
43 The mapping of requirements to architecture ensures a consistent integration of changes. A scenario-

based approach for mapping requirements to the architecture of a software product line is presented in 
[Pohl et al. 2001a]. 
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Example 15-8: Examples of Architectural Adaptation Effort

 Effort category B (delta 1): In case the stakeholder has special qual-
ity requirements with respect to a particular variant (e.g. perform-
ance requirements) this may lead to a moderate adaptation of the 
reference architecture. 

 Effort category A (delta 2): A change from “optional” to “alterna-
tive choice” may lead to essentially zero adaptation effort, because 
it is mainly a matter of configuration, i.e. configurations that 
include both variants have to be prohibited. 

 Effort category D (delta 3): The deletion of an “exclude” depend-
ency might lead to a very large change in the architectural struc-
ture, e.g. if the dependency exists for technological reasons. 

 Effort category D (delta 4): A new variation point leads to too high 
an adaptation effort if the reference architecture is not able to sup-
port the required external variability. This may happen, for ex-
ample, if the domain artefacts support sequential processing, yet to 
realise the delta, a variation point with the two alternative variants 
‘sequential processing’ and ‘parallel processing’ is necessary. In 
this case all components would have to be reengineered to enable 
parallel access and synchronisation. 

Table 15-1: Relation between deltas and architectural adaptation effort categories

        Category 

Delta

Category A 

No
adaptation 

effort

Category B 

Moderate
adaptation 

effort

Category C 

High
adaptation 

effort

Category D 

Too high
adaptation 

effort

1. New variant 
X X   

2. Adaptation of 
variability 
dependencies 

X X X

3. Adaptation of 
constraint 
dependencies 

X X X

4. New variation 
point X X X
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Example 15-9: Trade-off Decision

The stakeholder requires the following functionality: “The home 
owner shall be able to send a request about the door lock status via 
mobile phone.” Yet, the product line provides the presentation of the 
door lock status only via the Internet. Now the stakeholder has the 
following alternatives: 
1. Insisting on the mobile phone solution. Then the development 

organisation may realise the requirement as described above. This 
decision causes realisation effort that depends on the assignment to 
one of the described categories. 

2. Accepting the Internet solution and giving up the requirement 
regarding the mobile phone. Then the stakeholder requirement is 
adapted (and is satisfied by the domain requirements artefact). The 
realisation effort will be very small because this stakeholder 
requirement can be fulfilled completely by reusing domain arte-
facts.

Table 15-1 shows the basic relations between the types of variability model 
deltas introduced above and the four categories of architectural adaptation 
effort. Variability deltas are depicted as rows in the table. Each column 
represents a category of architectural adaptations. A grey-filled table cell 
with an “X” indicates that the corresponding delta is likely to fall within the 
particular adaptation effort category. 

When the stakeholders (and the application requirements engineer) get feed-
back from application design about the estimated realisation effort for a vari-
ability model delta and/or a requirements artefact delta, they have to decide 
between the following alternatives: 

The application variability model and/or the application requirements 
artefacts are adapted to fulfil the stakeholder requirement. In other 
words, the delta is realised. 

The stakeholder adapts the requirement (which means the stakeholder 
might only get an 80% solution).44 In this case no additional implemen-
tation is needed and the domain artefacts can be reused without 
changes.

The stakeholder requirement as well as the application variability model 
and/or the application requirements artefacts are adapted, i.e. the stake-
holder requirement is partially fulfilled. 

                                                     
44 An 80% solution represents an application that fulfils most of the stakeholder’s needs but involves 

certain compromises about stakeholder requirements on the one hand and realisation effort on the other 
hand. 
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The stakeholder decides that the requirement should not be realised due 
to the high adaptation effort (see the second alternative in Example 
15-2).

In the case of a high adaptation effort, but also in other situations, the 
orthogonal variability model and the associated requirements artefacts pro-
vide assistance in finding an acceptable trade-off solution. The variability 
model presents options that can be chosen instead of realising the original 
stakeholder requirement. The stakeholder can select the best possible solu-
tion provided by the product line. Example 15-10 illustrates the support of a 
trade-off decision. 

Example 15-10: Support for Trade-off Decisions

The variability model depicted in Fig. 15-10 contains the variation 
point ‘home security by’. The stakeholder requirement under consid-
eration demands outdoor intrusion detection via photo electric guard. 
The product line provides the feature ‘outdoor motion detection’. 
Thus, a delta between the stakeholder requirement and the domain 
artefacts occurs. During the discussion with the stakeholder about the 
estimated realisation effort of this delta, the application requirements 
engineer uses the variability model to show the stakeholder possible 
alternatives. The engineer presents two alternatives with regard to 
home security: ‘camera surveillance’ and ‘motion detection’. The 
description of the corresponding features may cause the stakeholder to 
resort to one of these alternatives. 

15.5 Documentation of the Application Requirements 

The results of the activities described in Sections 15.3 and 15.4 have to be 
documented in the application requirements specification. The specification 
is the basis for the other application engineering sub-processes and defines 
all application requirements. The application requirements specification 
includes:

The application requirements artefacts that correspond to domain 
requirements artefacts including the traces to the respective domain 
requirements artefacts
This part of the documentation contains all application requirements 
artefacts that are reused without adaptations. It consists of the common-
alities and the bound variation points, i.e. variation points that are bound 
to the selected variants. 

Removed stakeholder 
requirement

Support of 
trade-off decisions 

Contents of the 
specification

Reused
requirements 
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The application variability model 
This part of the documentation describes the application variability 
model with the selected variants, i.e. with the variability bindings. 

The variability model deltas including the traces to the original 
variability model elements
Variability model deltas are included in the application variability 
model. 

The relation of the application requirements artefacts to the selected 
variants in the application variability model
This part of the documentation captures the traces between the require-
ments and the variants that are selected for the application. 

The requirements deltas including the traces to the original domain 
requirements artefacts
This part of the documentation contains all requirements artefacts that 
are new or have been modified specifically for the application. 

The traces to domain requirements artefacts contained in the application 
requirements specification are an essential means to support the reuse of 
domain artefacts in application design, application realisation, and applica-
tion testing. The bindings of the variability in the application requirements 

Fig. 15-10: Example of supporting trade-off decisions 
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artefacts provide the basis for deriving the bindings for the variation points 
in the reference architecture, in the components, and in the test artefacts. The 
traces of changes to the variability model enable, for example, the applica-
tion architect to refine the variability model deltas with respect to architec-
tural variability. The traces from modified requirements artefacts to the 
original domain artefacts enable the application architect to identify the cor-
responding artefacts of the reference architecture and adapt them accord-
ingly. 

15.6 Differences from Single-System Engineering 

Requirements engineering in single-system development encompasses the 
elicitation, validation, negotiation, and documentation of requirements (see 
e.g. [Pohl 1997]). In addition, continuous requirements management has to 
ensure that the specified requirements are always up to date. 

The application requirements engineering sub-process in software product 
line engineering includes four major activities that differ from requirements 
engineering activities in single-system engineering: 

The communication of external variability to stakeholders
The goal of this activity is to communicate the variation points, vari-
ants, and associated requirements to the stakeholders. The results of this 
activity are a set of variants that have to be bound for the considered 
application and a set of deltas between the application requirements 
artefacts and domain requirements artefacts. 

The evaluation of the realisation effort for requirements deltas
The goal of this activity is to evaluate the impact of deltas on the vari-
ability model, the requirements artefacts, the reference architecture, etc. 
Based on the estimated effort, the stakeholder decides whether a delta 
should be realised or not. 

The documentation of application requirements
The goal of this activity is to define the application requirements and to 
record traceability links between the domain requirements artefacts and 
application requirements artefacts. The result of this activity is the 
application requirements specification. 

The documentation of variability bindings
The goal of this activity is to document the bindings of the variation 
points defined in the domain variability model. The result of this activ-
ity is the application variability model. 

Requirements 
engineering activities 
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activities
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15.7 Summary 

The goal of application requirements engineering is to elicit stakeholder 
requirements for the application and map the stakeholder requirements to 
common and variable domain requirements artefacts. Thereby domain 
requirements artefacts should be reused as much as possible. The reused 
common and variable domain requirements artefacts become part of the 
application requirements specification. The bindings of the variation points 
defined in the domain variability model are documented in the application 
variability model. 

If the stakeholder requirements for the application cannot be satisfied by 
reusing common or binding variable domain requirements artefacts, applica-
tion-specific requirements artefacts may be introduced. Since these artefacts 
differ from the domain requirements artefacts, so-called requirements deltas 
arise. In addition, the application variability model may be adapted leading 
to deltas between the application variability model and the domain variabil-
ity model. Application architects estimate the effort required for realising the 
application-specific requirements. This estimation is taken into account for 
deciding if the deltas are realised in the application or not. If it is decided to 
realise the deltas, the application requirements engineers adapt the applica-
tion requirements artefacts and/or the application variability model to satisfy 
the stakeholder requirements. 

Reuse of domain 
requirements
artefacts

Realising
deltas
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Design

In this chapter you will learn: 

o About the interrelations of the application design sub-process with the 
application requirements engineering, domain design, and application reali-
sation sub-processes. 

o How to derive an application architecture from the product line reference 
architecture based on the application requirements. 

o How to bind variability in the reference architecture. 
o How to determine realisation costs of adaptations of the domain artefacts 

required for an application. 

Frank van der Linden 
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16.1 Introduction 

The main goal of the application design sub-process is to produce the 
application architecture. The application architecture is a specialisation of 
the reference architecture developed in domain design. Application archi-
tects bind the variability of the reference architecture and introduce applica-
tion-specific changes according to the application requirements specifica-
tion. The application architecture is passed on to application realisation 
where the reusable components and interfaces are assembled and where 
application-specific components and interfaces are developed. The sub-pro-
cesses and artefacts closely related to the application design sub-process are 
highlighted in Fig. 16-1. The major information flows between application 
design and its related sub-processes are shown in more detail in Fig. 16-2. 

16.1.1 Interrelation with Application Requirements Engineering 
Application requirements engineering is responsible for developing the ap-
plication requirements specification. The specification includes the applica-

Goal of 
application design 

Fig. 16-1: Sub-processes and artefacts related to application design 

Application
requirements 
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tion variability model as well as all application requirements, including the 
requirements reused from the domain artefacts and the application-specific 
requirements. It also contains traceability links to domain artefacts as well as 
the relation to selected variants in the variability model. The entire applica-
tion requirements specification is passed on to application design (  in Fig. 
16-2).

Application design supports trade-off decisions made in application require-
ments engineering by determining the estimated realisation effort (  in Fig. 
16-2). The trade-off decisions about application-specific requirements are 
part of the negotiation with stakeholders in the application requirements 
engineering sub-process. 

16.1.2 Interrelation with Domain Design 
Domain design develops the reference architecture, which is the basis for the 
application architecture. The application architect binds the architectural 
variability according to the bindings defined in the application variability 
model. The reusable domain artefact selection indicates the reusable domain 
artefacts (  in Fig. 16-2). 

The application architect provides feedback through requests for additional 
and altered design (first bullet of  in Fig. 16-2) that may lead to an im-
provement of the reference architecture. Furthermore, application design de-
livers design artefacts, which have to be reengineered for flexibility and 
reusability and incorporated into the platform, to domain design (second 
bullet of  in Fig. 16-2). 

Realisation
effort

Reference 
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domain design 
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Fig. 16-2: Information flows between application design and other sub-processes 
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16.1.3 Interrelation with Application Realisation 
Application realisation builds the application based on the application archi-
tecture (  in Fig. 16-2). The application architecture determines the struc-
ture of the application to be built as well as the rules how to build it, which 
are contained in the texture. The application architecture also determines the 
configuration of reused domain components and interfaces that are part of 
the application as well as their interrelation with application-specific compo-
nents and interfaces. 

Application realisation provides feedback on all kinds of design errors (  in 
Fig. 16-2) that emerge during realisation and have to be solved by the archi-
tects. These include, amongst the normal design errors, components and 
interfaces that turn out not to be reusable, and configurations that do not 
work properly. 

16.2 Development of the Application Architecture 

An application architect has similar responsibilities as a traditional architect. 
As such, abstraction, modelling, simulating, and prototyping are activities 
that are performed by the application architect. However, all those activities 
have to be performed only for the application-specific parts. The reference 
architecture includes a lot of decisions that can be reused in application 
engineering. The application architect starts with the reference architecture 
and specialises it towards the application architecture. The reference 
architecture models are specialised through the binding of variants according 
to the bindings in the application variability model and by adding applica-
tion-specific parts. 

Example 16-1: Application-Specific Abstractions 

The home automation example employs domain abstractions for 
authentication such as “authentication key” and “authentication algo-
rithm”. A new application is planned that supports iris scan 
authentication, a feature that is not yet supported by any other product 
in the product line. Consequently, there are no abstractions available 
for iris scan authentication. The architect adds new abstractions such 
as “iris map” and “iris pattern” to support the new feature. 
The platform provides abstractions to deal with quality features, such 
as safety, security, and performance. The new application needs pre-
ventive maintenance of hardware parts that fail frequently. The appli-
cation architect thus provides abstractions dealing with maintenance, 
e.g. “error level” and “error rate”. 

Application
architecture

Design
errors

Specialisation of the 
reference architecture 
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16.2.1 Application-Specific Modelling 
The application architect introduces abstractions that are necessary for the 
specific application at hand, i.e. the architect adds abstractions for applica-
tion-specific aspects that are not covered by the domain artefacts. The add-
itional abstractions are usually related to application-specific requirements. 
Especially when there are very strict quality requirements, new application 
abstractions have to be introduced. For instance, if performance require-
ments of the application are stricter than defined in the product line, the 
application architect adds abstractions for threads’ synchronisation and com-
munication. Also in the case where the application supports a feature that is 
not provided by the product line, abstractions related to the new feature are 
added (Examples 16-1 and 16-2). The abstractions of the application archi-
tecture have to be integrated with the abstractions defined in the reference 
architecture to obtain a consistent application architecture. 

Example 16-2: Lock Control Application Design Activities 

An application is planned for a mid-range system, including both a 
sliding door and an iris scan identification feature. Both are new fea-
tures, and the application is the first one that has to support them. In 
addition, the application has a normal swinging door and the basic 
keypad commands for situations without iris scan. For instance, dur-
ing the recognition phase of a specific iris the keypad is needed. The 
application architect provides the necessary abstractions of both new 
features and relates them to the abstractions in the reference architec-
ture dealing with door control and authentication. The models get new 
elements related to the abstractions of the reference architecture. 
There are components or plug-ins for ‘sliding door lock actuator’, 
‘sliding door open/close sensor’ and ‘iris scan authentication’. A 
thread is added to perform the iris scan authentication. In order to 
ensure that this thread does not interfere with the other threads, an 
existing application is enriched with a mock-up iris scan algorithm 
that occupies the processor and the memory for one-half to three-
quarters of a second and answers “no” or “yes” randomly. This system 
is used to simulate the additional thread. 

The application-specific abstractions have connections to the concepts and 
models defined by the reference architecture. Application-specific models 
are built for establishing and dealing with these connections. Additional 
models are built to accommodate application-specific concerns, such as spe-
cific behaviour or specific quality requirements. 

Application-specific
abstractions

Application-specific
models
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As the application architecture is more concrete than the reference architec-
ture, more realistic simulations can be performed. Application architects 
employ simulations to get an insight into the properties of a specific configu-
ration and to evaluate application-specific variants (see Example 16-2). For 
example, performance simulations can be used to determine the configura-
tion that satisfies the application-specific performance requirements best. As 
for simulation, prototyping can be more concrete at the application level, and 
relate to application-specific requirements. 

16.2.2 Binding of Variants 
The application architect has to bind the variants for the variation points of 
the reference architecture as defined in the application variability model. The 
quality of the reference architecture determines whether this is an easy job. It 
depends on: 

The way mass customisation is incorporated; this determines which 
styles, structures, and patterns are used to deal with variability. 

The abstractions used, determining which variation points and variants 
are available. 

The traceability between variability in domain requirements artefacts 
and the reference architecture. 

Example 16-3: New Variants in the Application Architecture 

The design of the door and window management subsystem for the 
considered application has to include additional functionality for 
sliding doors and for iris scan identification. The application architect 
reuses the keypad and swinging door functionality. For the new fea-
tures, new components have to be made; see Fig. 16-3. For the sliding 
door feature, two application-specific plug-in components are needed: 
a ‘sliding door lock actuator plug-in’ component and a ‘sliding door 
sensor plug-in’ component. Note that the basic lock functionality does 
not need a door sensor. For the iris-scan feature, two plug-ins are 
needed: an ‘iris control plug-in’, which records the iris scan to initiate 
commands, and an ‘iris authentication plug-in’, which performs the 
actual authentication algorithm. Interfaces of the reference architec-
ture are reused to connect the new components to the remainder of the 
door functionality. No new interfaces are needed, and no new patterns 
or frameworks either. 

To reduce the work of application realisation as much as possible, reusable 
domain artefacts have to be used whenever possible. The reference architec-
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artefacts
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ture determines common components and interfaces. By binding the vari-
ation points, the application architect selects additional domain design arte-
facts that can be reused. If no domain artefact is available, the application 
architect has to define an application-specific one to be realised during appli-
cation realisation. 

Certain variants have to be realised only for one single application. These 
variants may involve new components (Example 16-3) or interfaces, but 
sometimes also larger parts of the structure, such as configurations of com-
ponents and interfaces, new patterns (Example 16-4), and even new compo-
nent frameworks. 

Example 16-4: New Patterns 

An application is specified that uses Bluetooth [Bluetooth 2004] to 
connect a wireless device for all kinds of user interaction. Since the 
product line does not yet have any wireless communication, several 
components have to be added to the application architecture. This also 
involves the introduction of new interfaces between them, and of cor-
responding patterns. For instance, there is a pattern involving generic 
Bluetooth functionality with plug-in components for several specific 
input devices. This pattern has to be integrated with the existing com-
ponents dealing with user control. 

Design artefacts 
for new variants 
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When designing the application-specific parts, the architect has to consider 
the additional effort in application realisation. Often, there are not enough 
personnel and time available to realise many specific components from 
scratch. The architect has to evaluate carefully what can be implemented 
specifically for a single application with regard to the available resources. 
The amount of available resources for realising the application has to be 
negotiated with application requirements engineering, the stakeholders, and 
product management. For normal application development, the amount of 
resources may be scarce, which means that not much additional work can be 
done. In applications that are of strategic relevance, e.g. if the application is 
a lead product, or the client is the most important client, additional resources 
may be allocated to the project. Section 16.4 treats this topic in more detail. 

16.2.3 Determining the Configuration 
The specific configuration of components in an application is the result of 
the binding of the variation points with the selected variants. Certain domain 
components are not required in the application and therefore are absent. If 
different variants that are realised in different plug-in components are simul-
taneously present in the application, more than one plug-in is needed. Appli-
cation-specific components are designed as additional plug-ins, if possible. 
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In this case they are connected at the places that are planned for them in the 
reference architecture. 

Example 16-5: Lock Control Application Variants 

Figure 16-4 shows a part of the application architecture of the new 
application with both an additional sliding door and iris scan identifi-
cation. Reusable domain components are depicted as white boxes. 
New application-specific components are depicted as grey boxes. 
These are the same as in Fig. 16-3. The configuration resembles the 
domain structure, but certain plug-in components are present twice, 
once for the basic functionality and once for the additional, new fea-
tures. Moreover, the plug-in for manual door locks is absent. Basic 
functionality is provided by the standard, reusable domain plug-in 
components. The ‘sliding door lock actuator plug-in’ component is put 
in parallel45 with the ‘basic lock actuator plug-in’ component. The 
‘sliding door sensor plug-in’ component is the only door sensor plug-
in since, for the basic lock functionality, a door sensor is optional and 
is not used in this application. The two plug-in components, ‘iris con-
trol plug-in’ and ‘iris authentication plug-in’, are put in parallel with 
the plug-in components for keypad authentication. 

16.2.4 Consistent Selection of Component Variants 
The application architect is in charge of deciding about the variants that have 
global consequences on the application. As the information about variants is 
distributed over the different components, care has to be taken to select a 
consistent configuration of component variants. 

Part of the product line variability deals with the hardware specifics of the 
application, such as memory size and amount of peripheral hardware. Hard-
ware-specific variations are either bound by selecting the appropriate com-
ponents or by setting the configuration parameters of one or more compon-
ents to the proper values. 

Example 16-6: Hardware-Related Variability

Each home automation system has a specific set of sensors and 
actuators in a specific configuration with other hardware, such as 
routers or switches. The application uses one of several pre-selected 
protocols, each suitable for a specific network configuration. Finally 
there is a limited memory size and bandwidth available. 

                                                     
45 This means that it is connected to the same interfaces of other components, and both are present 

together. 
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Example 16-7: Consistency of Component Variants 

The application with the sliding door and iris scan has a single sliding 
door and two swinging doors. Each swinging door needs one actuator. 
The sliding door needs two, one at the top and one at the bottom. 
Several variants are selected based on this hardware configuration: 
Components Variant
Lock control map of three doors to four door lock actuators 
Door lock plug-ins three doors, their properties, and the identifica-

tion of their authentication algorithms 
Actuator activation and control of each of the four actu-

ators separately 
Application design uses one or more configuration files to keep such 
configuration information consistent. Application realisation has to 
use the information in these configuration files. 

16.3 Feedback of Application Artefacts to the Domain 

Variants that are designed by the application architect may be usable for 
other applications as well. This also holds for other technical solutions provi-
ded by the application architect. The application architect is in discussion 
with the domain architect to identify such possible reusable artefacts, which 
may have a wider scope than the present application. In many cases the arte-
facts are first produced for a single application. This is a test bed for the 
domain architect. If everything works fine and product management decides 
that the new artefacts should be integrated into the domain artefacts, the 
domain architect takes over, and takes care of a redesign to make the arte-
facts reusable (Example 16-8). 

Example 16-8: Integration of Application Artefacts into the Platform 

Since the application with sliding doors and iris scan is a commercial 
success, the programme manager asks to allow the corresponding 
requirements to be reused in other applications. They are incorporated 
as variants of existing domain requirements artefacts for door control 
and authorisation. The domain architect takes over the application 
architecture for these parts, provides a redesign of the application 
design artefacts, and initiates adaptation during domain realisation. 

Application as test 
bed for the domain 
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After an application artefact has been successfully integrated into the plat-
form, the application architect may decide to use the reusable artefact in new 
versions of the application instead of the non-reusable application-specific 
artefact which was originally built for this application. This reduces the 
amount of application-specific artefacts that have to be maintained. 

16.4 Effort and Cost of Variants 

The cost of selecting a variant for the application architecture depends on 
what has to be done to realise the variant in the application. If the variant is 
realised in the platform, the cost is small (category A, see Section 15.4.4). 
The main cost and effort are caused by determining the right parameters. In 
the case where application-specific components have to be developed, the 
costs are typically much higher. When the application-specific components 
provide and use only domain-specific interfaces, the development cost and 
effort are still moderate (category B, see Section 15.4.4). In many cases, 
application realisation can use other components as templates for the 
application-specific components. In the case where a large new part of the 
structure has to be provided, costs and effort are typically high (category C, 
see Section 15.4.4). In that case, new interfaces have to be provided, which 
have to be realised as well. In addition, simulation and validation have to be 
performed before the application architecture is finished. In cases where 
large parts of the architecture have to be added, e.g. the introduction of a 
new framework supporting a new (variant of a) feature, the changes may be 
very large, to such an extent that they cannot be realised using the reference 
architecture (category D, see Section 15.4.4). 

The following factors influence the required effort and costs: 

Number of new components to be realised. 

Number of interfaces to be realised. 

Number of small component and interface adaptations – care has to be 
taken that large component and interface adaptations cost almost the 
same as, or even more than, writing a new one. 

Simulations performed to verify the correct behaviour of adaptations 
and extensions – the need for simulation indeed depends on the kind of 
changes, but when new quality requirements are involved simulation is 
often inevitable. 

Adaptations to cross-cutting aspects – this may require adaptations to 
all, or many, components. It may require the addition of new interfaces 
to be provided or used by many components. Typically this also 
involves costs of simulations or other ways to verification. 

Replacing non-
reusable artefacts 

Realisation
cost

Cost
factors
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Tests to be performed on reused components and configurations. 

Tests to be performed on new components – this takes more effort, 
since new test cases have to be created. 

To estimate the effort and costs the organisation may have standard figures 
that apply for most situations. In specific situations, the organisation may 
have to adapt the standard costs, e.g. if a change does not differ much from 
another one, the costs may be smaller. If a complete, new design has to be 
introduced, costs may be estimated higher. The cost of introducing a new 
variant is communicated to the requirements engineers and other stakehol-
ders, who, in the end, decide whether the costs are worth the value they 
bring. If the costs are too high, adaptations of the application requirements 
may lead to affordable development costs. 

In cases where the application is used as a test bed for a new feature, add-
itional costs may be acceptable to the organisation since the new feature can 
also be reused within future applications of the product line. 

16.5 Differences from Single-System Engineering 

The application architect has to specialise the reference architecture to an 
application architecture for a single application. This means that: 

A large part of the application architecture is determined by the refer-
ence architecture and does not have to be designed by the application 
architect. However, the reference architecture may be under-specified, 
meaning that application-specific artefacts have to be designed by the 
application architect. 

Variation points in the reference architecture are bound to application-
specific variants according to the bindings of the variability defined in 
the application variability model. Thereby domain design artefacts are 
reused.

Many application-specific requirements are specialisations of domain 
requirements. This gives a first indication of where the architecture has 
to be specialised. 

The texture in the reference architecture not only captures the common-
ality within a single system but also defines commonality that is present 
within all applications. The application architecture must conform to the 
texture. Texture has an additional role in providing common ways to 
deal with variability in the application architecture. 
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Software product line engineering means that the activities of the 
application architect require less effort than in single-system software 
engineering. If no application-specific adaptations are required, the 
application architecture can be established by binding the defined 
variation points with predefined variants. 

16.6 Summary 

Application design has the same role as single-system software design. The 
application architecture determines the overall structure of a particular appli-
cation and must be capable of satisfying the application requirements. The 
application architect uses the reference architecture, which provides a design 
for many of the application requirements that the application architect must 
satisfy. Moreover, reusable components and interfaces, and configurations of 
them, are provided by the reference architecture. Therefore, application 
architects can focus their attention on the application-specific parts, thereby 
saving a lot of time. 

In discussion with the domain architect, certain solutions and application 
artefacts may become candidates for integration into the platform. Usually 
the integration takes place after the application is finished and the properties 
of the developed artefacts are validated. The application architect has the 
responsibility to provide the domain architect with information about such 
possible artefacts. 

Reduced
effort

Large-scale 
reuse
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domain artefacts 
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Realisation

In this chapter you will learn: 

o About the interrelations of the application realisation sub-process with the 
application design, domain realisation, and application testing sub-processes. 

o How to bind the variability according to the application design and the appli-
cation requirements. 

o How to derive application-specific components and interfaces from the appli-
cation architecture and thereby guarantee a high degree of reuse. 

o How to realise a consistent application configuration. 

Frank van der Linden 
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17.1 Introduction 

The goal of application realisation is to develop applications that can be 
tested and brought to the market after ensuring a sufficient quality. Applica-
tion realisation provides the detailed design and implementation of applica-
tion-specific components and configures them with the right variants of the 
domain assets into applications. The main results of application realisation 
are the application-specific components and interfaces, the selected variants 
of reused components, and the application configuration. The sub-processes 
and artefacts closely related to the application realisation sub-process are 
highlighted in Fig. 17-1. The main information flows between application 
realisation and its related sub-processes are depicted in Fig. 17-2. 

17.1.1 Interrelation with Application Design 
Application design provides the application architecture which determines 
the configuration of components and interfaces, which are either reused from 
the platform or designed specifically for the considered application (  in 
Fig. 17-2). 

Goal of application 
realisation

Fig. 17-1: Sub-processes and artefacts related to application realisation 

Application
architecture
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Application realisation provides feedback with regard to all kinds of design 
errors (  in Fig. 17-2) that are uncovered during realisation and which have 
to be corrected by application design. An example of such an error is a con-
figuration that does not work properly. 

17.1.2 Interrelation with Application Testing 
Application realisation delivers a complete application (first bullet of  in 
Fig. 17-2), ready for testing. Application testing performs unit, integration, 
and system tests based on the application requirements, design, and realisa-
tion artefacts (i.e. the detailed design of components and interfaces). Appli-
cation realisation supports application testing by providing the interface 
descriptions (second bullet of  in Fig. 17-2) required, for instance, for the 
unit test. 

As feedback, application realisation gets test results including the acceptance 
or rejection of the application and problem reports describing in which way 
the test item fails (  in Fig. 17-2). The feedback is used to improve the 
application until acceptance is reached. Moreover, application testing reports 
defects in interface descriptions which are detected in application testing as 
they hamper the development of test cases. 

17.1.3 Interrelation with Domain Realisation 
The input for application realisation from domain realisation consists of 
reusable components and interfaces (  in Fig. 17-2) designed, implemented, 
and ready for reuse. In order to be able to integrate these artefacts into an 
application, domain realisation additionally provides configuration support. 
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Fig. 17-2: Information flows between application realisation and other sub-processes 
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Application realisation provides feedback through requests for additional 
and altered realisation (first bullet of  in Fig. 17-2). The requests pertain to 
functionality or quality that should be provided by the platform. Further-
more, application realisation develops application-specific components and 
interfaces that may possibly be integrated into the domain artefacts (second 
bullet of  in Fig. 17-2). 

17.2 Configuration 

Domain realisation delivers components and interfaces for reuse by applica-
tion realisation. Interfaces are reused without changes, but components often 
have internal variation points, which have to be bound. 

Many interfaces between the components of an application are reusable 
domain interfaces. Most of the application components carry them as they 
are an important means to support the texture and to implement variation 
points. Different variants of a single component often require and provide 
the same interfaces. Plug-in components provide the interfaces required by a 
particular component framework. Moreover, the architectural texture may 
demand that each component provides aspect-specific interfaces (Section 
11.5). Such interfaces are realised during domain engineering but are heavily 
used during application engineering. 

Reusable domain components often have internal variation points. Domain 
realisation provides mechanisms to support variant selection. Variants within 
a component can be selected, for instance, by parameter bindings. Guided by 
the application architecture and the application variability model, application 
realisation selects the proper variants of the components to be part of the 
application. For each reusable component, application realisation determines 
the right choice of component parameters to bind the required variant. 

Example 17-1: Lock Control Component Reuse 

Suppose that the application has one sliding door with two actuators 
and one sensor, and two swinging doors, each with one actuator but no 
sensor. The ‘lock control’ component is reused. It has to be configured 
in such a way that each of the doors is controlled using the right sen-
sors and actuators. 

In many cases, several components need to know the same kind of informa-
tion. This may result in a lot of redundancy in the set of parameters. Human 
error in providing the parameters may lead to inconsistencies. Application 
realisation has to keep track of the parameters and their relationships in order 
to keep the configuration of components consistent. The quality of the refer-
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realisation

Use of domain 
interfaces
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component variants 

Parameter
consistency
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ence architecture and the resulting component designs determine whether it 
is a simple or a complex task to select component parameters consistently. 
To reduce the redundancy of parameters, domain design and realisation may 
introduce configuration components or employ tool support [V. Ommering 
et al. 2000]. 

Example 17-2: Binding Variation Points in Components 

The application with sliding doors and iris scan reuses many platform 
components and interfaces, e.g. the ‘user control manager’, ‘authenti-
cation manager’, and ‘lock control’ components of the door control 
framework (Fig. 17-3). They have to be configured to be able to deal 
with the specific situation of having both keypad and iris scan, two 
swinging doors, and one sliding door. Domain realisation provides 
them in such a way that they get the necessary configuration informa-
tion from plug-in components that are bound to them. The parameter 
information does not have to be provided twice. Certain plug-in com-
ponents are reused as well: 
 ‘Keypad control plug-in’ and ‘keypad authentication plug-in’ are 

reused by many applications. Their variants are chosen according 
to the authentication-key formats, e.g. four digits. Moreover, there 
may be variants that differ in the handling of situations when too 
few or too many keys are pressed. Since those components and key 
formats are already used by other applications, the configuration 
information can be reused. 

 ‘Electronic authentication lock plug-in’ is one of the six kinds of 
reusable lock plug-in components defined in Example 12-3. It 
needs to be configured to be able to deal with two different authen-
tication algorithms. The specific parameters of these algorithms are 
available in the respective components that deal with these algo-
rithms. The main function of the component is to select the right 
algorithm in the right situation. 

 ‘Basic lock actuator plug-in’ is reused in many applications with 
the same kind of swinging doors. For this component, configur-
ation parameters like timing and speed have to be provided. 
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17.3 Realisation of Application-Specific Components 

Application-specific components are realised just as in single-system engin-
eering. However, in many cases, domain interfaces can be reused for appli-
cation-specific components. For instance, an application-specific plug-in 
component has to carry all interfaces that are determined by the domain 
architecture for such a plug-in. 

Application-specific components and interfaces are needed whenever there 
is no suitable reusable domain component available. Making application-
specific components reusable is not of interest for the application developer 
whose focus is on a single application only. If the component has to be inte-
grated into the domain artefacts, domain realisation takes over at an appro-
priate time, not disturbing application realisation. However, an application 
component may resemble already existing domain components. For instance, 
it may be the case that the application component and some reusable compo-
nents are variants of a common variation point. In that case, it is a good idea 
to use the design of the existing variants as input for the design of the new 
variant.
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Example 17-3: Application-Specific Components for Lock Control 

The application architecture is available for an application that 
includes both a sliding door and an iris scan identification feature. 
Since there are no reusable components available for these features, 
the application architect determines new components for ‘sliding door 
lock actuator plug-in’, ‘sliding door sensor plug-in’, ‘iris control plug-
in’, and an ‘iris authentication plug-in’; see Fig. 17-4. All these 
components reuse existing interfaces: 
 ‘Bind user control’ 
 ‘Bind lock actuator’ and ‘actuate lock’ 
 ‘Bind door sensor’ and ‘door status’ 
 ‘Bind authentication’ and ‘verify’ 
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VP

Authentication

VP

Door Sensor

VP

Door Actuator

Sliding
Door

V

Sliding
Door

V
Swing
Door

V

Keypad

V

Iris

V

Bind door
sensor

Door
status

Sliding Door
Sensor
Plug-in

Bind
lock
actuator

Actuate
lock

Sliding Door
Lock Actuator

Plug-in

Iris
Authentication

Plug-in

Bind
authentication Verify

Bind
user

control

Iris
Control
Plug-in

Fig. 17-4: Application-specific components 

17.4 Building the Application 

The final task of application realisation is the realisation of the configuration 
that is actually delivered as the application. Component variants have to be 
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compiled, linked, and deployed on the actual hardware. In all these steps 
variability may be bound, depending on the configuration mechanism used.46

A component variant is realised as a collection of files. The files encompass 
source code files, header files, and parameter definitions. Interfaces are usu-
ally realised in one or more header files. The header files for required inter-
faces are necessary to be able to compile the component variant. Note that 
the provided interfaces do not need to be included themselves. Linking com-
bines the component variants to executables or dynamic link libraries. The 
application is made up of one or more executables and dynamic link libra-
ries.

As in single-system engineering, over time, each component and interface 
exists in several versions. New versions originate from maintenance as well 
as from the incorporation of new requirements. The latter situation occurs 
especially if a component is used for more than one application, which is the 
normal situation for platform assets. The selection of component variants 
also has to take into account the version to be used. A later version is often 
better with regard to the quality of the component. Yet, it is possible that a 
new version of a component cannot be introduced into an application as it is 
not able to interact with other components. This may be due to changes in 

                                                     
46 For a list of possible configuration mechanisms, see Section 12.5. 
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functionality, changes in quality support, and changes in interfaces, for 
example. In addition, it may be the case that the application has a combina-
tion of components that has not yet been thoroughly tested yet. 

Example 17-4: Lock Control Configuration 

The application with the sliding door and iris scan is built from the 
compiled components that make up the configuration. Figure 17-5 
shows the configuration around the ‘lock control’ component. The 
grey components are application specific and the white ones are 
reusable domain components. The plug-in components know statically 
to which component they have to connect, whereas the components 
that provide the connection facility do not know the plug-in compo-
nents statically. Since only statically known connections can be linked 
off-line, they are the only ones that are bound before loading the soft-
ware on the target machine. Thus the ‘authorise’ interface of the 
‘electronic authentication lock plug-in’ component is bound on the 
target hardware at initialisation time to the ‘lock control’ through the 
‘bind lock’ interface. The ‘bind lock’ interface is statically known to 
the ‘electronic authentication lock plug-in’ and already bound during 
linking. During initialisation, the ‘electronic authentication lock plug-
in’ component announces its ‘authorise’ interface to the ‘lock control’ 
component using the ‘bind lock’ interface. If component support, such 
as COM, .NET, or Java Beans, is available on the target machine, part 
of the linking can be done based on that. But also in that case, the 
statically known connections are bound first, and the dynamic ones 
next.

During integration tests and during maintenance in the field, problem reports 
are issued. Application engineering is responsible for resolving the reported 
problems. When the problems are related to application-specific components 
and interfaces, it is the responsibility of application realisation to fix them. 
However, when the problem is related to domain artefacts, the problem 
report has to be taken over by domain engineering for fixing. 

17.5 Differences from Single-System Engineering 

Application realisation provides a working application that is ready for test-
ing. The application is based on the application architecture and reuses 
domain components and interfaces. This reduces realisation effort 
significantly. This means that: 
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The application developer selects variants of the reusable domain 
components. 

The reusable domain component variants should be consistent with each 
other and conform to the application architecture. 

The application is built by configuring application-specific and reusable 
components and interfaces. 

17.6 Summary 

Application realisation deals with designing in detail, implementing, and 
configuring components to produce an executable application. Interfaces are 
reused from the platform without changes, but components often have inter-
nal variation points, which have to be bound, e.g. by providing values for 
parameters. Newly developed application-specific components and special-
ised reusable components are configured and connected by their interfaces to 
assemble the application. After assembly, the application can be tested and 
deployed on the target hardware. 

Realisation and 
configuration 
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Testing

In this chapter you will learn: 

o About the interrelations of the application testing sub-process with the 
application requirements engineering, application design, application reali-
sation, and the domain testing sub-processes. 

o How to reuse domain test artefacts for a particular application. 
o How traceability facilitates the reuse of domain test artefacts. 
o A systematic way for deriving application test cases from domain test cases 

based on application requirements, application design, and application reali-
sation artefacts. 

o The principles of achieving sufficient test coverage in the system test. 

Klaus Pohl 
Andreas Reuys 
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18.1 Introduction 

The goal of the application testing sub-process is to achieve a sufficient 
quality of the application under test. Application testing thus complements 
the testing activities of domain testing. 

The sub-processes and artefacts closely related to the application testing sub-
process are highlighted in Fig. 18-1. Application testing reuses domain test 
artefacts. The unit test in application testing requires input from application 
realisation. The integration test requires input from application design, and 
the system test is performed on the basis of application requirements. The 
results of application testing are provided as feedback to the related sub-
processes. Figure 18-2 shows the information flows between application 
testing and its related sub-processes. 

Goal of 
application testing 

Related
sub-processes 

Fig. 18-1: Sub-processes and artefacts related to application testing
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18.1.1 Interrelation with Application Requirements Engineering 
Application system testing validates the created application against the 
application requirements specification (  in Fig. 18-2). The system test that 
is performed in application testing employs the application requirements as 
test references. The test must ensure that the application properly realises the 
application requirements and that no requirement has been omitted. 
Furthermore, the application variability model defines the variability bind-
ings for the application, and thus the variants that have been selected for the 
specific application. Application testing binds the variation points in the 
domain test artefacts according to the variability bindings in the application 
variability model. 

The creation of test cases is at the same time a validation of application 
requirements. Requirements defects such as ambiguous or incomplete 
requirements as well as errors in the configuration of variants are reported 
back to application requirements engineering (  in Fig. 18-2). Application 
requirements engineers must correct these defects before application testing 
can be completed. 

18.1.2 Interrelation with Application Design 
Application design determines the architecture of the application including 
its static structure and its dynamic behaviour. The application architecture 
(  in Fig. 18-2) is used as input for application integration testing. Due to 
the binding of the variation points, all components of the application are 
available for testing. The components that are part of the application can be 
separated into components that are reused from the domain artefacts and 
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application-specific components, which encompass modified domain com-
ponents as well as newly developed application-specific components. For 
reused domain components, reusable test artefacts are available, e.g. if the 
CRS (see Chapter 13) is applied. 

During application integration testing, the application design is validated. 
Test engineers must ensure that the variability in the design has been bound 
properly and that the application design is testable. Whenever the test engin-
eer cannot fully determine the integration test cases and the data required for 
a test case, an incompleteness or ambiguity has been detected. Any defects 
in design artefacts (  in Fig. 18-2) detected in application testing are 
reported back to application design. 

18.1.3 Interrelation with Application Realisation 
Application realisation builds the application (  in Fig. 18-2) and provides 
the interface descriptions to be used as the test references for the unit test. 
The application unit test validates the components, which have been newly 
developed or modified by application realisation, but also repeats tests 
already performed in domain testing. The different test levels and the corres-
ponding tests are described in more detail in Section 18.4. In addition, 
application testing performs tests related to the binding of the variability as 
explained in Section 18.3. 

Application testing reports all test results, together with problem reports as 
well as the uncovered defects in interface descriptions, back to application 
realisation (  in Fig. 18-2). The test results capture which test cases have 
been performed and whether the object under test passed or failed the test. 
The problem reports capture the observed deviations from the expected 
behaviour, which the object under test should possess according to the test 
reference. Defects in interface descriptions hamper test case design and must 
be corrected before testing can be completed. 

18.1.4 Interrelation with Domain Testing 
In order to avoid developing tests from scratch for each application, domain 
testing provides application testing with reusable test artefacts (  in Fig. 
18-2). In order to perform the tests, application test engineers must bind the 
variation points in the domain test designs according to the application vari-
ability model. 

Any defects in the domain test artefacts themselves are reported back to 
domain testing (first bullet of  in Fig. 18-2). In addition, application-
specific test artefacts (second bullet of  in Fig. 18-2) created during 
application testing may be passed on to domain testing. Domain testing may 
integrate application-specific test artefacts into the domain artefacts, for 
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example if the application-specific test artefacts are relevant for more than 
one application. 

18.2 Domain Test Artefact Reuse 

The key idea of establishing test artefact reuse is to develop test artefacts 
once for the entire product line, include them in the domain artefacts, and 
reuse them for multiple applications. To achieve a sufficient degree of reuse, 
domain test artefacts must be reused for common as well as for variable parts 
of the application. Following the CRS (Definition 13-10), domain testing 
prepares test cases with explicit common and variable parts. Test cases for 
common parts can be reused as they are. For test cases that contain variabil-
ity the variation points must be bound according to the application variability 
model before the test cases can be executed. 

If the SAS (Definition 13-9) is applied, the test cases developed for the 
sample application can be used as a basis for developing test cases for the 
application under test. It is quite likely that the test cases of the sample 
application have to be adapted. Therefore, the variants selected for the 
sample application are compared with the variants selected for the 
application under test. Based on the differences in the variability bindings, 
the required adaptations of the test artefacts can be determined. However, in 
case of large differences in the applications, significant rework might be 
required to create the application test artefacts. Note that additional test cases 
must be defined to validate application-specific requirements. 

In the following, we elaborate on two essential prerequisites for establishing 
an efficient reuse of test artefacts: dealing with variability and the use of 
traceability links. We thereby focus on system tests. However, the basic 
principles presented also hold for integration and unit tests. 

18.2.1 Dealing with Variability 
The application test engineer has to understand the variation points and vari-
ants defined in the domain artefacts and know how to bind the variability 
defined in the domain test artefacts. Application test artefacts are built based 
on domain test artefacts. The test plans, test cases, and test case scenarios 
have to be adapted for the specific application. The application test engineer 
thus has to learn how to bind the variability defined in the domain test arte-
facts according to the application variability model. Example 18-1 illustrates 
the binding of variability in a domain test case scenario. 
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lay finger on scanner
grant access

open door

Variability
binding

Fig. 18-3: Example of variability binding in test case scenarios 

Example 18-1: Dealing with Variability in Application Testing 

The application test engineer of a home automation application con-
siders the domain test case scenario depicted on the left side of Fig. 
18-3 (this scenario is explained in more detail in Section 8.3). The 
domain test case scenario contains three variants: ‘fingerprint scan-
ner’, ‘keypad’, and ‘magnetic card reader’. According to the 
application variability model (not depicted in Fig. 18-3), the variant 
‘fingerprint scanner’ has been bound for the application under test. In 
order to derive the application test case scenario, the test engineer 
binds this variant also in the domain test case scenario. The result is 
depicted on the right side of Fig. 18-3. 

18.2.2 Use of Traceability Links 
To allow for an efficient reuse of test artefacts it is necessary to support the 
retrieval of the applicable domain test cases. Figure 18-4 presents the basic 
idea. The trace information captured by application requirements engineer-
ing (Chapter 15) is used to detect the reused domain requirements artefacts. 
From domain testing, it is clear which test artefact relates to which require-
ment. Thus, based on the domain requirements, the reusable domain test 
artefacts can be retrieved. The domain test artefacts retrieved can be used to 
test the application requirements which correspond to the domain require-
ments related to the domain test artefacts. 
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Traceability is the first keystone for structured reuse. The second keystone is 
the requirements delta information that is contained in the application 
requirements specification. The deltas are the basis for determining whether 
a test case can be reused without changes, must be adapted, or created anew. 

A detailed process description for application testing defines when to record 
and when to use trace information. Although we do not deal with trace 
information at this level of detail, clear rules for the recording and usage of 
trace information are required in industrial software product line engineering 
to facilitate the reuse of domain test artefacts. 

Example 18-2: Retrieving Domain Artefacts 

In Example 18-1, a trace exists between the requirements artefacts for 
electronic door locks and the test case scenario of Fig. 18-3. The 
dependency between the two artefacts is recorded by a traceability 
link, which we refer to as “DomainDoorLockTestTrace”. Whenever 
one of the three door lock variants is incorporated into an application, 
the dependency between the domain and the corresponding applica-
tion requirements artefact is recorded as well. 
The “DomainDoorLockTestTrace” is used to identify the reusable 
domain test case. The domain test case is reused for a new application 
test case that validates the realisation of the corresponding application 
requirement. 
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Fig. 18-4: Traceability between requirements and system test artefacts 
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18.3 Tests Related to Variability 

The task of application testing is to validate that the application under test 
complies with the test references from domain engineering. This implies that 
the binding of variability and the configuration realised in the application are 
checked for correctness. More precisely, the application test engineer has to 
check if: 

Application engineers have bound variants for the application that 
should not be part of the application. 

Application engineers have omitted variants that should be bound for 
the application. 

Application engineers have configured the application in a way that 
violates the constraint and/or variability dependencies. 

If the application contains variants that should not be part of it, different 
kinds of errors may occur. The usability of the application may be affected 
as the customer finds the variant impracticable or the variant consumes add-
itional resources and thus affects system performance. If a variant that 
should bound for the application is omitted, the functionality and/or quality 
related to this variant is missing in the application. Furthermore, the vio-
lation of dependencies may lead to a malfunctioning application. For 
example, if a variant that is required by another variant or variation point is 
not included in the application, the components that require this variant may 
not work properly. If an “excludes” dependency is violated and thus a vari-
ant that is in conflict with another variant or variation point is included in the 
application, the conflicts between the different variants may lead to errors. 

Specific tests are required to detect defects in the binding of variability and 
the configuration of an application since the proper functioning of an appli-
cation may be affected by such defects. On the other hand, if a dependency 
that has strategical reasons is violated, this defect may be difficult to detect. 
Only a specific test can reveal this type of deviation from the application 
requirements specification. In the following, we thus introduce two types of 
tests for detecting defects in the variability bindings and the configuration of 
an application. 

Definition 18-1: Variant Absence Test 

The variant absence test ensures that an application does not include 
variants that were not defined to be included in the application. 

The variant absence test verifies that no more than the selected variants are 
incorporated into the application. To check whether a variant is present or 

Defect
categories

Tests
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not, the variant absence test may call a function that is provided by the vari-
ant and observe the reaction of the application. The variant absence test 
affects all test levels: 

The unit variant absence test verifies the absence of variants that influ-
ence code within a component. This kind of variability is often realised 
by compile time configuration mechanisms (e.g. IFDEF statements). 

The integration variant absence test verifies the absence of variants that 
influence entire components. This kind of variability is often realised by 
link time, load time, or run-time configuration mechanisms (e.g. regis-
try). 

The system variant absence test verifies the absence of variants that 
have influence on major system features and may therefore be distrib-
uted over multiple components. This kind of variability is also realised 
by link time, load time, or run-time configuration mechanisms. 

Definition 18-2: Application Dependency Test 

The application dependency test checks if the application is in con-
formance with the constraint and variability dependencies specified in 
the domain and application variability models. 

The application dependency test has to detect configurations of variants that 
are not allowed according to the domain and application variability models. 
This task can be subdivided into two sub-tasks: 

Checking whether the presence of variants violates any restrictions 
imposed by variability and constraint dependencies (e.g. “excludes” 
constraint dependencies). 

Checking whether the absence of variants violates any restrictions (e.g. 
“mandatory” variability dependencies or the “[min..max]” range of an 
alternative choice). 

Example 18-3: Application Dependency Test for Heating Control 

The automatic heating control requires automatic windows to prevent 
the waste of energy. Once the home automation system detects that a 
room is too cold, the windows are closed and heating is turned on. The 
home automation system for a specific customer includes automatic 
heating control. Hence, the application dependency test checks 
whether the application also contains the automatic windows variant. 
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Similar to the variant absence test, the application dependency test affects all 
test levels. At each level those dependencies are tested that affect realisation 
artefacts at the corresponding level of granularity, i.e. code excerpts, compo-
nents, or the entire application. 

18.4 Testing Variability at Different Test Levels 

In this section, we consider the influence of variability on the test levels in 
application testing. 

18.4.1 Application Unit Test 
The goal of the application unit test is to validate single components against 
the component specifications. The application test engineers reuse the 
domain unit test cases for the common functionality of the unit. It is neces-
sary to repeat unit tests even for common functionality as the specific 
configuration of the application may influence the test results (Section 13.3). 
The common parts of a component may not work properly due to a particular 
combination of variants or due to application-specific modifications. 

Example 18-4: Necessity to Reapply Domain Unit Test Cases 

The door sensor plug-in, which is a component of the door lock con-
trol subsystem, supports control devices to which up to eight door sen-
sors can be connected. During domain testing the plug-in was tested 
with different configurations of sensors, and passed the test. The 
domain unit test cases are reexecuted during application testing, as it 
is still unclear whether the plug-in component behaves correctly for 
the particular configuration of sensors required for the application. 

18.4.2 Application Integration Test 
The goal of the application integration test is to validate the interactions 
between the components of the application. This includes the validation of 
the interactions between common components, bound variants of variable 
components, as well as application-specific components. During the appli-
cation integration test, test cases that have already been performed in domain 
testing may have to be reexecuted to validate the interactions of all compo-
nents in the specific context of the application (Section 13.3). The inputs for 
the application integration test are components that have passed the applica-
tion unit test. 
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Example 18-5: Application Integration of the Home Security System 

The domain integration test case for electronic door locks contains 
variability as there are three different variants (fingerprint scanner, 
keypad, and magnetic card reader). The application under test includes 
a door lock management component and three door control devices, 
each with a magnetic card reader and a lock actuator. The application 
integration test cases are created by reusing the domain integration test 
cases and by binding the variants defined in the application variability 
model. The test cases are used to validate the interactions between the 
three magnetic card locks and the server. 

18.4.3 Application System Test 
The goal of the application system test is to validate that the application 
satisfies the application requirements specification. Ideally, all requirements 
are tested to obtain a detailed assessment of the quality of the application. 
Most of the system test cases have to be performed during application sys-
tem testing due to the absence of application-specific variants in domain 
engineering and the configurability of domain artefacts (see Chapter 13). If 
the commonality and reuse strategy is applied, application test engineers can 
reuse predefined domain system test artefacts by binding the variants defined 
in the application variability model. 

Example 18-6: System Test of a Home Automation Application 

A system test case for the home security part of the home automation 
application is the activation of the vacation mode. The test case scen-
ario consists of the following steps. The user authenticates against the 
system, activates indoor and outdoor surveillance, and locks the doors. 
To create the application system test case, the test engineer reuses a 
domain system test case. As the domain system case includes different 
authentication mechanisms, different surveillance devices, etc., the 
test engineer binds the authentication variants, the surveillance vari-
ants, etc., as defined in the application variability model. 

18.5 Application Test Coverage 

In this subsection, we describe the different types of tests that have to be 
performed in application system testing. The different types are based on a 
classification of the application requirements: 

Reused common requirements artefacts: This category includes all 
application requirements that are reused common domain requirements. 

Test of application 
features

Requirements 
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Reused variable requirements: This category includes all application re-
quirements that are reused domain requirements with bound variability. 

Adapted requirements: This category includes all application require-
ments that are reused domain requirements containing application-
specific adaptations. 

New requirements: This category includes all application requirements 
that are purely application-specific and are not derived from domain 
requirements. 

18.5.1 Application Commonality Test 
The application commonality test covers the common parts of requirements 
models. It ensures that the common requirements of the product line are 
tested in the context of an application. Test cases for common requirements 
are developed and executed in domain testing. If, for instance, a common 
component is placed in the context of a specific application with its specific 
selection of variants, the component can fail even though it has not changed. 
Coupling mechanisms like shared variables or inheritance can cause such 
failures, even if the components have been tested extensively. Consequently, 
domain test cases for common requirements are reexecuted in application 
testing.

Example 18-7: Testing Common Requirements 

One part of every application is the motion detection sensor. Test 
cases for the motion detection sensor are created during domain test-
ing and executed on the sample application. The test case is re-
executed for each application to ensure correct behaviour. 

18.5.2 Application Variant Test 
The application variant test verifies that all selected variants are part of the 
application and ensures the correct behaviour of these variants. The test arte-
facts for the application variant test can be reused from domain test artefacts. 
Application test engineers bind the variants based on the application vari-
ability model. 

Example 18-8: Testing Variants 

The application under test contains exactly three magnetic door locks. 
The application variant test must ensure that there are three magnetic 
door locks and that each of them locks the specified door. 
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18.5.3 Application-specific Tests 
The application-specific tests deal with testing new application requirements 
and adapted domain requirements. 

The application modification test covers adapted requirements, i.e. the parts 
of application requirements models that are modified versions of domain 
requirements models. For this category of requirements it is not possible to 
reuse the domain test artefacts without adapting them. 

Example 18-9: Testing Adapted Requirements 

Another set of magnetic card locks from another provider has to be 
incorporated into an application. The test cases regarding the magnetic 
card locks must be adapted to cope with the new hardware, for 
instance, pull the card through a card reader instead of placing it on 
the card reader. 

The application extension test covers parts of the application requirements 
models that were newly developed for a specific application. The test arte-
facts for this category of requirements have to be created from scratch. In 
addition, the newly implemented artefacts typically have a significantly 
higher defect density than reused artefacts. 

Example 18-10: Testing New Application Requirements 

An iris scanner lock is required for an application. Therefore, the 
application extension test must ensure that the requirements are real-
ised within the application. New test cases have to be derived to 
validate this requirement. 

18.6 Application Test Activities 

The application test process description provides guidance for the entire 
application test process. It includes instructions on how to derive application 
test artefacts from domain test artefacts. The application test process consists 
of three main activities: application test planning, application test specifica-
tion, and application test execution. 

18.6.1 Application Test Planning 
During application test planning the test engineers create an application test 
plan for the product line application. The test plan differs from application to 
application. For example, there may be some variants that have already been 
tested, or there may be new application-specific requirements, which require 
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the definition of a new test plan. Consequently, the required effort for appli-
cation testing also differs from application to application. The estimation of 
test effort can be based on a common scheme defined by domain testing. The 
test strategy and the tool support for executing the tests have already been 
determined during domain engineering. Only in exceptional cases are they 
adapted during application testing (e.g. in pilot projects for evaluating a new 
tool or a modified strategy). Such a case may be, for instance, an attempt to 
improve the efficiency of domain test artefact reuse. 

Example 18-11: Application Test Planning for the Home Automation 
System

The differences between application and domain requirements arte-
facts and the previously performed tests are considered. If three mag-
netic door locks have to be built into the home, the interaction 
between three door locks and the server has to be tested in the appli-
cation integration test. This validates that the application works with 
the three locks. 
These test cases are identified on all test levels and for all types of 
application tests (e.g. variant absence tests). They are defined as part 
of the test plan. Resources are allocated to the test cases, e.g. one test 
engineer must perform the door lock interaction tests within two days. 

18.6.2 Application Test Specification 
During application test specification, test engineers create logical test cases, 
detailed test cases, as well as the respective test case scenarios for the appli-
cation. The effort for the specification activity depends on the achievable 
degree of domain test artefact reuse: 

For application commonality tests, logical and detailed test cases are 
available from domain testing and can be reused in application testing. 

For application variant tests and, to some degree, for application-
specific tests (Section 8.3), logical test cases can be reused from domain 
test artefacts (Section 13.7). Detailed test cases have to be developed by 
the application test engineers. 

Application-specific tests must be developed from scratch (including 
the logical and detailed test cases) or obtained by adapting domain test 
artefacts. 
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Example 18-12: Application Test Specification for Electronic Door 
Locks

During the application test specification activity, test engineers create 
the detailed test cases for electronic door locks and adapt the test case 
scenarios for the selected authentication mechanism. As the applica-
tion uses only magnetic sensors, the other two variants (keypad and 
fingerprint sensors) are omitted. Furthermore, the exact number of 
locks is incorporated into the detailed application test cases and appli-
cation test case scenarios. 

18.6.3 Application Test Execution 
During application test execution, the application test engineers perform the 
specified test cases on the application. They record the results and complete 
the tests by determining the error classes. This also includes reporting the 
detected defects to the other sub-processes (see Section 18.1). 

Example 18-13: Application Test Execution for the Electronic Door 
Locks

The test cases and test case scenarios for validating the three magnetic 
door locks and the interplay with the authentication server are exe-
cuted. Defects in the ‘electronic door lock control’ component, in the 
interaction with the ‘authentication’ component, and in the entire 
application (e.g. failure during simultaneous access) are uncovered 
and reported to the developers. 

18.7 Differences from Single-System Engineering 

As for single-system testing, the goal of application testing in software prod-
uct line engineering is to ensure a sufficient quality of an application by per-
forming a set of tests that satisfies the chosen coverage criterion. In contrast 
to single-system engineering, the test engineers have to consider that the 
requirements as well as the application to be tested are created partly during 
domain engineering and partly during application engineering. Application 
requirements and components that are identical to domain artefacts are tested 
by repeating tests that have been created in domain testing. Application-
specific artefacts are tested in a similar way as in single-system engineering 
since the test cases have to be newly developed or adapted. 

Application test engineers must validate that the variability binding for the 
application complies with the application requirements specification, or, 
more precisely, with the application variability model. In addition, the appli-
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cation must not violate any restrictions imposed by the domain variability 
model. In single-system engineering, there is usually no need to perform this 
kind of test. 

In the application testing sub-process in software product line engineering, 
the test process description as well as a large part of the required test arte-
facts do not have to be developed from scratch as they are both available 
from the domain artefacts, partly in a generic form. After binding the appro-
priate variants and adapting or concretising the artefacts, they can be 
employed in application testing (see Chapter 8 for more details on variability 
in test artefacts). 

18.8 Summary 

During application testing a product line application is validated against its 
specification. For this purpose, a set of application test cases is defined that 
includes all test levels and fulfils a suitable coverage criterion. A thorough 
test, even of reused code, is necessary due to dependencies between reused 
and application-specific parts. 

Many application test artefacts are reused domain test artefacts. To establish 
an efficient reuse process, for instance, application test engineers must be 
trained to deal with variable test artefacts. In addition, traceability links must 
be recorded in domain engineering as well as in application engineering 
activities that enable test engineers to locate easily the test artefacts for 
reuse.

The test cases performed together with the recorded test results indicate the 
level of quality achieved in an application. To ensure a traceable and repeat-
able application test process, the test documentation is recorded as an appli-
cation artefact and interrelated with the other application artefacts, even if 
part of it is derived from domain artefacts. Just like other application-
specific artefacts, test artefacts developed for a specific application might be 
included in the domain artefacts if they are of interest for other applications. 
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Part V: Overview 

For the successful introduction of the software product line engineering paradigm, 
organisation aspects are as important as the technical aspects. This part deals with 
organisation aspects which have to be considered when introducing a software 
product line engineering paradigm. In this part you will learn: 

About the influence of the organisation structure on software product line 
engineering.

How domain engineering tasks can be embedded in organisation structure. 

A cost model for determining the return on investment for software product 
lines.

Transition strategies to be applied for introducing a software product line into 
an organisation. 
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Organisation

In this chapter you will learn: 

o About the influence of the structure of an organisation on software product 
line engineering. 

o How to realise software product line engineering in an organisation with a 
hierarchical structure. 

o How to realise software product line engineering in an organisation with a 
matrix structure. 

Günter Böckle 
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19.1 Introduction 

In this chapter, we elaborate on the role of the organisation structure for soft-
ware product line engineering. We establish properties of organisation 
structures that facilitate or hinder proper functioning of a software product 
line engineering process. Finally, several organisation structures are com-
pared with respect to these properties. 

In industry, many people have found that even with the best development 
technologies and skilled staff there may be little success. Problems may 
occur when the allocation of people to tasks is inadequate, or when decisions 
are delayed because the responsibilities are not clear and people cannot come 
to an agreement. Occasionally, departments may clash with each other over 
the power to make decisions. In all these cases, inadequate process and 
organisation structure significantly hinder successful development. This 
chapter discusses the effect of the organisation structure on software product 
line engineering, and how the structure can reduce the problems mentioned 
above.

19.2 Properties of Organisation Structures 

Organisation structures may facilitate or hinder effective and efficient soft-
ware product line engineering. First, we consider the negative effects that a 
chosen organisation structure may have on development work, and then 
determine which properties are needed to deal with the problems. The major 
problems caused by organisation structure are: 

Decisions about the work are not clearly expressed, technologically 
comprehensible or economically sound. 

Decisions take too much time. 

People spend too much time aligning and coordinating their work and 
do not have enough time left for management and engineering work. 

Internal politics consume time and effort, and distract the employees’ 
focus from product development. 

Employees are not encouraged and motivated to do good work. 

The staff focus more on perfecting the technology than on the customer. 

The process and other factors influence the severity of these problems, but 
the organisation is a major cause. Software product line engineering organi-
sations encounter more problems than organisations producing single sys-

The role of 
organisation 

Problems due to 
inadequate 

organisation 

Responsibilities 
and roles 



19.2  Properties of Organisation Structures 377

tems, because the former are usually larger47 than the latter. More respon-
sibilities are involved, for instance those for the domain and those for 
separate applications. In addition, special roles are needed to deal with the 
relationship between domain and application engineering. 

Which structure is suited best for a company or organisation depends on 
many factors such as the market, company history, company culture and 
culture of the country, power distribution in the company, expertise and 
experience of the employees, practised development approaches, etc. These 
factors have to be considered together with the properties we develop here 
for selecting the most appropriate organisation. In the following, we consider 
several organisation aspects and discuss their properties with regard to the 
list of problems above: 

Responsibilities for decision making 

Overhead time 

Structure reflecting responsibilities 

Motivation

Customer focus 

The assignment of responsibilities has a big effect on the way the organisa-
tion behaves. The problem of unclear decisions and the long time to make 
decisions can be solved by a clear assignment of responsibilities for making 
certain decisions. Decisions internal to domain engineering are to be taken 
by those people who are involved in domain engineering, and similarly for 
application engineering. Specific responsibilities have to be assigned for 
overall coordination. For decisions that involve both domain and application 
engineering, coordinator roles are necessary. However, such decisions will 
only be effective if the people who are involved in domain and application 
engineering take part in them as well. In all cases, the number of people 
involved in decision making has to be small to be effective. 

A major property of an organisation is the fraction of time that is spent on 
effective work versus overhead time. The overhead time we consider here 
encompasses time spent coordinating the work and coming to decisions 
about the work. The amount of overlap between the tasks of organisational 
units and how they influence each other contributes significantly to the over-
head necessary to align and coordinate work. When overlaps and dependen-
cies are minimised, the overhead is small. There are some necessary 
dependencies between the process phases of domain and application engin-
eering that cannot be avoided. However, these dependencies are usually 
                                                     
47 This does not necessarily mean that the companies involved are larger, but that larger parts of the same 

company are involved in the same development. 
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smaller than those internal to such a phase. The right organisation structures 
will consider this difference. The overhead time for decision making is also 
high when the responsibilities are not assigned clearly and when several 
interests conflict. 

Responsibilities are only sustained if the distribution of responsibilities is 
reflected in the structure. This addresses the problem company policy. A 
certain position in the organisation implies certain tasks and responsibilities. 
If the assigned responsibilities are not the same as the implicit ones, man-
agers try to increase their responsibility, which leads to power struggles. 
Therefore, it is crucial that the organisation structure reflects the presence of 
both domain and application engineering, and of coordination tasks. 

The way personnel are motivated and encouraged in their work influences 
the way they deliver the right value to the organisation. As both domain and 
application engineering are crucial for the organisation, this means that the 
work in domain and application engineering must be of equal value to the 
employees. In certain organisations, working in an application department is 
valued higher because the staff are making the final products that are sold to 
the customers and bring profit. In other organisations, the domain unit is 
esteemed higher. This difference in valuation decreases motivation in the 
lower esteemed group and thereby the effectiveness of their work. 

Organisational units that have no direct customer contact are in danger of 
losing their customer focus. This reduces the effectiveness of their work. 
Especially large organisations encounter this problem as there are many 
people that are not in direct contact with the end-customer. This holds for 
instance in pure domain engineering units. 

In the following, we consider some organisation structures for software pro-
duct line engineering and show their strengths and weaknesses in relation to 
the properties described above. 

19.3 Basic Hierarchical Organisation Structures 

In this section, we present different ways to map the different activities of 
software product line engineering in an organisation. We consider first hier-
archical or line-oriented structures. These are typically organised along 
products or customers. Figure 19-1 shows a hierarchical structure with one 
manager at the top and four managers at the second level. These four mana-
gers each head an organisational unit (department, group, etc., shown in a 
dotted box) that represents, for instance, a particular product or project. In 
many organisations with such a hierarchical structure, there are strong prod-
uct project units that are often rather autonomous and often have good con-
tacts with their own customers. A leaf in the hierarchy tree in the figure may 
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represent an individual, an unstructured set of people, or another hierarchy. 
The internal nodes represent managers. 

There are only a few publications on hierarchical organisations in product 
line engineering. In [Jacobson et al. 1997] organisation structures for the 
“Reuse-Oriented Software Engineering Business” and the roles needed for a 
reuse organisation are presented. In [Weiss and Lai 1999] the use of the 
hierarchy as a starting point to distribute responsibility in the FAST process 
for product line engineering is discussed. And in [Bosch 2000a; Bosch 
2000b] four basic types of structures are presented: namely, “development 
department”, “business units”, “domain engineering unit”, and “hierarchical 
domain engineering units”. The following descriptions of organisation struc-
tures consider, amongst others, these structures. 

19.3.1 Development Department 
In this case, there is only a single organisation unit dealing with the complete 
software product line engineering. Projects are created as needed within this 
unit. Responsibilities for certain tasks are often dynamically assigned when 
these tasks have to be performed. The strengths48 of this kind of organisation 
are in motivation and customer focus: 

Simplicity and ease of communication among the staff. 

Little organisational and administrative overhead. 

It is possible to adopt a product line approach without changing the 
existing organisation (because there is only one unit), which may sim-
plify the adoption process. 

The weaknesses are in responsibilities and structure: 

It is not scalable – there is a maximum size of a software development 
unit that can be managed. 

                                                     
48 For details see [Bosch 2000a] and [Bosch 2000b]. 
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Often, either domain or application engineering has higher status and 
staff will prefer one and do the other insufficiently – if people have to 
switch too often between different tasks, one will be preferred. 

Often there is not a single responsible person, but responsibility swit-
ches with the temporary assignments. 

Maintenance may be forgotten when responsibilities switch. 

No one will press for usage of assets and no one will plan and support 
asset evolution, if there are no associated roles to do these tasks regu-
larly. 

This structure is applicable to small organisations with up to 30 software-
related staff; more staff are not manageable without additional structuring. 

19.3.2 Distributed Domain Engineering 
Figure 19-2 shows a (product) project-oriented organisation based on the 
hierarchical structure from Fig. 19-1. The dark squares indicate organisa-
tional units that do domain engineering. This is the same organisation as the 
“business units” in [Bosch 2000a] and [Bosch 2000b]. The four project units 
indicated by the dotted boxes in Fig. 19-2 typically develop single products 
(or product groups), each for a specific customer (group) or market segment. 
The task of domain engineering is distributed among these project units. 
Either there is a sub-unit for domain engineering inside each project unit or 
the domain engineering tasks and roles are mapped to roles in the original 
project structure, so that some people have double roles – one for domain 
and one for application engineering. An evaluation of this structure with 
respect to our properties yields the following results. 

Domain engineering 
in project groups 

Fig. 19-2: Software product line engineering organisation with distributed domain 
engineering in four projects 
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The responsibility for the products stays with the project units and the 
responsibility for domain engineering is distributed. For decisions concer-
ning domain engineering, the heads of the project units or their representa-
tives have to come to a consensus. The primary focus of these managers will 
remain on their own product for their assigned customers, because that is 
where their money comes from. Consequently, decision making about com-
mon artefacts will be hard and time consuming because the managers will 
typically pursue their product-specific interests. Essentially, the organisation 
adapts to software product line engineering only at a low hierarchical level, 
while decision-making power is still focused on individual products. There is 
no single role with decision-making power for the platform that serves all 
products.

The overhead time comes mostly from discussions about what artefacts 
should belong to the platform and which ones should be product specific. It 
comes also from discussions about adequate interfaces between artefacts. 
The partitioning of work over the domain engineering units of the different 
project units contributes to this overhead time, too, since the tasks may 
overlap and need synchronisation. Decisions about domain engineering to-
pics in this organisation are not made by a single unit. Instead the project 
units have to come to a consensus. Therefore, there may be significant over-
head involved for this. 

The common tasks (for domain engineering) are mirrored somehow in the 
structure – but only at a low hierarchical level, inside the project units. For 
instance, the structure does not show the role that represents responsibility 
for the platform. Therefore, stakeholders who want to address platform inte-
rests have no one to talk to or have to talk to all project managers. Therefore, 
the mapping between responsibilities and structure is satisfactory only to a 
small degree. 

Staff from the domain engineering unit inside a product project can easily be 
assigned tasks for product design when pressure is exerted to deliver a prod-
uct. Such a reassignment may lead to neglecting the domain engineering 
tasks. This leaves people unsatisfied because they want to do their work 
properly. It also frequently occurs that domain engineering work is not as 
highly valued as project work, and this decreases motivation for doing it. 
However, since the domain engineering teams are part of the project units, 
the chances are high that they get the same compensation, which reinforces 
motivation. Thus, we have some aspects increasing motivation and some 
aspects decreasing it. Hence, we have only partial support for increasing the 
motivation. 

The customer focus is strong in this organisation because of the integration 
of domain engineering into the project units with their strong customer 
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focus. So, this property is fulfilled; actually, this is the major advantage of 
this organisation structure. 

The organisation with distributed domain engineering is often selected when 
there are strong product projects with high decision authority. The managers 
of these projects would typically not allow another group to decide what 
kinds of platform assets will be built, who should use them, and how they 
should be used. They want to retain authority over domain engineering, only 
accepting cooperation among a set of equals, namely the other project units. 
The positive side of this is that people keep a customer focus. 

The Owen project at Hewlett-Packard (Section 21.5) is an example of an 
organisation with distributed domain engineering; see [Douma and 
Schreuder 2002] and [Fafchamps 1994]. 

19.3.3 Centralised Domain Engineering 
Another common organisation for software product line engineering is 
shown in Fig. 19-3. In [Bosch 2000a] and [Bosch 2000b] this type of orga-
nisation is referred to as “domain engineering unit”. 

This organisation has a separate unit for domain engineering, shown by the 
dark squares on the right hand side in Fig. 19-3. It is also indicated that the 
four project units get smaller when there is a domain engineering unit. The 
size of the domain engineering unit relative to the (product) project units 
may differ, depending on the relation of the efforts for domain and applica-
tion engineering. In the uppermost hierarchical level, the domain engineering 
unit may be headed by the same manager as the project units or by a separate 
one. Jacobson describes the differences in these two cases of higher manage-
ment assignment in [Jacobson et al. 1997]. An evaluation of this structure 
with respect to our properties yields the following results. 

Fig. 19-3: Product line engineering organisation with central domain engineering

Separate domain-
engineering unit 
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The responsibility for domain engineering is clearly assigned to the unit 
represented by the hierarchy of dark squares in Fig. 19-3. Therefore, 
responsibilities for domain and application engineering are clearly separated. 

The overall responsibility for domain engineering is assigned to one single 
role, the head of the domain engineering unit. The people from the domain 
engineering unit are responsible for the platform, the artefacts that are inclu-
ded and how these artefacts behave. Therefore, discussions on domain engi-
neering topics can be short and fewer discussions are needed than in the 
organisation with distributed domain engineering. Thus, the overhead time 
for coordinating domain engineering work is low. 

The responsibility for domain engineering is clearly displayed in the struc-
ture by having a separate unit for domain engineering with its own manager. 

In project units, there is often much pressure to finish products in time. To 
encourage this, people from project units may get a better remuneration than 
members of the domain engineering unit. Sometimes, domain engineering 
work is not valued as highly as application engineering work. Therefore, 
compensation and motivation are often problematic in organisations with 
central domain engineering. To support motivation, the respective work has 
to be given equal value and remuneration. 

The members of the domain engineering unit often have no customer contact 
and do not work directly on the applications, so the customer focus may 
become lost. 

The organisation with centralised domain engineering in Fig. 19-3 has more 
of the required properties than the one with distributed domain engineering 
in Fig. 19-2. However, in cases in which a strong customer focus is import-
ant and there are strong project units with independent managers, the struc-
ture with distributed domain engineering may be adequate. 

19.3.4 Several Domain Engineering Units 
In big organisations, several domain engineering units may be required; they 
may be organised in a hierarchy. In [Bosch 2000a] and [Bosch 2000b] they 
are called “hierarchical domain engineering units“. Typically, a considerable 
number of staff members, i.e. hundreds, are involved. This structure is an 
extension of the previous one. 

The strengths of this kind of organisation are in responsibilities and their 
mapping on structure: 

The structure can encompass large, complex product lines. 

It scales up to hundreds of software engineers. 
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The weaknesses are in the complexity of the structure, overhead, and cus-
tomer support: 

There is considerable overhead involved for synchronisation because 
more units have to be synchronised. 

It is difficult to achieve agile reactions to changed market properties due 
to the increased number of stakeholders involved. 

A change in an artefact that is used by many applications may require 
considerable synchronisation effort because many stakeholders with dif-
ferent interests are involved. 

19.4 Matrix Organisation Structures 

The hierarchical organisations described in Section 19.3 are often not suffi-
cient for big organisations. Instead, they often use matrix organisations. The 
most important reason for using a matrix structure is that there are two con-
flicting grouping criteria for an organisation. On the one hand, product-
oriented units have a focus on the product and the customer to get products 
to the market in time and according to customer wishes. On the other hand, 
people are grouped according to functional knowledge in order to keep the 
knowledge up to date. Therefore, both groupings are combined in the two 
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dimensions of a matrix.49 An example of a matrix organisation is shown in 
Fig. 19-4. Usually each of the dimensions has a hierarchy as well. This is not 
shown in the matrix. The product projects P1 to P5 are organised horizon-
tally while major functions, like requirements engineering, architecture, user 
interface, data management, and test, are organised vertically. A problem 
with matrix structures is the decision-making power at the crossing points of 
the matrix. If this is not well determined, power struggles are inevitable and 
much time is spent coming to decisions. For product line engineering, 
domain engineering has to be added to the matrix. There are three possibil-
ities: as a functional unit, as a project unit, or outside the matrix. 

19.4.1 Matrix Organisation with Domain Engineering as 
Functional Unit 

In Fig. 19-5 domain engineering is a functional unit; this is comparable to 
the structure in Fig. 19-2. This structure has the advantage that people in the 
domain engineering unit are close to the products and do not lose customer 
orientation. They may easily be assigned to product development tasks when 
there is time pressure. This is not a disadvantage if the domain engineering 
tasks are not neglected and people keep their customer focus. However, the 
balance between application and domain engineering tasks is not easy to 
maintain in case of time pressure for completing products. An evaluation of 
this structure with respect to our properties yields the following results. 

Responsibilities are fully assigned in this structure, but the decision-making 
power must also be assigned; this depends on the actual situation. It must be 
clearly determined who has the power to make decisions at the crossing 
points of the matrix. 

The overhead time depends on the unique assignment of decision-making 
power. If the decision-making power for all domain engineering tasks is 
assigned uniquely, preferably to the head of the domain engineering unit, 
and so is the power for the individual technical activities, e.g. domain 
requirements engineering, the overhead is low. 

The responsibility of technical roles in domain engineering, e.g. for domain 
requirements engineering, is not represented in this structure. To deal with 
this property adequately, the technical roles in domain engineering have to 
be included in the structure. 

                                                     
49 There are also multi-dimensional matrix organisations where more than two properties of organisation 

structures are captured in more dimensions. These are not considered here. Their extensions for 
product line engineering are similar to the ones described here. 
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Fig. 19-5: Matrix organisation with domain engineering as functional unit 

Care has to be taken that the domain engineering unit has the same opportu-
nities as the other units and that the staff are not reassigned to different tasks 
too often. Therefore, there is usually only partial motivation support. 

The domain engineering unit is also involved in projects. Therefore, there is 
a good chance that domain engineering staff have a good customer focus. 
The degree of customer focus depends on the actual assignments. 

19.4.2 Matrix Organisation with Domain Engineering as Project 
Unit

Figure 19-6 shows a matrix organisation where domain engineering is 
assigned to a project unit. Here, the chances are high that people in the 
domain engineering unit can do their work without being assigned to 
application engineering work. However, this may reduce customer focus. 
This structure is well suited for dynamic platforms with many changes and a 
managed evolution because domain engineering staff can focus on their 
work, and decisions about changes can be made quickly, due to domain 
engineering roles with assigned responsibilities. An evaluation of this struc-
ture with respect to our properties yields the following results. 

The responsibilities for domain engineering are inside the domain engineer-
ing unit. Therefore, the assignment of responsibilities is clear. Care should 
be taken that the head of domain engineering unit has the same decision-
making power as the project unit heads. 
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The responsibilities for domain engineering are in the domain-engineering 
unit. So decisions can be made quickly, but they depend on the assignment 
of decision-making power at the crossing points of the matrix. Therefore, the 
overhead is mostly low. 

The domain engineering tasks are clearly represented in the structure. 

Domain engineering staff can focus on the platform and its evolution and 
they are in a project unit like the others. However, it must still be ensured 
that this unit is considered as equally important as the other units. 

Customer focus depends on the integration of the domain engineering unit 
into the overall organisation. 

19.4.3 Matrix Organisation with Separate Domain Engineering 
Figure 19-7 shows a matrix organisation where the domain-engineering unit 
resides separately outside the matrix. This organisation can easily be 
extended to organisations with multiple product lines that use a common 
platform. Decisions about setting up and evolving the platform are easier 
than in the other structures, but usage of the platform may be harder because 
the projects are typically less involved in defining it (because the domain 
engineering unit is separate and not within the matrix). The use of platform 
assets for application engineering and its compensation has to be fixed spe-
cifically in the process to make this organisation effective. 
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An evaluation of this structure with respect to our properties yields the fol-
lowing results. 

The assignment of responsibility supports simple and fast decision making 
because of the separate domain engineering unit. 

The domain engineering tasks and responsibilities are in a separate unit, 
responsibilities for the domain engineering tasks reside there, and so deci-
sions can be made quickly, yielding low overhead. 

The structure mostly does not mirror functions like requirements engineering 
inside the domain engineering unit, while common tasks are well shown by 
the fact that there is a domain engineering unit. So, responsibilities are only 
partially mapped on the structure. 

Motivation and encouragement depend on the image of the domain engin-
eering unit and will be satisfactory if the platform and variability usage are 
clearly specified in the process. Equal valuation of domain engineering work 
and project work is necessary. So, there is only partial motivation support. 

This structure has the advantage that the people in this group may focus 
totally on domain engineering (even more so than in the previously 
described organisation). However, customer focus may easily become lost 
because the domain engineering staff are outside the matrix. 
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Fig. 19-7: Matrix organisation with separate domain engineering unit
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19.5 Detailed Structure 

In application engineering organisation units, as in single-system engineer-
ing organisations, the coarse structures are based on products, projects, and 
functions like requirements engineering or architecture design. Below that 
coarse level there are more detailed structures, based, for example, on roles 
responsible for particular features. In domain engineering organisation units, 
typically functions form the main structuring criteria at a coarse level. The 
detailed structure, however, is different and often important for successful 
product line engineering. Here, roles that are responsible for the platform 
assets are defined. These roles have to deal with making the assets reusable 
for many products, with adequate quality, and with their evolution. 

19.6 Cross-Functional Teams 

Cross-functional teams play an important role in the success of software 
product line engineering. These structures are often temporary and orthogo-
nal to the primary structures that we have considered so far. For determining 
whether certain artefacts should be developed for the platform or not, some-
one from domain engineering is responsible. However, the decision making 
is often supported by a team consisting of product managers, requirements 
engineers, and domain and application architects. Therefore, the interests of 
the relevant stakeholders must be considered. For tasks that involve stake-
holders from different units, e.g. from domain and application engineering, 
cross-functional teams are set up to express the interests of the different 
stakeholders and support decision making. 

The domain engineering process and the application engineering processes 
have to be synchronised. Typically, application engineering waits for domain 
artefacts to be ready, but also domain engineering waits for application test 
results and other feedback from application engineering. Synchronisation of 
this is done by teams from both domain and application engineering. In the 
case of urgent problems, task force teams are set up, mostly comprising 
people from both domain and application engineering. 

19.7 Organisation Theory 

As mentioned earlier, many factors determine the effectiveness of an organi-
sation. These factors have been analysed and described by different schools 
of organisation theory. Many books on organisation theory have been pub-
lished; most cover aspects that are relevant to decisions about organisation 
structures for product line engineering, but none treats this topic specifically. 
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We provide a brief overview of the major schools and the factors they con-
sider. Details can be found in the referenced literature. 

For over a hundred years, from F. W. Taylor and Max Weber until today, 
organisation theory has analysed what factors determine organisations and 
their structures. Seven different schools of organisation theory are distin-
guished in [Morabito et al. 1999] (see also [Hill et al. 1992]). These schools 
and their major characteristics are as follows: 

Scientific management: Developed by Frederick Winslow Taylor in 
1911 [Taylor 1911]. Characterised by detailed, scientific design of 
tasks, scientific selection and training of workers, separation of plan-
ning (management) and execution (labour). Another famous representa-
tive of this school is Henri Fayol; see [Fayol 1916]. 

Human relations: This school sees an organisation as a cooperative sys-
tem [Barnard 1938]. It is based on authority that does not flow from the 
top, but instead it is accorded to the manager by the employees; the role 
of the manager is to motivate the employees. Later, the human 
resources school was added and both were combined as the motivation-
oriented approach. The Tavistock group represents this school. 

Bureaucracy: According to Max Weber [Weber 1922], the ideal struc-
ture of an organisation is characterised by a division of labour, hierar-
chical decision making, a high degree of formal procedures and 
regulations, and impersonal relationships. 

Power, conflict, and decisions: Other sources call this the decision-
oriented approach, consisting of two major variants: first, the formal 
decision-theoretical approach that uses linear programming, game 
theory, and team theory; second, the behavioural approach (see for 
instance [Cyert and March 1963]). This school challenges the notion 
that organisations make rational decisions. Organisations are best 
understood by looking at power, conflict, and how decisions are actu-
ally made. 

Technology: Mechanistic and organic forms of work are distinguished. 
In [Woodward 1965], Joan Woodward classified manufacturing 
technology into unit, mass, and process production and found a correl-
ation between the type of technology employed and the structure 
chosen. Perrow looked at knowledge technology [Perrow 1970] and 
[Perrow 1972]; using the dimensions of task variability and problem 
analysability, four types of task technologies were identified: routine, 
craft, engineering, and non-routine. They are characterised by the con-
trol and coordination mechanisms employed. 
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Systems: This school sees the organisation as an open system, e.g. Peter 
Senge’s publications on learning organisations (see for instance [Senge 
1990]). This school comprises two variants: the organisation-socio-
logical approach and the systems-theoretical/cybernetic approach. 

Institutional: This school advocates the importance of culture, organisa-
tion history, and particular circumstances. It tries to encompass the 
other schools. Its approach is also called the interaction-oriented ap-
proach. It comprises three variants: the organisation-cultural approach, 
the micro-political approach, and the transaction-cost economical ap-
proach, see [Douma and Schreuder 2002]. 

There are also modern types of organisations that do not count as schools of 
their own (yet). These include lean organisations, fractal organisations, busi-
ness process organisations, virtual organisations, and network-based organi-
sations.

The schools of organisation theory help us to understand the factors that 
influence an organisation and that have to be considered when designing the 
structure for an organisation. 

A method for structuring groups so that the interfaces between them are 
minimised, in order to reduce overhead, is presented in [McCord and 
Eppinger 1993]. For readers who wish to learn more about the role of motiv-
ation, the reports of Hackman and Oldman are recommended [Hackman and 
Oldham 1975; Hackman and Oldham 1976; Hackman et al. 1978; Hackman 
and Oldham 1980]. The role of organisation structure for the success of plat-
forms in the automotive industry is presented in [Cusumano and Nobeoka 
1998]. 

19.8 Differences from Single-System Engineering 

In product line engineering the organisation structure has to provide for the 
integration of domain engineering and the assignment of the responsibility 
for the whole product line. There are various ways to achieve this, as shown 
in this chapter. The organisation can choose the most adequate structure 
depending on its current circumstances, such as market, customers, person-
nel structure, experience, culture, its experience in doing product line engin-
eering, and its process maturity. 

The detailed structure of an organisation is essential for its success in prod-
uct line engineering. It should clearly assign the responsibilities for platform 
assets, and facilitate cross-functional teams who can bring different expertise 
together and thus support decision making. 
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19.9 Summary 

The organisations presented in this chapter all have their advantages and 
disadvantages. The selection of a structure depends on the actual situation of 
an organisation. Its markets, kinds of products, company culture, employees’ 
skills, and many other factors determine the structure that fits best. Heuris-
tics that support a decision about an adequate organisation can be found in 
[Boeckle et al. 2004b]. 

The basic hierarchical structures described in Section 19.3 are suitable for 
small and medium-sized organisations. For an organisation with strong pro-
ject groups and with a need for a strong customer focus, the distributed 
domain engineering shown in Fig. 19-2 is suited best. In all other cases, 
central domain engineering is best, shown in Fig. 19-3. In all cases, the prop-
erties from Section 19.2 have to be considered. 

For bigger organisations, matrix structures are best suited. To decide if 
domain engineering should be realised as a function unit, as a project unit, or 
as a separate unit, the current situation of the organisation has to be analysed 
on the basis of the properties from Section 19.2 and their evaluation for the 
different structures. 
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In this chapter you will learn: 

o How to initiate product line engineering in a company. 
o Different strategies for the transition process from single-system development 

to software product line engineering. 
o A cost model for estimating the costs of establishing a software product line. 
o The key steps of a transition process. 

Günter Böckle 
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20.1 Introduction 

An organisation that considers switching to product line engineering typ-
ically has products on the market and is under economic pressure. This pres-
sure originates from the drive to produce the next products more efficiently 
or to get them to the market faster to stay competitive. Software product line 
engineering is a solution for both kinds of goals – increased efficiency and 
decreased time to market. However, a transition to software product line 
engineering is not easy. It requires investments that have to be determined 
carefully to get the desired benefits. 

20.2 Motivation and Business Objectives 

There are two major reasons for considering a move from the current way of 
development to software product line engineering. Often these reasons are 
related to each other; the first one is usually a trigger for the second one. 

External pressure: This comes from the market; customers ask, for 
instance for new features in the products and for a common look-and-
feel. Alternatively, competition increases so that the organisation has to 
achieve a shorter time to market, cover more different markets, reduce 
production costs, or enhance quality. The product managers are those 
first affected by this pressure. This causes them to consider improving 
development so that time to market is decreased and more customer 
wishes can be realised in the products. 

Internal pressure: When time schedules cannot be met, project man-
agers and architects are inclined to make the work more efficient. They 
try to improve development so that development time is decreased 
while retaining the quality. 

Improving the development means investing time and money. This must pay 
off, so the business objective is that the change must yield a positive return 
on investment (ROI). Product managers have to define the time frame: how 
long will it take from investing money until the ROI becomes positive. They 
also have to ensure that the ROI becomes positive for the organisation as a 
whole, not just for individual products. The basis for determining the ROI is 
a cost model; Section 20.4 presents such a cost model. 

To become more efficient, the amount of work has to be reduced or through-
put increased. The business objective is to reuse what can be reused. Reuse 
was considered in big projects in the 1990s. Experience shows that reuse 
may entail more cost than benefit (see for instance [Schmidt 1999; McClure 
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1995]). Reuse has to be managed which leads to platforms (Definition 1-2). 
Reuse means two things: reusing existing artefacts and building new ones 
that can be reused for the applications. Thus, managed reuse leads to the 
introduction of two processes, one where the reusable artefacts are produced 
(domain engineering) and one where they are used to create the applications 
(application engineering); see Chapter 2. 

To support the increased number of customer wishes and support more mar-
kets, the applications must be adaptable to these various wishes. Thus, the 
next business objective is to provide variety in features to satisfy customer 
wishes. This leads to the introduction of variability, and together with the 
required efficiency, to mass customisation. 

To improve development, we need to improve the process, the development 
methods and technology, and the organisation. Therefore, the next business 
objective is that the transition to product line engineering improves the pro-
cess, development methods and technology, and the organisation. In the past, 
the introduction of software product line engineering was often ad hoc (see 
for instance [Clements and Northrop 2001]). For a successful transition, we 
have to change all relevant aspects, not just some of them. 

A change of process and development methods can generate unrest in an 
organisation, and it can frustrate the staff if the changes are too drastic. In 
addition, current customers can get angry if the focus of the organisation 
changes too much towards new markets. The business objective is to con-
sider the situation of the current and new markets, as well as that of the 
organisation for the transition. 

The business objectives listed above have to be considered to select the right 
transition strategy and to perform the right steps in that strategy, so that a 
positive ROI is achieved. 

20.3 Transition Strategies 

An important part of the transition process to software product line engin-
eering is the determination of the transition strategy. The selection of this 
strategy has to take into account the business objectives stated above in 
Section 20.2. For a good introduction to fundamental transition strategies 
and their pros and cons, see [McGregor et al. 2002]. In the following, we 
present four major transition strategies (for details see [Boeckle et al. 2002]). 

20.3.1 Incremental Introduction 
The incremental introduction starts small and expands incrementally. Expan-
sion may occur in two dimensions: 
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Expanding organisational scope starts with a single group doing soft-
ware product line engineering and when that is successful, other groups 
are added incrementally. 

Expanding investment starts with a small investment for software prod-
uct line engineering that is incrementally increased, depending on the 
success that has been achieved so far. 

For the first dimension, the initial group consists of experts who know the 
domain and have the necessary technical experience to assess new processes 
and new development methods. 

For the second dimension, a careful selection of the funded activities is per-
formed at each increment. This has to guarantee a high ROI for each incre-
ment, fostering the acceptance of the succeeding increment. Activities 
funded in the increments often concentrate on creating reusable components 
or making existing components reusable. It is important that other specific 
activities are added in early increments, such as product planning in the 
product line context. Product planning gives the direction for the develop-
ment efforts and makes the efforts measurable and predictable. 

Weiss and Lai recommend an incremental transition to their FAST process 
and provide some help to perform such a transition [Weiss and Lai 1999]. 

20.3.2 Tactical Approach 
The tactical approach is usually driven by problems with conventional 
engineering. For instance, these are problems with change management and 
configuration management for multiple related products (Example 20-1). 
Only specific sub-processes and methods are changed for introducing soft-
ware product line engineering partially. The tactical transition may start 
informally. However, the product management sub-process and the planning 
of the further development have to be performed after a short initial phase so 
that the results can be made measurable and predictable. The tactical 
approach is often used as the transition strategy when architects and engin-
eers drive the introduction of software product line engineering. 

20.3.3 Pilot Project Strategy 
A pilot project involves the development of a new product in one of several 
alternative ways: 

a) It is started as a potential first member of a software product line. 

b) It is an extension of a series of related products. 
Often the goal is that the related products are going to be incorporated 
into the software product line. 
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c) It is realised as a toy product. 
A toy-product project may be started when the risk or cost of creating a 
new product completely with a new approach is too high. The product 
of such a toy project must be sufficiently close to the organisation’s 
products so that part of the results of the toy project can be reused when 
software product line engineering is later introduced for the “real” 
products.

d) It is realised by prototyping. 
The engineering rules for prototyping are often less strict than for 
standard products; for instance, engineers get sufficient time to analyse 
and compare the new development approaches to their traditional ones. 

The activities that are to be applied during the pilot project have to be 
planned and the process has to be determined accordingly. Measures have to 
be taken to find out if the pilot project is successful. 

20.3.4 Big Bang Strategy 
In the big bang strategy, software product line engineering is adopted for the 
new products of the organisation at once, in one “big bang”. First, domain 
engineering is performed completely and the platform is built. When the 
platform assets are ready, application engineering starts and the applications 
are derived from the platform. 

Example 20-1: Tactical Approach 

An organisation has a couple of individual home automation systems 
on the market. Each of those systems realises a user authentication. 
The applications use different techniques for identifying valid users, 
such as passwords, fingerprints, or iris-scan-based identification. 
Some of the applications even provide a combination of identification 
mechanisms. Even if they use different identification techniques, the 
applications share some commonalities, such as blocking the user 
account in case of three invalid accesses and sending a notification to 
the system operator, which have been implemented differently in each 
application. Error correction and technology adaptations have even led 
to more system versions. Configuration management gets more and 
more complex. New adaptations are hard to integrate. Chaos is grow-
ing, so the organisation decides to adopt a product line engineering 
approach. The development team creates a reference architecture that 
specifies the common parts and separates the variable parts for each 
possible identification technique. This results in a considerable reduc-
tion of the amount of work for the introduction of changes and of con-
figuration management. 

Complete
platform first 
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20.4 Benefits and Drawbacks of the Transition Strategies 

The incremental strategy has the following advantages: 

The work on current products can go on as before since only a small 
group or small part of the money is devoted to the transition. 

The amount of money and time spent on the transition within any spe-
cific period is limited. 

The transition can be changed or stopped at any time if the measure-
ment results determining the progress and the benefit of the activities 
are not satisfactory. 

The incremental transition strategy has the following drawbacks: 

It takes a long time to build up the platform and introduce full product 
line engineering. 

The work on the current single products may change the conditions for 
the platform or variability model. Therefore, continuous adaptation of 
the artefacts built during the transition process is necessary. 

In case the current products are to be included in the product line, arte-
facts of the products built during the transition have also to be reworked 
for inclusion in the platform and for modelling variability. 

It takes longer to make the full profit from the product line, than in the 
big bang strategy. 

The tactical strategy has the following advantages: 

It concentrates on the most urgent needs of the organisation. 

It can be started by a small group inside the organisation, e.g. by an 
engineering group. 

The cost of starting the transition is low. 

The tactical strategy has the following drawbacks: 

Without integration into an overall transition plan, the start of the transi-
tion in only a small group of the organisation is likely to fail. 

The concentration on specific problems, for instance change and 
configuration management (see Example 20-1), may lead the effort in 
the wrong direction. Often the problems are caused at other places than 
where they occur. In this example they may have been caused by inade-
quate requirements engineering; without improving that, the improve-
ment efforts will not be very effective. 
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Without involving product management in the transition process, the 
effect of the transition is rather limited. 

This approach may start informally; however, product managers have to get 
involved after a first starting phase, to plan the further development so that 
the results can be made measurable and predictable. 

The pilot project transition strategy has the following advantages: 

The work on current products can go on as before. 

A prototype or toy product is available to check development effort and 
necessary process and technology changes before involving the rest of 
the organisation. 

The amount of money and time spent on the transition within any spe-
cific period is limited. 

The transition can be changed or stopped after the pilot project if the 
results are not satisfactory. 

The pilot project transition strategy has the following drawbacks: 

The amount of money and time spent is mostly higher than in the incre-
mental introduction. 

The prototype and the core assets built during the pilot project may have 
to be thrown away. 

It takes longer to make the full profit from the product line than in the 
big bang strategy. 

The big bang strategy has the following advantages: 

It uses a comprehensive, all-encompassing transition plan so that the 
interdependencies between parts of the processes and the organisation 
can be considered from the beginning. 

The overall investment is lowest (until the full product line engineering 
development process is installed). 

The platform contains the right assets earlier than in the other strategies. 

The big bang strategy has the following drawbacks: 

The investment is concentrated over a smaller time frame than for the 
other transition strategies. A large amount of money is needed at the 
beginning as an up-front investment. This strategy is only feasible if the 
organisation has enough money available during this time frame. 
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The organisation is very much occupied with the transition and cannot 
work fully on the production of products. This may have a significant 
impact and customers may switch to competitors. 

If it turns out that product line engineering is not the right approach, it is 
hard to undo the transition and the loss of money and effort is substan-
tial.

The big bang transition can be used in cases where the management of an 
organisation is convinced of the advantages of a software product line engin-
eering approach and where it is essential for the business to achieve the 
benefits of this approach in a particular time frame. This approach needs 
significant investments and it takes some time for the first product to come 
to the market (the time for full domain engineering plus application engin-
eering for it), but the succeeding products of the product line can be devel-
oped and brought to the market very fast. 

To select the appropriate transition strategy, several factors have to be con-
sidered, the most important one being the ROI. The estimation of the ROI is 
based on a cost model. The next section presents a cost model that can be 
used to determine the ROI. 

20.5 Cost Model 

Cost models exist at various levels of detail. There is for instance the 
COCOMO II model from B. Boehm [Boehm et al. 2000]. It is used to make 
rather detailed cost estimations, but they take a lot of time. Other cost 
models determine the cost and the ROI at an abstract level, as in [Boeckle et 
al. 2004a] (see also [Cohen 2003]). Such models are less accurate but their 
advantage is that results can be determined much faster than with COCOMO 
II. They can be used to decide on the switching to software product line 
engineering in a fast go/no-go decision. In addition, when the data for using 
COCOMO II is not available, such models may still give results. 

Our cost model (from [Boeckle et al. 2004a]) determines the general cost C
for establishing a software product line of n products pi according to the 
following formula: 

C = ))()((
1
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The cost model is based on a divide-and-conquer algorithm. The model 
decomposes the problem into relatively simple components, enabling 
experiments about cost scenarios. The constituents of the cost model are 
depicted in Fig. 20-1 and explained below. 
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The cost constituents are: 

Corg: This is the cost of adopting the software product line engineering 
approach for an organisation (“org” stands for “organisation”). Such 
costs include reorganisation, process improvement, training, and what-
ever other organisational actions are necessary. This cost depends on 
the actual situation of the organisation: the cost for process improve-
ment depends on the process that is actually being used and the cost for 
training depends on the number of people affected and their knowledge. 
Example 20-2 illustrates how Corg can be determined. 

Ccab: This is the cost to develop a core asset base for the software prod-
uct line (“cab” stands for “core asset base”). It includes costs for activ-
ities like the creation of the product portfolio for the product line, 
commonality and variability analysis, building a reference architecture, 
developing the common software and its supporting designs, documen-
tation, and test infrastructure. The cost depends on the transition strat-
egy chosen and the actual situation of the organisation, like the number 
of people assigned for domain engineering, commonalities in existing 
assets, etc. Case studies on software product lines or improved reuse 
metrics [Wayne 1996; Poulin 1997] can be used to determine the actual 

Cost for developing n applications with software product 
line engineering: Four cost constituents

1. Adapt the 
organisation

Domain Artefacts

2. Build the platform

3. Build 
product-specific 
parts

4. Re-use 
common parts

Fig. 20-1: The four cost constituents of the cost model
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values. Experienced architects are best suited to estimate this value 
since they usually know how long it takes to perform these tasks. 
Example 20-3 illustrates how Ccab can be determined. 

Cunique: This is the cost of developing unique pieces of software that are 
not based on the platform. This concerns those parts of the applications 
that have to be built individually in the application engineering process. 
Cunique is usually determined from the experience of the staff – this is 
standard software development effort estimation. In addition, 
COCOMO II may be applied here, see [Boehm et al. 2000]. 

Creuse: This is the cost of reusing core assets in a core asset base. This 
includes the cost of locating and checking out a core asset, binding vari-
ants, tailoring the core asset for use in the intended application (if 
necessary), and performing the extra integration and system tests asso-
ciated with reusing core assets. 

The resulting sum is C, the cost of developing n applications with software 
product line engineering. 

Example 20-2: Determining Corg

The organisation makes an assessment to identify the process changes 
that are necessary for a transition. Twenty people take part in this 
assessment, for two hours each (including preparation). The assess-
ment cost is then C1 for the assessors plus the costs for 40 hours’ work 
of the personnel. Then the 20 people need one week training courses 
each, plus three days to get used to the new process and engineering 
methods. Thus, Corg is C1 plus the cost for 1,320 person hours (5 plus 
3 days, 8 hours per day for 20 persons, plus 40 hours). 

20.6 Application of the Cost Model to the Transition 
Strategies

We apply the cost model to the transition strategies by creating scenarios 
that help determine the constituents of the formula. For the tactical approach 
there is usually no ROI determined at the beginning, but as soon as product 
managers and upper-level managers become involved, the same kind of cal-
culation has to be performed as for the incremental introduction. So, this 
case is not considered separately here. 

20.6.1 Cost and ROI for the Incremental Transition Strategy 
We assume that the organisation has a set of n products in the marketplace 
that were developed more or less independently. Moreover, we assume that 

Costs for application-
specific artefacts 

Costs for reusing 
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approach
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the core asset base is built on the basis of these products and that s of these 
products are rebuilt from the core asset base, using a software product line 
engineering approach. We determine first how much it costs to create the 
whole asset base and build the s old products anew, using the core asset 
base. Our cost formula gives the cost as: 

C1 = )()(
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s
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Corg comprises mostly the cost to set up the group for domain engineering 
and to define and synchronise the increments of the incremental transition 
(including the cost for training the personnel added in the increments). Cunique
depends on the amount of unique parts that can be reused from the s old 
products. Creuse is the cost of reusing the core assets (Section 20.5). 

Example 20-3: Determining Ccab

A group of product managers and requirements engineers is assigned 
to build a new product portfolio and enhance the existing requirements 
documentation. This needs four people working for six weeks, alto-
gether 960 hours. Harmonizing the terminology requires the setup of a 
common glossary, needing another two person weeks (80 hours). A 
team of architects and other specialists (a requirements engineer and a 
designer) is set up to determine the new reference architecture. On 
average, five people work for four weeks to create the new reference 
architecture and link it to the requirements and components. Alto-
gether this takes 800 hours. The setup of new design rules (“texture”) 
and testing rules takes another 80 hours; the creation of the new sys-
tem test specification (based on the existing ones) requires a test 
engineer to work for three weeks (120 hours). No new components are 
built for the platform, but existing ones are made reusable as domain 
assets. The overhead for creating a component so that it can be reused 
as a domain asset is, according to experience in companies, between 
50% and 200%. So it takes between 1.5 and 3 times as long to create a 
domain component than a single-use component. We assume that 
designers involved in writing the original components are assigned to 
the job and need the same time for making the components reusable as 
they did for the original development of these components. 
Altogether, the development of the domain artefacts takes 960+80+ 
800+80+120=2040 person hours plus the time that was needed to 
create the original assets that will belong to the platform. 

Cost for asset 
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We assume that the organisation brings k other products to the market, based 
on the asset base developed so far. For this, the application of our cost model 
gives the cost C2 as: 

C2 = )()(
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Corg is mostly the cost for training the personnel added in the increments. 
Ccab is mostly zero; it may be greater than zero if new assets are added to the 
platform when the k new products are built. Creuse is the same as before, the 
cost to reuse the core assets. 

The complete cost is C = C1 + C2. The effect of the scenario above is that we 
have a core asset base, s old products built anew, and k new products built 
from the core asset base. 

For building the k new products in the conventional way we have a cost of: 

Cconv = k × Cunique

The ROI is then the cost to build the k new products in the conventional way 
minus the cost C of doing it with product line engineering, divided by the 
investment C:

ROI = (Cconv – C)/C

Boeckle et al. show how the ROI is created and for what values of k we actu-
ally get a positive ROI [Boeckle et al. 2004a]. For increments where the s
products are rebuilt, the management needs to know what kinds of incre-
ments will bring the highest ROI. To determine that, we vary the value of s.
The first step, creating the core asset base, is done incrementally in m steps 
with si products in each step, so that s1 + s2 + … + sm = n, for our n products 
that the organisation already has on the market. Several scenarios with 
varying values for si must be determined and compared to select the best 
increments. 

20.6.2 Cost and ROI for the Pilot Project Transition Strategy 
The cost involved is determined in the same way as for the incremental 
introduction. We assume a scenario where, first, the core asset base is built 
from existing products and, next, a prototype is built from the core asset 
base. Again, we separate the total cost into two parts, C1 and C2; these are 
not the same as for the previous strategy. The application of our cost model 
delivers the cost C1 to build the initial core asset base and the prototype p:

C1 = Corg + Ccab + Cunique(p) + Creuse(p)
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Corg is rather small because only a small group is set up for the pilot project. 
Ccab determines the cost of setting up an initial core asset base that is suffi-
cient for the pilot project. Cunique is the cost of creating the product-specific 
parts of the product created during the pilot project and Creuse the cost of 
reusing parts from the asset base for this product. 

We assume that the organisation decides to introduce software product line 
engineering for rebuilding other k1 products, using the initial asset base and 
building k2 new products. The application of our cost model delivers the cost 
C2 for that: 
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Here, Corg is the cost to adopt a product line organisation structure for the 
rest of the organisation. Ccab is the cost of increasing the core asset base for 
the additional k1 + k2 products. The value of k1 is 0 if no existing products 
are rebuilt. The pilot or toy product p may be thrown away or extended to a 
real product. Then it is included in these k2 new products. 

The full cost of this scenario is then: 

C = C1 + C2

For building the k2 new products the conventional way we have a cost of 

Cconv = k2 × Cunique

The ROI is then, as before, the cost of creating the k2 new products in the 
conventional way minus the investment C (the cost of introducing product 
line engineering plus creating the platform and k1+k2 products in the product 
line), divided by the investment C:

ROI = (Cconv – C)/C

20.6.3 Cost and ROI for the Big Bang Transition Strategy 
In this strategy, software product line engineering is adopted for the new 
products of the organisation at once, in one “big bang”. The scenario for this 
case assumes that the asset base is first built completely and that the applica-
tions are then derived from it. 

The cost for doing this, assuming that k applications are built, is: 

C = )()(
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Here, Corg is the cost to set up the organisation for software product line 
engineering completely and Ccab is the cost of building the full core asset 
base from scratch. 

For building the k new products in the conventional way we have a cost of: 

Cconv = k × Cunique

The ROI is then: 

ROI = (Cconv – C)/C

With these formulae, the ROI for the different strategies can be determined 
and used to choose the best strategy for the situation of the organisation. ROI 
is just one of the factors for selecting a strategy – other factors are market 
pressure to deliver products to customers, for instance, which determines the 
number of people that can be assigned for the transition, and the available 
money for the investment. 

20.7 Major Steps of a Transition Process 

In this section, we examine the transition process itself. Many different 
aspects (e.g. business, architecture, technology, process, and organisation) 
have to be considered, and many changes have to be performed for such a 
transition. A description of a transition can be found in [Boeckle et al. 2002]. 

The major steps of the transition process are: 

1. Identifying relevant stakeholders. 
2. Determining the stakeholders’ goals. 
3. Creating business cases for all stakeholders. 
4. Creating an adoption plan. 
5. Launching and institutionalising software product line engineering. 

20.7.1 Step 1: Identifying Stakeholders 
For this transition process step, all roles in the current development process 
have to be considered as input and those roles that are affected by the transi-
tion and the new development process are identified as output. 

The most important stakeholders to be considered are those from the organi-
sation’s projects that are to be included in the new product line and potential 
pilot customers, namely: 

Product managers 
Managers
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Project managers 
Architects
Engineers
Quality assurance people 
Pilot customers 

Some organisations may include only part of these stakeholders. Organisa-
tions who know their customers personally may inform some of them about 
the transition and ask for their opinions. But usually, the transition is not 
communicated to customers before it is completed. 

20.7.2 Step 2: Determining the Stakeholders’ Goals 
As input for this transition process step the stakeholder roles from the previ-
ous step and the role descriptions of the development process are used. The 
output is a list of goals for each stakeholder role. 

The goals of product managers encompass increasing revenue, profit, and 
market coverage, higher quality, as well as decreasing time to market. They 
define product strategy and product portfolio. Often they are involved in the 
assignment of budgets and the definition of organisation strategy. Their 
interest is in marketing, customer analysis, and product definition. 

The goals of managers are reducing cost and increasing efficiency; they also 
have to care for their staff and motivate them. They decide on budgeting and 
staffing. The goals of project managers are to get marketable products on 
time. Their tasks encompass project planning, measuring progress, and risk 
analysis. Managers will ask for their opinion about the approach. 

Architects’ and engineers’ goals are in developing the products according to 
the requirements and with reasonable effort. These people must be con-
vinced that the approach is technologically feasible and that it can make their 
work more efficient. Managers and project managers will ask for their opin-
ion about the approach. 

Quality assurance staff have the goal to reach the necessary quality as speci-
fied by the requirements and general rules. They, too, may be asked by man-
agement for their opinion about the approach. 

20.7.3 Step 3: Creating Business Cases 
The input to this transition process step comprises the output of the two pre-
vious steps, stakeholder roles and their goals. The cost model from Section 
20.4 and its application to transition strategies from Section 20.6 are used, 
too. The output is a set of business cases. 
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For each of the stakeholder roles a business case has to be developed that 
shows how software product line engineering helps them to achieve their 
goals. The business case comprises the adoption plan. It also contains met-
rics that are relevant for the stakeholders addressed in the business case to 
achieve their goals. These metrics measure how the goals described above 
for the stakeholder roles are reached, such as revenues and profits, costs and 
ROI. The metrics compare product development as single systems with 
software product line engineering, targeted to the envisaged markets. 

We do not go into details of business cases here; more information can be 
found in [Business Case 2004; PL-Framework 2004]. Some examples of 
business cases for switching to software product line engineering are pre-
sented in [Clements and Northrop 2001]. 

20.7.4 Step 4: Creating an Adoption Plan 
The input to this transition process step comprises information about the 
state of the organisation, including its development process and its structure. 
The output is the adoption plan, as described below. 

The persons creating the adoption plan are mostly product managers and 
architects. The structure of the adoption plan shows three major parts: 

Characterisation of the current state. 
Characterisation of the desired state. 
Strategies, objectives, and activities to get from the current to the 
desired state. 

The adoption plan describes the change in process and organisation structure 
and is thus part of standard change management. 

The state of the organisation is characterised by its process, the staff and 
their expertise, the organisation structure, the project management methods, 
the engineering methods, and many other business parameters. To characte-
rise the current state, the maturity of the organisation has to be analysed and 
described. Such an assessment may be similar to a CMMI assessment; how-
ever, its purpose is not to obtain a number to compare the organisation with 
other organisations (as is often the case for CMMI levels). This assessment 
determines the strengths and weaknesses of the organisation for software 
product line engineering and the points where special care has to be taken for 
the adoption. 

To determine the desired state, each of the topics listed in the preceding 
paragraph has to be considered and its desired state has to be defined. This is 
specific to the process and the organisation structure chosen for software 
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product line engineering. The process chosen will mostly be based on a core 
process like our software product line engineering framework. 

The third step in the adoption plan is to determine a strategy for getting from 
the current state to the desired state. These strategies have been described in 
Section 20.3. The adoption plan has to characterise and prioritise them, and 
suggest the best-suited strategy for the transition to software product line 
engineering. The prioritisation depends on the values of the metrics for each 
strategy (like ROI), but also on the people involved. 

Whatever the strategy for the adoption, it is always necessary to introduce 
review points in the transition process where the current state of the adoption 
is evaluated and the results of the new approach are compared to the con-
ventional approach. This requires introducing measurements during the tran-
sition process that can be used for the evaluations. These reviews have to 
adjust the transition process – they may even lead to a change in the adop-
tion strategy. For the selected strategy, the adoption plan has to include a list 
of the risks that are involved, together with risk mitigation strategies. 

20.7.5 Step 5: Launching and Institutionalising the Transition 
When the adoption plan with the three parts (current state, desired state, 
strategy to get from the current to the desired state) is ready, the best-suited 
strategy is chosen, depending on the estimations of the metrics described in 
the business cases. After that, the software product line engineering 
approach can be launched. Whatever strategy is chosen, as part of the launch 
the following must be specified: 

The stakeholders, their interests, needs, biases, culture, and motivation. 
This includes the original list of stakeholders and their goals, plus new 
roles that are defined in the adoption plan. 
The new organisation structure. 
The tasks and responsibilities of the new roles. 
A migration path from the old organisation structure to the new one. 
A software product line engineering process for the organisation, 
considering the products, skills, environment, etc. Our software product 
line engineering framework can be used as a basis for such a process. 
The production process (this includes packaging, for example). 
Plans for funding. 
Plans for staffing, including consultants and providers. 
Champions and angels for important activities. 
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Champions are staff members who are convinced of a new idea like soft-
ware product line engineering and are able to convince other staff members. 
They support others in applying the approach, present practical tips and sup-
port proliferation of the idea. Angels are members of management or senior 
engineers who have influence due to their role in the hierarchy or due to 
their experience and expertise. They give the necessary weight to the launch 
of software product line engineering. 

Just launching software product line engineering is not sufficient. It has to be 
institutionalised by senior management and process managers so that the 
involved managers and staff consider it as part of their working culture. 

An organisation unit that develops a product and sells it to customers will be 
funded eventually by selling its products. But a domain engineering unit that 
develops the platform for software product line engineering requires an up-
front investment that needs to be financed somehow, and therefore a funding 
strategy is necessary. Several strategies may be used for funding the domain 
engineering activities. For instance, the money may come from a kind of tax 
imposed on all affected application engineering units or from a corporate 
fund that may be assigned to these activities. When the products of a soft-
ware product line are sold in the market, a certain percentage of the money 
paid by the customers may be assigned to domain engineering. 

Besides the transition from developing single systems, there are also other 
changes in the process and engineering approach in the context of software 
product line engineering. One scenario that has to be considered is an 
organisation having several product lines that overlap. Does it make sense to 
merge them or is it better to drop one of them completely? The cost model 
can help to determine the costs involved, see [Boeckle et al. 2004a]. For the 
start of a new product line in this scenario, it has to be considered if the 
software product line should be based on the existing ones or if it is better to 
build a new platform and develop a new, independent product line. 

20.8 Summary 

For software product line engineering to be successful, both engineering 
aspects and business aspects have to be considered thoroughly. The tran-
sition process for achieving fully working software product line engineering 
has to be planned and performed carefully. It should be based on metrics 
(such as ROI) and estimations, and use common process change manage-
ment methods. The strategy for such a transition needs to be selected care-
fully, depending on the situation of the organisation. 
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Experiences with 
Software Product 
Line Engineering 

This chapter: 

o Summarises 15 cases of applying the software product line engineering para-
digm in industry. 

o Reports on examples of cost reduction, shorter development times, and quality 
improvement achieved by introducing the software product line engineering 
paradigm in industry. 

o Provides annotated references for further reading about the success stories, 
obstacles faced, and experience gained. 

Christian Dinnus 
Klaus Pohl 
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21.1 ABB 

Company background: Asea Brown Boveri (ABB) is a leading global tech-
nology company and has two main business areas, the power and automation 
technology for utility and industry customers [ABB 2004]. 

Products: ABB’s power technology comprises, for instance, high- and 
medium-voltage products, transformers, and utility automation products. The 
automation technology branch comprises products such as control systems 
and robotics [ABB 2004]. 

Platform: ABB gained plenty of experience with different software product 
lines. The first example is the ABB Gas Turbine Family, which covers the 
power range of 35 to 270 MW with five basic turbine types varying in size, 
combustion technologies, and equipment [Ganz and Layes 1998]. The 
second example is the Semantic Graphics Framework. It supports the devel-
opment of graphical applications that realise special requirements in the 
engineering domain [Rösel 1998]. The third example is ABB’s train control 
product line which is an embedded real-time software system for controlling 
train movement [Eixelsberger and Beckman 2000]. 

Experience: The experiences of ABB with the software product line 
approach are positive. The Semantic Graphics Framework has been in use 
for several years in different business units. More than ten industrial appli-
cations have been derived from it [Rösel 1998]. The reference architecture of 
the turbine control system for the ABB Gas Turbine Family led to shorter 
development time, higher code quality, and eased the exchange of modules 
[Ganz and Layes 1998]. For the train control product line, ABB expected 
significant quality improvements and savings when developing additional 
product line members [Eixelsberger and Beckman 2000]. 

Annotated References 
C. Ganz and M. Layes; “Modular Turbine Control Software: A Control Software Architecture 
for the ABB Gas Turbine Family”, In: Proceedings of the Second International ESPRIT ARES 
Workshop, Las Palmas de Gran Canaria, Springer LNCS 1429, 1998, pp. 32–38. 

This paper describes the object-oriented design principles of the control 
architecture of the gas turbine software product line. These principles are 
for example the use of object hierarchies and data encapsulation. 

A. Rösel; “Experiences with the Evolution of an Application Family Architecture”, In: 
Proceedings of the Second International ESPRIT ARES Workshop, Las Palmas de Gran 
Canaria, Springer LNCS 1429, 1998, pp. 39–48. 

This paper shows the evolution of the Semantic Graphics Framework 
from a prototype to a software product line for different industrial appli-
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cations. Three different perspectives are covered: architecture, docu-
mentation, and organisational issues. 

W. Eixelsberger and H. Beckman; “The TCS Experience with the Recovery of Family 
Architecture”, In: M. Jazayeri, A. Ran, and F. van der Linden (eds.), Software Architecture 
for Product Families – Principles and Practice, Addison-Wesley, 2000, pp. 209–231. 

This report explains the experience with the development of a reference 
architecture based on the architectures of several existing train control 
systems. It describes the methods used for the architectural recovery in 
detail, such as the analysis of different views of the input architecture or 
the recovery itself. 

21.2 Boeing Company 

Company background: The Boeing Company is one of the leading manu-
facturers of commercial jetliners, military aircraft, satellites, missile defence, 
human space flight, and launch systems [Boeing 2004]. 

Products: The Bold Stroke software product line was originally initiated in 
1995 at McDonnell-Douglas which, in the meantime, merged with the 
Boeing Company. The purpose of the product line was to avail reuse poten-
tials in the operational flight program (OFP) software across multiple fighter 
aircraft platforms [Sharp 2000]. OFPs are mission-critical, distributed, real-
time embedded applications supporting the avionics as well as the cockpit 
functions for the pilot [Hall of Fame 2004]. 

Platform: The first step of introducing Bold Stroke included the definition 
and of a reference architecture and its proof of concept, including hardware, 
software, standards, and practices. The main challenge when defining the 
reference architecture was to harmonise the differences in the avionics 
subsystems, mission computing hardware, and system requirements [Doerr 
and Sharp 2000]. The software architecture consists of reusable components. 
Hardware independence is achieved by layering and the use of a medium-
grained abstraction level [Sharp 2000]. 

Experience: The success of the Bold Stroke software product line is based on 
the reduction of dependencies between components and the dependency on 
platform-specific hardware. The software design facilitates the modification 
of components and maximises the reuse in different OFPs [Doerr and Sharp 
2000]. The Bold Stroke software product line was flight tested successfully 
on several different aircraft platforms hosted on different hardware configur-
ations [Sharp 2000]. It is the foundation for different production and 
research programmes, e.g. performed by the Defense Advanced Research 
Projects Agency (DARPA) [Hall of Fame 2004]. 
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OFP reference 
architecture
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Annotated References 
B.S. Doerr and D.C. Sharp; “Freeing Product Line Architectures from Execution 
Dependencies”, In: Proceedings of the First Software Product Lines Conference (SPLC-1), 
Denver, Kluwer, 2000, pp. 313–329. 

This paper shows different ways of designing physical architectures for a 
software product line without introducing volatility into the application 
architecture, e.g. to remove platform-specific hardware dependencies. 

D.C. Sharp; “Component Based Product Line Development of Avionics Software”, In: 
Proceedings of the First Software Product Lines Conference (SPLC-1), Denver, Kluwer, 
2000, pp. 353–369. 

This paper presents the Bold Stroke software product line architecture, 
which results from an object-oriented analysis and consists of reusable 
software components. Due to layering and the use of medium-grained 
abstraction levels the architecture is independent of the hardware. 

SPLC2 – Product Line Hall of Fame, 2004, www.sei.cmu.edu/SPLC2/SPLC2_hof.html 

The Hall of Fame website contains an abstract of the software product 
line experiences at the Boeing Company and presents some technical 
issues, e.g. about the reference architecture. 

21.3 CelsiusTech Systems AB 

Company background: CelsiusTech Systems AB originally was a depart-
ment of Philips, later became an independent company, and finally became 
an affiliated company of the Saab Group, Sweden, operating under 
SaabTech AB. SaabTech AB is a leading supplier of avionics and electronic 
warfare systems [SaabTech 2004]. 

Products: In the mid 1980s, CelsiusTech simultaneously obtained two con-
tracts to build naval control systems. The systems had to be hard real time, 
fault tolerant, and highly distributed. They had to interface with radars and 
other sensors, missile and torpedo launchers. 

Platform: Due to its prior experiences CelsiusTech could estimate the com-
plexity and came to the conclusion that it could not realise these contracts by 
two separate teams. CelsiusTech recognised that the two systems had more 
similarities than differences, even though they had to serve ships of different 
classes in different navies. With its extensive background in the domain, 
CelsiusTech started one of the first software product lines, which is still run-
ning today, under the name ShipSystem 2000 [Clements and Northrop 2001; 
Brownsword and Clements 1996]. 

Naval control 
software
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Experience: The ability to react quickly to customer needs in a hard-fought 
market, with strong competitors and only a few customers, gives a strong 
competitive advantage. CelsiusTech could quickly enter the new market of 
avionic systems because it reused 40% of its code directly from Ship System 
2000. The general reuse rate is about 80% in the normal naval scope of the 
product line. CelsiusTech has also inverted its software/hardware costs ratio 
from 65:35 to 20:80 [Clements and Northrop 2001; Brownsword and 
Clements 1996]. 

Annotated References 
P. Clements and L. Northrop; Software Product Lines – Practices and Patterns, Addison-
Wesley, 2001. 

The example of CelsiusTech Systems AB is used several times in this 
book because the software product line at CelsiusTech was one of the 
first case studies in successful software product line engineering. 

L. Brownsword and P. Clements; “A Case Study in Successful Product Line Development”, 
Technical Report no. CMU/SEI-96-TR-016, Carnegie–Mellon Software Engineering Institute, 
1996.

This paper describes in detail the changes that CelsiusTech had to make 
to its software, organisation, and process structures due to the software 
product line engineering paradigm, e.g. that marketers have to negotiate 
the desired product features based on the possibilities of the software 
product line. 

SPLC2 – Product Line Hall of Fame, 2004, www.sei.cmu.edu/SPLC2/SPLC2_hof.html 

The Hall of Fame website describes briefly the success and complexity 
of the software product line at CelsiusTech, e.g. that the system com-
prises 1–1.5 Million SLOC (Source Lines of Code) in Ada and that 
more than 50 applications have been derived from the software product 
line.

21.4 Cummins Inc. 

Company background: Cummins Inc. is a global leader in developing, dis-
tributing, and servicing engines and related technologies, including fuel sys-
tems, controls, air handling, filtration, emission solutions, and electrical 
power generation systems [Cummins 2004]. 

Products: Software is becoming ever more important for controlling the 
operation of an engine, e.g. electronics control the ignition and the fuel 
delivery. The software must be robust and highly reliable. In late 1993 six 
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critical engine software projects were underway, with another twelve 
planned [Dager 2000]. 

Platform: Every developer team worked autonomously and with different 
standards; for example, there was no common programming language and no 
reference architecture defined. Being anxious about the quality of the 
resulting applications, the project leader stopped all projects and established 
a focus group to develop core assets that all the applications could use. Fur-
thermore, he defined common software development processes [Clements 
and Northrop 2001]. The first software product line at Cummins Inc. was 
therefore born. 

Experience: The experience of Cummins Inc. with the software product line 
approach is consistently positive. Cummins Inc. is able to build over 1000 
different products based on the software product line. A wide variety of dif-
ferent functionality is integrated into the software product line: nine basic 
engine types ranging over 4–18 cylinders and 4–164 litres of displacement, 
with 12 kinds of electronic control modules, 5 kinds of processors, and 10 
kinds of fuel systems. Cummins estimated that it would take more than 360 
software engineers to produce these software systems separately instead of 
the 100 software engineers actually needed due to the software product line 
approach. This is an estimated productivity improvement of 3.6. Cummins 
also estimated an ROI (Return On Investment) of 10:1. Furthermore, 
Cummins can quickly access new markets, from rock crushers to ski lifts 
[Clements and Northrop 2001; Hall of Fame 2004]. 

Annotated References 
P. Clements and L. Northrop; Software Product Lines – Practices and Patterns, Addison-
Wesley, 2001, pp. 417–442. 

This report deals with the experience gained at Cummins Inc. with intro-
ducing the engine control software product line. The initial problem 
situation is drafted and the way to launch the software product line is 
described including the necessary organisational restructuring. 

J.C. Dager; “Cummins’s Experience in Developing a Software Product Line Architecture for 
Real-time Embedded Diesel Engine Controls”, In: Proceedings of the First Software Product 
Lines Conference (SPLC-1), Denver, Kluwer, 2000, pp. 23–46. 

This paper reports on the experience of introducing the engine control 
software product line, especially domain analysis and architectural 
views, as well as the architectural development process and the organ-
isational challenges. 
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SPLC2 – Product Line Hall of Fame, 2004, www.sei.cmu.edu/SPLC2/SPLC2_hof.html 

The Hall of Fame website contains different qualitative statements about 
the success of the software product line at Cummins Inc., e.g. that 20 
basic software builds have been parlayed into well over 1000 separate 
products.

21.5 Hewlett-Packard 

Company background: HP is one of the world’s leading IT companies with 
many different business areas, reaching from consumer handheld devices to 
powerful supercomputer installations [Hewlett-Packard 2004]. 

Products: One important business area is the manufacturing of printing tech-
nology. HP must maintain a wide range of different firmware of different 
products for printing, copying, scanning, and faxing [Hall of Fame 2004]. 

Platform: HP initiated the Owen Firmware Cooperative to install a software 
product line approach. Several product teams build a community to provide 
the product line in a cooperative way. Every product team adopts ownership 
of newly produced or significantly changed core assets, so everyone feels 
responsible for the quality of the platform. A small platform team ensures 
the robustness of the core assets and guides the product teams in using the 
core assets [Toft et al. 2000]. 

Experience: The software product line approach yields a reuse rate of about 
70% for new products. About 20% of the application assets are based on 
slightly modified core assets and only 10% require writing new code. The 
reuse of the core assets leads to significant business advantages. Compared 
with the development of earlier products, the development of new firmware 
takes only 25% of the staff resources. In spite of the reduction of staff, the 
development takes only 33% of the time. This productivity improvement 
goes hand in hand with a qualitative advancement. The software product line 
approach leads to 96% fewer defects compared with earlier products [Hall of 
Fame 2004; SoftwareProductLines 2004]. 

Annotated References 
P. Toft, D. Coleman, and J. Ohta; “A Cooperative Model for Cross-Divisional Product 
Development for a Software Product Line”, In: Proceedings of the First Software Product 
Lines Conference (SPLC-1), Denver, Kluwer, 2000, pp. 111–132. 

This paper describes the model of the cooperative organisation at HP for 
introducing and extending the software product line for printing devices, 
e.g. how product teams are organised and which key roles are necessary. 
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Another aspect is a short description of the component-based architec-
ture.

D. Fafchamps; “Organizational Factors and Reuse”, IEEE Software, vol. 11, no. 5, 1994, pp. 
31–41.

This article presents the results of an empirical study conducted at 
Hewlett-Packard. The goal of this study was to find out why people 
sometimes resist reuse and which organisational models encourage reuse 
more than others. The experience of subsequent reuse programs showed 
that the relationship between producers and consumers of reuse compo-
nents and services is a crucial factor. Based on the experiences gained in 
the study the article identifies and evaluates four different organisational 
models of producer–consumer relationships. 

S. Douma and H. Schreuder; Economic Approaches to Organizations, 3rd edition, Prentice 
Hall, 2002. 

The box on p. 43 briefly describes Hewlett-Packard’s business princi-
ples, known as the “HP way”. It also summarises the past strategic deci-
sions that were necessary to retain the company’s success, such as the 
introduction of a service-centred culture. 

SPLC2 – Product Line Hall of Fame, 2004, www.sei.cmu.edu/SPLC2/SPLC2_hof.html 

The Hall of Fame website briefly describes the cooperative organisation 
model of the software product line for printing devices at HP. Some 
qualitative statements about the success of the software product line are 
given, like the reduction of staff resources for developing new firmware 
up to 75%. 

Software Product Lines, 2004, www.softwareproductlines.com 

A report of the experience gained at HP with the software product line 
for printing devices can be found on this website. Three key success 
factors are given: the firmware architecture, the development approach, 
and the cooperative organisation. 

21.6 LG Industrial Systems Co., Ltd. 

Company background: LG Industrial Systems Co., Ltd (LGIS) is a Korean 
manufacturer of electric power equipment including industrial electric 
equipment, distribution, automation, and control systems [LGIS 2004]. 

Products: A business area of LGIS is the development of elevator control 
systems (ECS). This embedded control software has a high diversity of cus-
tomer needs and therefore rapidly changing market requirements. The com-
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petitive market of ECS demands a high flexibility in the products to retain a 
significant market share [Lee et al. 2000]. 

Platform: Doing it the old way, LGIS developed all its ECS separately, so 
LGIS had to modify the software frequently. Changes were often unmanaged 
and the software became error-prone. To improve the situation, LGIS 
decided to start a software product line for ECS. The product line engineer-
ing process was separated into two parts, namely domain and application 
engineering. Several phases ware passed through during domain engineer-
ing, e.g. the context analysis to set the scope of the domain or feature 
modelling to detect the commonalities and differences in the domain. The 
application engineering dealt with the configuration process of the software 
product line at LGIS, e.g. with the selection of features [Lee et al. 2000]. 

Experience: A result of the software product line is the decreasing complex-
ity of the core assets. In the old version the system consisted of 51 modules 
with 603 functions, which were in part redundant. The re-engineered core 
assets for the software product line have a reduced size and complexity of 48 
modules with 295 functions. One example of the reduced complexity is the 
number of functions, which had to be modified because of changes to a 
serial port. In the old system, 20 functions had to be modified and in the 
reengineered core assets only 8. The reduction of complexity also led to 
reduced maintenance costs [Lee et al. 2000]. 

Annotated References 
K. Lee, K.C. Kang, E. Koh, W. Chae, B. Kim, and B.W. Choi; “Domain-Oriented Engineering 
of Elevator Control Software”, In: Proceedings of the First Software Product Lines 
Conference (SPLC-1), Denver, Kluwer, 2000, pp. 3–22. 

This paper describes the way from domain analysis to the component-
based reference architecture for the elevator control. Several modelling 
techniques such as feature modelling and message sequence charts are 
used to model different architecture views. 

21.7 Lucent Technologies 

Company background: Lucent Technologies designs and delivers the sys-
tems, services, and software that drive next-generation communications net-
works, like telephony or data communication [Lucent 2004]. 

Products: Most of the telephone connections in the USA are established by 
the 5ESS switch from Lucent. The 5ESS switch has been in use since 1982. 
It has been advanced to accommodate emerging requirements, e.g. the Inter-
net [Hall of Fame 2004; Ardis et al. 2000]. 

Complexity
reduced by 50% 
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Platform: In 1994 Lucent launched the Domain Engineered Configuration 
Control (DECC) project to standardise the configuration control software 
and to establish a software product line. The configuration control software 
monitors the run-time configuration of hardware components and maintains 
their status. For example, before removing one of the hardware components, 
the configuration control software has to check if there is a backup compo-
nent. Furthermore the DECC developed a configuration process and tool for 
generating new software based on the core assets. The idea was to translate 
new specifications automatically into working code driven by a tool with a 
graphical user interface [Ardis et al. 2000]. 

Experience: In 1996 the DECC team started a trial use in comparison to a 
traditional project. The software product line had comparable run-time per-
formances. Because of this experience, the DECC team invested a small 
amount of reengineering effort and started the first successful real project 
only a few months later [Ardis et al. 2000]. The switch maintenance domain 
showed productivity improvements by factors of 3 to 5 as a result of intro-
ducing product line engineering [Hall of Fame 2004]. 

Annotated References 
M. Ardis, P. Dudak, L. Dor, W.-J. Leu, L. Nakatani, B. Olsen, and P. Pontrelli; “Domain-
Engineered Configuration Control”, In: Proceedings of the First Software Product Lines 
Conference (SPLC-1), Denver, Kluwer, 2000, pp. 479–493. 

This paper deals with the experiences of reengineering the configuration 
control software for the 5ESS switch according to the software product 
line engineering paradigm. The reengineering project was accomplished 
in three phases: discovery, design, and deployment. 

SPLC2 – Product Line Hall of Fame, 2004, www.sei.cmu.edu/SPLC2/SPLC2_hof.html 

The Hall of Fame website describes the complexity of the software 
product line for the 5ESS switch by the statement, that any particular 
switch in the product line is operated by approximately 10 MLOC 
(Millions Lines Of Code). The transfer of the 5ESS switch control soft-
ware to a software product line is one of the first applications of domain 
engineering to a large, complex system. 

21.8 MARKET MAKER Software AG 

Company background: MARKET MAKER Software AG develops and pro-
vides Europe’s most popular stock market software that helps private and 
professional users to keep track of the stock market [Market Maker 2004]. 
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Products: In 1999 MARKET MAKER decided to enter the new market of 
Internet services. The small development team was faced with different 
customer needs. Different operating platforms had to integrate different 
databases and content-producing software. The product had to be able to 
serve different requirements, such as showing different information in dif-
ferent representation formats based on different customer needs [Hall of 
Fame 2004]. 

Platform: The variety in the online version of the product led to the decision 
to apply the software product line engineering paradigm. By reusing the 
desktop version of the stock information system as a common core, a small 
team of six developers realised the additional software product line require-
ments for the online market in 36 person months. An additional requirement, 
for example, was that products of the software product line had to be inte-
grated into different customer environments, which was achieved by sepa-
rating the data and the application layers [Clements and Northrop 2001]. 

Experience: Each instance of the software product line must be built in 
accordance with customer requirements, installed, and tested on the cus-
tomer’s own platform. This takes as little as three days [Clements and 
Northrop 2001]. During the boom time of the New Economy in the late 
1990s, MARKET MAKER could realise a short time to market as a major 
advantage over its competitors. After the end of the boom time, MARKET 
MAKER survived because of its small, efficient team required for main-
taining the running systems [Hall of Fame 2004]. The development time for 
creating a new product is reduced by more than 50% and costs are reduced 
by roughly 70% [SoftwareProductLines 2004]. 

Annotated References 
P. Clements and L. Northrop; Software Product Lines – Practices and Patterns, Addison-
Wesley, 2001, pp. 485–512. 

The detailed report of the case study at MARKET MAKER describes 
the experience of introducing a software product line into a small-sized 
company, beginning with the history of the company and a detailed 
problem statement. The different practices, like architecture definition or 
component development, for setting up the software product line are 
given.

K. Schmid; “A Comprehensive Product Line Scoping Approach and Its Validation”, In: 
Proceedings of the 24th International Conference on Software Engineering (ICSE 2002), 
Orlando, Florida, ACM Press, 2002, pp. 593–603. 

This paper deals with aspects of scoping in the context of software prod-
uct lines. Scoping means to set the focus of reuse on the functionality 
that promises an optimal return on investment. The chosen scoping 
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approach Pulse-Eco V2.0 is validated by the case study at MARKET 
MAKER.

O. Flege and T. Kiesgen; “Börseninformationssysteme bei der Market Maker AG” (in 
German), In: G. Böckle, P. Knauber, K. Pohl, and K. Schmid (eds.), Software-
Produktfamilien – Methoden, Einführung und Praxis, dpunkt, 2004, pp. 207–220. 

The architecture of the software product line is presented from different 
views, e.g. the logical view, the data structure, the component model, 
and the process view. XML files are used to configure the component-
based architecture. 

SPLC2 – Product Line Hall of Fame, 2004, www.sei.cmu.edu/SPLC2/SPLC2_hof.html 

The Hall of Fame website describes the complexity of the software 
product line at MARKET MAKER. Every product has to be tailored to 
the customer’s requirements which are, for example, the integration of 
the customer’s database or enabling the operation on the customer’s 
computing platform. 

Software Product Lines, 2004, www.softwareproductlines.com 

This online experience report explains the major points in introducing a 
software product line at a small-sized company like MARKET MAKER. 
Thinking into the future, paying attention to quality, taking care with the 
architecture, building an efficient team, and focusing on a domain are 
the keystones. 

21.9 Philips 

Company background: Royal Philips Electronics of the Netherlands is one of 
the world’s biggest electronics companies and the largest in Europe. Its 
products vary from professional medical systems to lighting, consumer elec-
tronics, and domestic appliances [Philips 2004]. 

Products: Philips provides several product lines, mainly for consumer elec-
tronics and for medical systems. Furthermore, Philips is one of the leading 
commercial European researchers in the field of software product lines. The 
software product lines of consumer electronics and medical imaging systems 
are only some of the successful examples. 

21.9.1 Philips Consumer Electronics 
Company background: Philips’ portfolio of consumer electronics systems 
includes audio–video equipment, like TV-sets, radio receivers, CD and DVD 
players and recorders, as well as set-top boxes [Philips 2004]. 
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Products: Philips Consumer Electronics provides software product lines for 
audio–video equipment, such as TV sets [V. Ommering et al. 2000]. The 
customers have high demands with respect to performance. Because of the 
mass-market nature, the cheapest memory and processor chips are used. The 
products have to be very reliable as they are offered in the mass market. 
Hence, repairing them after delivery is very costly. 

Platform: Philips Consumer Electronics has chosen to use a composition 
paradigm in the production of the product lines. The methodology is named 
Koala [V. Ommering 2002]. This means that the architecture has enough 
flexibility to allow many different configurations of the same basic compo-
nents. The whole set of products is referred to as product populations, with 
many differences and many commonalities, but few commonalities that 
spread over all products. Components are combined to build more complex 
components. Interfaces that do not match are connected through glue code. 
Certain pieces of glue code are standard, and only need some parameters to 
instantiate.

Experience: By 2002, all mid- and high-range TV sets, and many other 
products as well, were produced in the population [V. Ommering 2004]. 
Surprisingly, the architecture did not need many adaptations after its first 
conception in 1996. For some experiences with interactive set-top boxes, see 
[De Lange and Jansen 2001]. 

21.9.2 Philips Medical Systems 
Company background: Philips’ portfolio of medical systems includes prod-
ucts like X-ray, ultrasonic or computed tomography and services like train-
ing, business consultancy, or financial services [Philips 2004]. 

Products: Philips Medical Systems provides a software product line for 
medical imaging systems, which is motivated by an increasing complexity 
and diversity in this domain [Wijnstra 2002]. The customers have high 
demands on safety and reliability as the products may have a crucial impact 
on the health of the patients, e.g. the produced radiation can be dangerous 
[America and Van Wijgerden 2000]. 

Platform: Philips Medical Systems has decided to employ a sophisticated 
software product line approach. A medical middleware platform serves as 
the basis for other software product lines in the company. Thus the platform 
is a software product line in itself, which leads to additional variability 
requirements for the platform. The component-based reference architecture 
reuses existing software components that are transformed step by step into 
domain artefacts [SoftwareProductLines 2004]. 
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Experience: Since 2001, the number of products that use the platform has 
increased. Today, ten product groups are based on the platform. A product 
group is responsible for creating products and for maintaining several pro-
duct lines. It takes about 1.6 times as many people to build a platform com-
ponent as was necessary to do it the old way. Yet every product group that 
uses the platform saves significant time as most of the components do not 
have to be developed again [SoftwareProductLines 2004]. 

Annotated References 
F.J. van der Linden and J.K. Müller; “Creating Architectures with Building Blocks” IEEE 
Software, November 1995, pp. 51–60. 

For Philips, this was a report on the first successes of applying product 
line technology in industry. It reported on a product line for telecommu-
nication switches in a niche market. These experiences have formed the 
basis for all work on product lines within Philips ever since. The basic 
ideas are used almost unchanged in all successful product lines. 

R. van Ommering; Building Product Populations with Software Components, Ph.D. Thesis, 
University of Groningen, December 2004. 

This Ph.D. thesis gives an overview of all work on Koala in the con-
sumer electronics domain. It explains the compositional approach and 
how dedicated tools keep variability selection local and at the same time 
keep the resource consumption low. 

F. de Lange and T. Jansen; “The Philips-OpenTV product family architecture for interactive 
set-top boxes”, In: Proceedings of the 4th International Product Family Engineering 
Workshop (PFE-4), Bilbao, Springer LNCS 2290, 2001, pp. 187–206. 

This paper describes the Philips-OpenTV product line architecture, 
which is used by different set-top box products. The design principles of 
the architecture are explained, such as separation of concerns, layering, 
and strict interfaces. 

J.G. Wijnstra; “Component Frameworks for a Medical Imaging Product Family”, In: 
Proceedings of Software Architectures for Product Families (IW-SAPF-3), Las Palmas de 
Gran Canaria, Springer LNCS 1951, 2000, pp. 4–18. 

This paper describes the experiences of Philips Medical Systems with 
product line architectures in the medical imaging domain. Two different 
component frameworks build the architecture. The first component 
framework is the high-level product line architecture, which groups 
components to subsystems and defines their interfaces. The second com-
ponent framework defines the different services of the components that 
are provided via an interface. 

Increasing number of 
products based on the 
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P. America and J. van Wijgerden; “Requirements Modeling for Families of Complex 
Systems”, In: Proceedings of Software Architectures for Product Families (IW-SAPF-3), Las 
Palmas de Gran Canaria, Springer LNCS 1951, 2000, pp. 199–209. 

This paper deals with the specification of a software product line for 
medical imaging systems using use cases and a requirements object 
model expressed in the UML. A process is presented for this approach, 
which has been validated in the medical imaging domain. 

Software Product Lines, 2004, www.softwareproductlines.com 

This report deals with the experience gained with the middleware plat-
form for the medical imaging domain. The motivation for applying the 
software product line engineering paradigm is stated as well as technical 
details, e.g. of the component-based architecture. Furthermore, some 
qualitative statements about the success of the medical middleware plat-
form are given, like its successful use in ten different product groups. 

SPLC2 – Product Line Hall of Fame, 2004, www.sei.cmu.edu/SPLC2/SPLC2_hof.html 

This report briefly describes the telecom case, which constitutes Philips’ 
original experience with software product lines. 

21.10 Robert Bosch GmbH 

Company background: Robert Bosch GmbH is a leading supplier of the 
automotive industry and produces many different systems, such as micro-
electronic sensor and control devices [Bosch 2004]. 

Products: This case study covers the example of driver assistance systems, 
which supervise the periphery of a car to assist the driver. A parking pilot is 
a typical example of a driver assistance system [Hein et al. 2000]. 

Platform: The automotive domain is characterised by only a few car manu-
facturers, whose market power forces the suppliers to deliver systems ad-
justed to the individual needs of the car manufacturer with high quality at 
low prices. The concept of software product lines helps to attain these 
requirements [Hein et al. 2004]. Robert Bosch GmbH has dealt with devel-
opment methods for software product lines in the automotive domain in the 
ITEA-Project CAFÉ [CAFÉ 2004]. The main goal of Robert Bosch GmbH 
was to establish a reference architecture for driver assistance systems, which 
had to be configurable, integratable, and highly performing [Hein et al. 
2004]. 

Experience: Robert Bosch GmbH has reached the goals for its architecture. 
The architecture is configurable due to a reduction of the dependencies be-
tween different components. Integratability is reached by using the automo-
tive standard CAN for the system interfaces. High performance is achieved 
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by parallel data processing. Therefore the software product line for driver 
assistance systems can be used in different contexts for different car manu-
facturers [Hein et al. 2004]. 

Annotated References 
A. Hein, T. Fischer, and S. Thiel; “Fahrerassistenzsysteme bei der Robert Bosch GmbH” (in 
German), In: G. Böckle, P. Knauber, K. Pohl, and K. Schmid (eds.), Software-
Produktfamilien – Methoden, Einführung und Praxis, dpunkt, 2004, pp. 193–205. 

This report presents the experience gained in developing a reference 
architecture of a software product line for the driver assistance domain. 
The different steps for introducing the software product line are pre-
sented in detail, like the explicit modelling of variability or the product 
configuration, which consists of the feature and architecture configura-
tions.

A. Hein, M. Schlick, and R. Vinga-Martins; “Applying Feature Models in Industrial 
Settings”, In: Proceedings of the First Software Product Lines Conference (SPLC-1), Denver, 
Kluwer, 2000, pp. 47–70. 

This paper presents an approach to model the variability of a software 
product line with feature-oriented domain analysis (FODA), which was 
validated in the car periphery supervision domain. An extension is intro-
duced to enable FODA to model cross-links between features. 

S. Thiel and A. Hein; “Systematic Integration of Variability into Product Line Architecture 
Design”, In: Proceedings of the 2nd International Conference on Software Product Lines 
(SPLC-2), San Diego, USA, Springer LNCS 2379, 2002, pp. 130–153. 

This paper deals with the systematic integration of variability into the 
reference architecture of a software product line. The architecture design 
framework “QUASAR” is presented, which is applied successfully in 
the car periphery supervision product line. 

CAFÉ – From Concept to Application in System-Family Engineering, 2004, 
www.esi.es/en/Projects/Cafe/cafe.html

This website presents an overview of the purpose, partners and tasks of 
CAFÉ, which means “From Concept to Application in System-Family 
Engineering”. The purpose of the CAFÉ project is the development of 
practices and methods for the application of software product lines in the 
development of software-intensive systems. 

21.11 Salion Inc. 

Company background: Salion Inc. is a software company specialising in 
software solutions for Supplier Customer Relationship Management 
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(sCRM). The software is used by suppliers such as the automotive supplier 
industry which serves only a handful of global customers [Salion 2004]. 

Products: Salion implemented a system intended to serve the target customer 
base with an effort of 190 engineer months. The product implements typical 
requirements of the supplier domain, e.g. the process of acceptance of a bid. 
As Salion approached the market, the need for a software product line 
became clear because of different customer needs [Buhrdorf et al. 2003]. 

Platform: A small company like Salion Inc. could not afford to implement a 
software product line from scratch (proactive approach), for which an effort 
of up to 570 engineer months was estimated. So, Salion decided to take the 
first product as the asset base (reactive approach) and invested two engineer 
months to establish a new configuration management tool and techniques to 
allow multiple product variations. Since the product line has been in use, 
Salion has enhanced and reengineered the asset base in reaction to new 
requirements [Buhrdorf et al. 2003]. 

Experience: The reactive approach significantly reduced the up-front 
investment for the platform from an estimated 570 engineer months to 2 
engineer months. The continuous enhancement of the platform enables 
Salion to adapt its software product line to serve new customers. The effort 
for implementing new product variants ranges from 5% to 10% of the effort 
required for the baseline product. This is a productivity improvement of 10 
to 20 [Krueger 2002]. 

Annotated References 
R. Buhrdorf, D. Churchett, and C.W. Krueger; “Salion’s Experience with a Reactive Software 
Product Line Approach”, In: Proceedings of the 5th International Workshop on Software 
Product-Family Engineering (PFE-5), Siena, Italy, Springer LNCS 3014, 2003, pp. 317–322. 

This paper explains the initial situation at Salion Inc. before initiating the 
software product line, i.e. being a software start-up with no experience in 
building software in the target domain. The motivation for initiating a 
software product line with the reactive approach is explained: Salion Inc. 
cannot afford a long time to market because of its limited financial 
strength.

P. Clements and L.M. Northrop; Salion, Inc.: “A Software Product Line Case Study”, 
Technical Report no. CMU/SEI-2002-TR-038, Carnegie–Mellon Software Engineering 
Institute, 2002. 

This report tells the story of introducing software product line engineer-
ing at Salion Inc. The main part explains how Salion built the platform 
assets and presents details like the process or architecture definition. 
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C.W. Krueger; “Data from Salion’s Software Product Line Initiative”, Technical Report no. 
2002-07-08-1, BigLever Software, Inc., 2002. 

This report presents a well-founded statistical analysis of the resulting 
benefits of introducing the software product line at Salion Inc., e.g. the 
calculation of the ROI. 

Software Product Lines, 2004, www.softwareproductlines.com 

This website deals with the motivation for selecting the reactive 
approach for initialising the software product line at Salion Inc., e.g. the 
reactive approach promises the shortest path to an operational software 
product line. Furthermore, several benefits achieved by the software 
product line approach are presented, e.g. a productivity improvement of 
10 to 20. 

21.12 Siemens AG Medical Solutions HS IM 

Company background: Siemens Medical Solutions provides hospital appli-
cations from X-ray tubes and magnetic resonance and CT scanners to com-
plete infrastructure support in hardware and software for hospitals and all 
other medical practitioners [Siemens 2004]. 

Products: One of the business areas of Siemens Medical Solutions is the 
development of software for the radiology domain that supports the process 
of radiology. The task of the radiologist starts with patient registration and 
ends after several activities with reporting and archiving of the images in the 
report repository. 

Platform: The software product line at Siemens Medical Solutions provides 
qualitative variability, such as support for high-end and low-end hardware, 
as well as functional variability, e.g. different features during image post-
processing. The system test of the different resulting products requires a 
systematic procedure. Siemens Medical Solutions uses the ScenTED method 
for testing the software product line. The ScenTED method was developed 
by the Software Systems Engineering group at the University of Duisburg-
Essen. The ScenTED method supports the creation of domain test cases 
based on use cases that contain variability and the reuse of domain test cases 
in application testing (see e.g. [Reuys et al. 2004b; Reuys et al. 2005]). 

Experience: The adaptation of the ScenTED method led to two major 
improvements in the test process at Siemens Medical Solutions. The first 
improvement is a reuse of test cases with a ratio of 57%, realised by enrich-
ing use case scenarios with variable and invariable scenario steps. The reuse 
led to a cost reduction for testing different products derived from the soft-
ware product line. The second improvement from introducing the ScenTED 
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method is a better traceability achieved by a systematic derivation of test 
cases. The results have been affirmed by a survey at Siemens Medical 
Solutions [Reuys et al. 2004b]. 

Annotated References 
A. Reuys, H. Götz, J. Neumann, and J. Weingärtner; “Medizintechnik bei Siemens AG 
Medical Solutions HS IM” (in German), In: G. Böckle, P. Knauber, K. Pohl, and K. Schmid 
(eds.), Software-Produktfamilien – Methoden, Einführung und Praxis, dpunkt, 2004, pp. 247–
259.

This report presents the experience gained in testing a software product 
line with the ScenTED method at Siemens Medical Solutions. The sur-
vey provides the results conducted at Siemens Medical Solutions, which 
affirm, for example, that the ScenTED method improves test case reuse 
and traceability. 

E. Kamsties, K. Pohl, S. Reis, and A. Reuys; “Testing Variabilities in Use Case Model”, In: 
Proceedings of the 5th International Workshop on Software Product-Family Engineering 
(PFE-5), Siena, Italy, Springer LNCS 3014, 2003, pp. 6–18. 

Details of the ScenTED method for software product line testing can be 
found in this paper. To avoid a combinatorial explosion of the number of 
test cases, the variability of the product line is included in domain test 
cases. Segmentation and fragmentation techniques are proposed to pre-
serve the variability of use cases. Furthermore, the different possibilities 
for variability to occur in use case scenarios are mapped to the UML 
sequence diagram. 

21.13 Testo AG 

Company background: Testo AG is one of the leading suppliers of portable 
electronic measuring instruments, e.g. for the measurement of temperature, 
pressure or humidity [Testo 2004]. 

Products: The market conditions for portable measuring instruments demand 
short time to market, so the development of new products took only about 
half a year to one-and-a-half years. Testo AG practised only opportunistic 
reuse; therefore the products have been redeveloped nearly completely, 
including hardware and software [Schmid et al. 2004a]. 

Platform: In 2001, the completion of an ambitious product development 
suggested that there was potential for reuse as essential commonalities in 
different products were recognised. Testo AG initiated a project to analyse 
the possible benefits of introducing a software product line in 2001. This 
project identified several tasks, such as the training of employees, the defini-
tion of a common reference architecture, the support of different views, a 
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configuration management concept, and the development of the core assets 
[Schmid et al. 2004a]. 

Experience: Testo AG has taken these steps and expanded established prac-
tices only to some degree in order not to overstrain its employees. For 
example, the development tools already in use were retained. The common 
reference architecture for the software product line is based on the architec-
ture of already existing products [Schmid et al. 2004a]. It was necessary to 
introduce a new process for developing new products based on the software 
product line, so the developers had to use the architecture and the predefined 
interfaces. An example of the implemented variability is a printing compo-
nent that includes 20 variation points [Schmid et al. 2004b]. The first prod-
ucts of the software product line were expected at the end of 2004 [Schmid 
et al. 2004a]. 

Annotated References 
K. Schmid, I. John, R. Kolb, and G. Meier; “Eingebettete Systeme bei der Testo AG” (in 
German), In: G. Böckle, P. Knauber, K. Pohl, and K. Schmid (eds.), Software-
Produktfamilien – Methoden, Einführung und Praxis, dpunkt, 2004, pp. 221–231. 

In this report, the experience of introducing a software product line at 
Testo AG is presented. The stepwise development of the reference 
architecture is explained in detail, e.g. the documentation of the already 
existing architectures, the design of the reference architecture or the 
evaluation of the reference architecture. 

K. Schmid, I. John, R. Kolb, and G. Meier; “Introducing the PuLSE Approach to an 
Embedded System Population at Testo AG”, Technical Report no. 015.04/E, Fraunhofer 
IESE, 2004. 

This technical report describes the application of the PuLSE approach at 
Testo AG. The PuLSE approach supports the development of a product 
line in a systematic way and focuses on technical and economic aspects. 

21.14 The National Reconnaissance Office 

Institution Background: The National Reconnaissance Office (NRO) 
designs, builds, and operates reconnaissance satellites for US governmental 
institutions such as the Central Intelligence Agency (CIA) or the Department 
of Defense (DoD) [NRO 2004]. 

Products: The NRO plays a leading role in achieving information superiority 
for the US Government and armed forces. The satellites are used to guide 
weapons, pinpoint the enemy, navigate, communicate, and eavesdrop. 
Because of shrinking budgets, the NRO began to look for further customers 
and explored partnerships with industry [Clements and Northrop 2001]. 
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Platform: The NRO decided to develop a software platform for its ground-
based spacecraft command and control software as the applications in this 
domain have a large amount of commonality. The resulting software product 
line was named Control Channel Toolkit (CCT). Several assets have been 
produced during the engineering of the core assets. These were, for example, 
the CCT Domain Definition to define the system boundaries and the 
Generalized Requirements Specification to capture common capabilities of 
the CCT software product line. Further examples are the CCT System Test 
Architecture to describe a test system architecture used to verify CCT func-
tionality or the CCT Reuse Guide to describe the steps necessary to build a 
product line application from the CCT core assets. The CCT Reuse Guide is 
of special importance as the CCT crosses organisational boundaries: the 
NRO delivers the platform, and the users of the platform build the needed 
products on their own [Clements and Northrop 2001]. 

Experience: In December 1999, the CCT was completed on schedule and 
within budget. During the development period, the costs were consequently 
higher than developing a single system. But the additional investments are 
expected to be compensated due to large-scale reuse. The development sav-
ings are anticipated at 18.2%. The first product of CCT could realise 50% 
reduction in overall cost and schedule, and nearly ten-fold reductions in 
development personnel and defects [Clements and Northrop 2001]. 

Annotated References 
P. Clements and L. Northrop; Software Product Lines – Practices and Patterns, Addison-
Wesley, 2001. 

This study describes the whole story of introducing a software product 
line at the NRO. It begins with the institution background and the motiv-
ation for introducing a software product line. Technical details are 
shown as well as the management effort of the software product line. 
Finally the benefits of the software product line are presented. 

21.15 The Naval Undersea Warfare Center 

Institution Background: The Naval Undersea Warfare Center (NUWC) is the 
US Navy’s research, development, test and evaluation, engineering, and fleet 
support centre for undersea warfare technology [NUWC 2004]. 

Products: The NUWC develops and supports different range facilities, 
including those to test and evaluate systems for the military forces of the 
USA. The facilities can be used as well for maximising force readiness by 
training ranges. A range is composed of a set of resources and the physical 
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assets required to conduct a specific test or training exercise [Cohen et al. 
2002]. 

Platform: In the past, these range facilities were built for specific categories 
of weapon systems and missions, but these systems have become more and 
more complex. Nevertheless the systems share some commonalities, e.g. 
sensors are needed to acquire data, which must be logged and presented in 
various ways. The NUWC started a software product line called RangeWare 
to manage the commonality and complexity of the range facilities. The 
RangeWare software product line is structured by a reference architecture 
intended to cover the complete set of range operations. Using the reference 
architecture for building range systems, some assets have to be tailored for 
range-unique capabilities [Cohen et al. 2002]. 

Experience: In the year 2004, the software product line included seven sys-
tems already installed, with five to six new projects per year [Cohen et al. 
2004]. The cost of producing new software for ranges is at least 50% lower 
using RangeWare. The development time has been reduced from years to 
months. At the same time, staff resources are cut by up to 75%. The 
increasing customer satisfaction and flexibility in starting new projects as 
well as the high reliability and predictability yield significant competitive 
benefits [Cohen et al. 2002]. 

Annotated References 
S. Cohen, E. Dunn, and A. Soule; “Successful Product Line Development and Sustainment: A 
DoD Case Study”, Technical Report no. CMU/SEI-2002-TN-018, Carnegie–Mellon Software 
Engineering Institute, 2002. 

This report presents the motivation of the NUWC for initiating a soft-
ware product line and technical details for implementing the asset base. 
Different product line practice areas are explained, such as structuring 
the organisation or software system integration. 

S. Cohen, D. Zubrow, and E. Dunn; “Case Study: A Measurement Program for Product 
Lines”, Technical Report CMU/SEI-2004-TN-023, Carnegie–Mellon Software Engineering 
Institute, 2004. 

This report shows the experience of the NUWC in controlling the soft-
ware product line effort and reaching defined goals. The measurement 
programme is explained in detail. For example, the arrangement of the 
measurement team, the goals of the measurement programme, and the 
final results, as well as the next steps, are shown. 
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22.1 Domain Specialisation 

This book extensively introduced a comprehensive framework for software 
product line engineering. A major challenge for future research is to spe-
cialise this framework for a given application domain such as automotive 
systems or medical systems. Amongst others, such a specialisation would 
result in a set of well-defined types for modelling domain-specific variation 
points, variants, variability dependencies, and constraint dependencies. Such 
a specialisation will increase the semantics of the models – an essential 
foundation for offering improved tool support and for handling the enormous 
complexity of the variability more effectively. For example, standardised 
levels of abstraction and mechanisms for mapping the concepts and the vari-
ability defined at one level to another level in a consistent manner should be 
the results of a domain specialisation. To gain the full benefit of a domain 
specialisation, it should – or better, must – include the definition of domain-
specific modelling languages for defining the software development arte-
facts.

22.2 Quality Assurance 

We introduced a technique for defining and adapting system test cases in 
software product line engineering. There are, of course, other test techniques 
than system testing as well as other quality assurance techniques which have 
proven to improve significantly the quality of the software if used appro-
priately during software development. 

A key challenge in this area is the adaptation of integration test techniques 
and regression test techniques to the specifics of software product line 
engineering, i.e. the effective consideration of variability in integration and 
regression test techniques as well as their seamless integration in the domain 
and application testing processes. 

Another key challenge is the adaptation of inspections, reviews, and walk-
through techniques for their use in domain and application engineering. For 
example, the results of inspections, reviews, and walkthroughs, obtained in 
domain engineering, should be effectively reused in application engineering. 

22.3 Model-Driven Development 

Due to the separation of domain and application engineering, software prod-
uct line engineering is an ideal candidate for employing model-driven devel-
opment. There are attempts to introduce model-driven development in soft-
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ware product line engineering, especially to support the model-driven deriv-
ation of product line applications. However, establishing a coherent, 
effective, and easy to use model-driven development technique for software 
product line engineering is still a key research challenge. 

22.4 Evolution 

Even in the case of the development of single software systems, managing 
the evolution of the development artefacts is a challenge. In software product 
line engineering developers are faced not only with the evolution over time, 
but also with the existence of different variants at the same time (variability 
in space). Managing the evolution of software product line artefacts over 
time and ensuring the consistent integration of the changes in all affected 
product line applications are thus key research challenges. Developing and 
validating a comprehensive technique that supports both the management of 
the evolution of product line artefacts over time and the management of the 
variability within the artefacts is also an open research issue. 

22.5 Multiple Product Lines 

In several domains the need to manage variability across different product 
lines arises. Solutions for defining and managing variability across different 
product lines and across all software development artefacts are still imma-
ture. Managing variability across product lines is even more challenging if 
the product lines are owned by different companies. 

22.6 Tool Support 

The engineering of high-quality software in an industrial setting needs ade-
quate tool support. However, for most of the aspects of software product line 
engineering, sufficient tool support is missing. For example, tool support 
offered today for managing variability across all development artefacts, or 
for managing the interrelations between the product line applications and the 
domain artefacts, is very weak. Establishing seamless tool support for mana-
ging variability and the development artefacts in the domain and the appli-
cation engineering processes is a key challenge for future research (see e.g. 
[PRIME 2005]). 
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22.7 Process Improvement and Assessment 

There are investigations and results for establishing process improvement 
frameworks and assessment methods for software product line engineering. 
Further research is, however, needed to fully adapt existing software matu-
rity models such as CMMI as well as software development assessment tech-
niques to software product line engineering. For example, adaptations are 
needed for assessing the specifics of the two development processes as well 
as for synchronising the activities between them. In addition, significant 
validation effort is required to prove that the adaptations have the desired 
effects.

22.8 Economics 

Predictive economic models, which help us to answer questions like “when 
should I invest in a product line?” or “when does the investment in a product 
line pay off?” have been proposed. Yet, they must be extended to include 
factors like maintenance costs, time to market, product quality, or customer 
satisfaction, in the prediction of economic impact. 

ROI (Return On Investment) models are needed that operate on a more 
detailed level. For example, ROI models are needed that predict the ROI of a 
certain feature or even the ROI of a certain variant within a feature. 
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Glossary

Application Artefacts are the development artefacts of specific product line applications (Definition 2-5 
on p. 23). 

Application Design is the sub-process of application engineering where the reference architecture is 
specialised into the application architecture. 

Application Engineering is the process of software product line engineering in which the applications of 
the product line are built by reusing domain artefacts and exploiting the product line variability 
(Definition 2-2 on p. 21). 

Application Realisation is the sub-process of application engineering where a single application is real-
ised according to the application architecture by reusing domain realisation artefacts. 

Application Requirements Engineering is the sub-process of application engineering dealing with the 
elicitation of stakeholder requirements, the creation of the application requirements specification, and 
the management of application requirements. 

Application Testing is the sub-process of application engineering where domain test artefacts are reused 
to uncover evidence of defects in the application. 

Architecture, see software architecture.

Architectural Structure is the decomposition of a software system into parts and relationships 
(Definition 6-1 on p. 117). 

Architectural Texture is the collection of common development rules for realising the applications of a 
software product line (Definition 6-2 on p. 117). 

Asset, see development artefact.

Component is a unit of composition with contractually specified component interfaces and explicit con-
text dependencies only; it can be deployed independently and is subject to composition by third 
parties. 

Component Framework is a structure of components, or object classes, where plug-in components or 
object classes may be added at specified plug-in locations. To fit, each plug-in has to obey rules 
defined by the framework (Definition 6-8 on p. 128). 

Component Interface provides a connector between components. A required interface of a component 
has to be connected to a provided interface of another one. 
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COTS is the acronym of “Commercial Off-The-Shelf”. This term subsumes components from different 
sources with different degrees of modification possibilities. Sources may vary from in-house, through 
nuances of non-developmental, to commercial. 

Development Artefact is the output of a sub-process of domain or application engineering. Develop-
ment artefacts encompass requirements, architecture, components, and tests (Definition 2-3 on p. 23). 

Domain is an area of process or knowledge driven by business requirements and characterised by a set of 
concepts and terminology understood by stakeholders in that area. The problem domain and the solu-
tion domain are two kinds of domains. 

Domain Artefacts are reusable development artefacts created in the sub-processes of domain engineer-
ing. A synonym is product line artefacts (Definition 2-4 on p. 23). 

Domain Design is the sub-process of domain engineering where a reference architecture for the entire 
software product line is developed. 

Domain Engineering is the process of software product line engineering in which the commonality and 
the variability of the product line are defined and realised (Definition 2-1 on p. 21). 

Domain Realisation is the sub-process of domain engineering where the set of reusable components and 
interfaces of the product line is developed. 

Domain Requirements Engineering is the sub-process of domain engineering where the common and 
variable requirements of the product line are defined, documented in reusable requirements artefacts,
and continuously managed. 

Domain Testing is the sub-process of domain engineering where evidence of defects in domain artefacts 
is uncovered and where reusable test artefacts for application testing are created. 

External Variability is the variability of domain artefacts that is visible to customers; see also internal 
variability (Definition 4-7 on p. 68). 

Feature is an end-user visible characteristic of a system (Definition 5-4 on p. 92). 

Goal is an objective the system under consideration should achieve (Definition 5-3 on p. 92). 

Internal Variability is variability of domain artefacts that is hidden from customers; see also external 
variability (Definition 4-8 on p. 68). 

Mass Customisation is the large-scale production of goods tailored to individual customers’ needs 
(Definition 1-1 on p. 4). 

Orthogonal Variability Model is a model that defines the variability of a software product line. It re-
lates the variability defined to other software development models such as feature models, use case 
models, design models, component models, and test models (Definition 4-9 on p. 75). 

Platform, see software platform.

Product Line Artefacts, see domain artefacts.

Product Line Engineering, see software product line engineering.

Product Management is the process of controlling the development, production, and marketing of the 
software product line and its applications (Definition 9-3 on p. 167). 
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Reference Architecture is a core software architecture that captures the high-level design of a software 
product line. 

Requirement is (1) a condition or capability needed by a user to solve a problem or achieve an objective. 
(2) A condition or capability that must be met or possessed by a system or system component to 
satisfy a contract, standard, specification, or other formally imposed document. (3) A documented 
representation of a condition or capability as in (1) or (2) (IEEE Std 610.12-1990) (Definition 5-1 on 
p. 91). 

Requirements Artefacts are products of the requirements engineering process specified using natural 
language and/or requirements models (Definition 5-2 on p. 92). 

Scenario is a concrete description of system usage, which provides a clear benefit for the actor of the 
system (Definition 5-5 on p. 93). 

Software Architecture is the set of the main guiding development principles for one or more software 
applications. The principles are the solution of one or more architectural concerns dealing with qual-
ity. There are other, more instrumental, definitions in the literature. 

Software Platform is a set of software subsystems and interfaces that form a common structure from 
which a set of derivative products can be efficiently developed and produced (Definition 1-4 on p. 
15). 

Software Product Line Engineering is a paradigm to develop software applications (software-
intensive systems and software products) using software platforms and mass customisation
(Definition 1-3 on p. 14). 

Software Product Line Engineering Framework is an abstract representation of the two core pro-
cesses for software product line engineering and the assets produced. 

Test Artefacts are products of the test process containing plans, specifications, and test results (Definition 
8-1 on p. 151). 

Use Case is a description of system behaviour in terms of scenarios illustrating different ways to succeed 
or fail in attaining one or more goals (Definition 5-6 on p. 94). 

Variability in Space is the existence of an artefact in different shapes at the same time (Definition 4-6 on 
p. 66). 

Variability in Time is the existence of different versions of an artefact that are valid at different times 
(Definition 4-5 on p. 65). 

Variability Object is a particular instance of a variability subject (Definition 4-2 on p. 60). 

Variability Subject is a variable item of the real world or a variable property of such an item (Definition 
4-1 on p. 60). 

Variant is a representation of a variability object within domain artefacts (Definition 4-4 on p. 62). 

Variation Point is a representation of a variability subject within domain artefacts enriched by contextual 
information (Definition 4-3 on p. 62). 
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