
Software Product Line Engineering

Klaus Pohl · Günter Böckle
Frank van der Linden

Software Product
Line Engineering
Foundations, Principles, and Techniques

With 150 Figures and 10 Tables

123

Klaus Pohl
Institut für Informatik
und Wirtschaftsinformatik
Universität Duisburg-Essen
Schützenbahn 70
45127 Essen, Germany
pohl@sse.uni-essen.de

Günter Böckle
Siemens AG
Zentralabteilung Technik
Otto-Hahn-Ring 6
81730 München, Germany
guenter.boeckle@siemens.com

Frank van der Linden
Philips Medical Systems
Veenpluis 4–6
5684 PC Best, The Netherlands
frank.van.der.linden@philips.com

http://www.software-productline.com/SPLE-Book

Library of Congress Control Number: 2005929629

ACM Computing Classification (1998):
D.2.1, D.2.9, D.2.10, D.2.11, D.2.13, K.6.3

ISBN-10 3-540-24372-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-24372-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German copyright law of September 9, 1965, in its current version, and permission for
use must always be obtained from Springer-Verlag. Violations are liable for prosecution under
the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, trademarks, etc. in this publication does not imply, even
in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

The author and publisher have taken care in the preparation of this book, but make no expres-
sed or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

Cover design: KünkelLopka, Heidelberg
Typesetting: Camera-ready by the authors
Printed on acid-free paper 45/3142 YL – 5 4 3 2 1 0

Preface

I. Software Product Line Engineering

Are you interested in producing software products or software-intensive
systems at lower costs, in shorter time, and with higher quality? If so, you
are holding the right book in your hands.

Software product line engineering has proven to be the methodology for
developing a diversity of software products and software-intensive systems
at lower costs, in shorter time, and with higher quality. Numerous reports
document the significant achievements and experience gained by introducing
software product lines in the software industry. Chapter 21 of this book
summarises several cases.

Concerning the terminology, there is an almost synonymous use of the terms
“software product family” and “software product line”. Whereas in Europe
the term software product family is used more often, in North America the
term software product line is used more frequently. This is, among other
things, reflected in the names of the two former conference series (the soft-
ware product line conference series, started in 2000 in the USA, and the
product family engineering (PFE) workshop series, started in 1996 in
Europe) which were merged in 2004 to form the leading software product
line conference (SPLC) series.

In this book, we use the term software product line.

II. Readers of the Book

The book is for those people who are interested in the principles of software
product line engineering. It elaborates on the foundations of software prod-
uct line engineering and provides experience-based knowledge about the two
key processes and the definition and management of variability.

We have written the book for practitioners, product line researchers, and
students alike.

Higher quality, lower
cost, and shorter
development times

Software product line
vs. software product
family

Intended
readership

VI Preface

III. Book Overview

The book is organised according to our framework for software product line
engineering, which has been developed based on our experience in product
line engineering gained over the last eight years. The framework stresses the
key differences of software product line engineering in comparison with
single software-system development:

a) The need for two distinct development processes: domain engineering
and application engineering. The aim of the domain engineering process
is to define and realise the commonality and the variability of the soft-
ware product line. The aim of the application engineering process is to
derive specific applications by exploiting the variability of the software
product line.

b) The need to explicitly define and manage variability: During domain
engineering, variability is introduced in all domain engineering artefacts
(requirements, architecture, components, test cases, etc.). It is exploited
during application engineering to derive applications tailored to the spe-
cific needs of different customers.

Among others, the book provides answers to the following questions:

How can we save development costs and development time and at the
same time increase the quality of software?
How can we establish proactive reuse in software development?
What is the variability of a software product line?
What are the key activities and aims of the domain and application
engineering processes?
How can we document and manage the variability of a product line?
How can we ensure consistency of the variability defined in different
development artefacts like requirements, architecture, and test cases?
How can we exploit variability during application engineering and
thereby derive specific products from a common core?

The book is divided into six parts:

Part I: Introduction
Part II: Product Line Variability
Part III: Domain Engineering
Part IV: Application Engineering
Part V: Organisation Aspects
Part VI: Experience and Future Research

Framework for
product line
engineering

Two
processes

Variability

Part
structure

Preface VII

Part I, Introduction, motivates the software product line engineering para-
digm, introduces our software product line engineering framework, and pro-
vides an introduction into the example domain used throughout the book.

Chapter 1 outlines the basic principles of product line engineering
and its roots in traditional engineering.

Chapter 2 introduces our software product line engineering frame-
work. It defines the key sub-processes of the domain engineering
and application engineering process as well as the artefacts pro-
duced and used in these processes.

Chapter 3 provides a brief introduction to the smart homes domain
from which examples are drawn throughout the book for explaining
the introduced principles and concepts.

Part II, Product Line Variability, defines the principles of the variability of a
software product line and introduces notations to document variability in all
software development artefacts.

Chapter 4 defines the principles of variability of software product
line engineering and introduces our orthogonal variability model,
which we use throughout this book to document variability in the
various software development artefacts clearly and unambiguously.

Chapter 5 defines how to document variability in requirements arte-
facts, namely textual requirements, features, scenarios, use cases,
statecharts, and class diagrams.

Chapter 6 defines how to document variability in architectural arte-
facts, namely in the development view, the process view, and the
code view of a software architecture.

Chapter 7 defines how to document the variability of component
interfaces and the variability within the internal structure of compo-
nents.

Chapter 8 defines how to document the variability in test artefacts
such as test cases, test case scenarios, and test case scenario steps.

Part III, Domain Engineering, defines the key sub-processes of the domain
engineering process. For each of the sub-processes we define the construc-
tion of the common (invariant) product line artefacts as well as the variabil-
ity of the software product line.

Chapter 9 introduces the principles of the product management sub-
process within the domain engineering process. This sub-process
mainly deals with topics related to economics and, in particular, to
product portfolio management.

Introduction

Variability

Domain
engineering

VIII Preface

Chapter 10 defines the principles of the requirements engineering
sub-process. It defines and illustrates the identification and docu-
mentation of common and variable features and requirements for
the software product line.

Chapter 11 deals with the definition of a reference architecture for
the software product line. It shows how product line commonality
and variability are incorporated in the reference architecture.

Chapter 12 deals with the detailed design of reusable software
components. It defines how the commonality and variability de-
fined in the reference architecture is mapped onto components.

Chapter 13 discusses the influence of variability on the different
test levels and presents and analyses test strategies with regard to
their applicability in software product line engineering. The main
focus is on establishing a systematic reuse of test artefacts in prod-
uct line test activities.

Chapter 14 presents a technique for selecting commercial off-the-
shelf (COTS) components, which takes into account the variability
of the software product line. We consider components that provide
a significant fraction of the overall functionality, the so-called high-
level components.

Part IV, Application Engineering, defines the key sub-processes of the appli-
cation engineering process. It shows how the orthogonal definition of vari-
ability established during domain engineering supports the exploitation and
consistent binding of variability during application engineering – and
thereby facilitates proactive reuse.

Chapter 15 defines the application requirements engineering sub-
process. It tackles the problem of exploiting the common and vari-
able artefacts of the software product line when defining an appli-
cation. The chapter demonstrates how the orthogonal variability
model supports the reuse of product line artefacts during application
requirements engineering.

Chapter 16 deals with the application design sub-process which de-
rives an application architecture from the reference architecture. By
binding the variability according to the application requirements the
required variants are selected and integrated into the application
architecture. The sub-process also adapts the design according to
application-specific requirements.

Chapter 17 deals with the realisation of a specific software product
line application. Ideally, the realisation is achieved through a con-

Application
engineering

Preface IX

figuration of reusable domain components and application-specific
ones by exploiting the commonality and variability of the compo-
nents and their interfaces.

Chapter 18 deals with application testing. It shows how the vari-
ability – integrated into the domain test artefacts – supports the
reuse of test case designs in application engineering. Consequently
the effort of developing test cases for the different product line
applications is significantly reduced.

Part V, Organisation Aspects, elaborates on two key aspects to be considered
when introducing a software product line into an organisation: the organisa-
tion structure and the transition strategies.

Chapter 19 discusses the benefits and drawbacks of different
organisation structures for software product line engineering.

Chapter 20 outlines transition strategies for moving from a single
software production to a software product line. It discusses when to
apply which strategy depending on the current situation within the
organisation.

Part VI, Experience and Future Research, reports on the experience with
product lines and briefly describes several essential topics for future re-
search.

Chapter 21 summarises experience reports about the application of
the software product line engineering paradigm in several organisa-
tions. It also provides an annotated literature reference list as a
guide for further reading.

Chapter 22 outlines key challenges for future research in the area of
software product line engineering.

In addition, we provide at the end of the book:

Information about the authors

The literature references used throughout the book

A glossary for software product line engineering

The index

IV. Share Your Experience!

We are interested in your feedback. If you have any suggestions for im-
provements, or if you have detected an error or an important issue that the
book does not cover, please do not hesitate to contact us at:

Organisation
aspects

Experience and
future research

End of
the book

Feedback

X Preface

SPLE-Book@software-productline.com

or visit the book web page:

www.software-productline.com/SPLE-Book

V. Acknowledgements

We would like to thank Eureka/ITEA, BMBF (Germany), NOVEM/
SENTER (Netherlands), and all the other national public authorities for
funding the projects ESAPS (1999–2001), CAFÉ (2001–2003), and
FAMILIES (2003–2005). Most of the results presented in this book have
been researched and validated in these projects.

Our special thanks go to Ernst Sikora who helped us significantly in improv-
ing the consistency and the layout of the book, and to Silja Recknagel for her
support in polishing the English.

We thank Ralf Gerstner, Ronan Nugent, and Ulrike Stricker from Springer-
Verlag, Heidelberg, for their support in getting this book to market!

Last but not least, our thanks go to our collaborators within industry and
universities, at both the national and the international level. Without the
insight gained in numerous discussions, this book would never have been
possible.

Klaus Pohl University of Duisburg-Essen, Germany
Günter Böckle Siemens Corporate Technology, Germany
Frank van der Linden Philips Medical Systems, The Netherlands

May, 2005

Eureka/ITEA,
public authorities

Layout and
consistency

Publisher

Collaborators
and colleagues

Guidelines for Teaching

Many companies implement the software product line engineering (SPLE)
principles for developing embedded software-intensive systems as well as
information systems. Solid knowledge about SPLE will be crucial for em-
ployees in the future. The book has been designed to provide basic reading
material that can serve for a 14-week course on SPLE as well as to accom-
pany lectures embedded in an advanced course on software engineering.

Lectures on SPLE can be organised by taking our framework for SPLE as a
basis. The framework stresses the key differences between SPLE and single-
system development: the need to distinguish between two types of develop-
ment processes (domain and application engineering) and the need to expli-
citly define and manage variability.

Under the assumption that a single lecture takes two hours, the material cov-
ered in this book can, amongst others, be used for the following teaching
courses and modules:

a) A 14-lecture course on SPLE which covers almost all the topics pre-
sented in this book (Section I).

b) A two-lecture module on SPLE in an advanced software engineering
course which introduces the key concepts of SPLE (Section II).

c) A four-lecture module on SPLE in an advanced software engineering
course which introduces the key concepts of SPLE and illustrates these
concepts on a particular process phase of domain and application engin-
eering, for instance using the domain and application requirements
engineering sub-processes, or the domain and application design sub-
processes (Section III).

d) A one-lecture module on the selection of COTS systems which could be
part of an advanced software engineering course. This lecture intro-
duces the challenges and a technique for selecting a COTS (commercial
of the shelf) component or system for a software product line
(Section IV).

e) A three-lecture module on testing in SPLE which could be part of a
software quality assurance course or an advanced software engineering
course. The module introduces the key concepts of SPLE and teaches

Education of
software engineers

Framework

14-lecture
course

2-lecture
module

4-lecture
module

Lecture
on COTS

3-lecture
module on testing

XII Guidelines for Teaching

the challenges and basic solutions for testing domain and application
artefacts (Section V).

In addition, we recommend a three-lecture module on:

requirements engineering for software product lines that could be part
of an advanced requirements engineering course, and

software design for software product lines that could be part of an
advanced software architecture or design course.

I. Fourteen-Lecture Course on SPLE

This course provides a good overview of SPLE. It teaches the important
aspects of SPLE and is organised around the framework proposed in this
book. Students attending the lectures should have basic knowledge of soft-
ware engineering. After passing the course they will be familiar with the
principles of SPLE: namely, variability management and the domain and
application engineering processes.

For the 14-lecture course, we suggest the following structure:1

Two lectures for introducing the principles and a framework for SPLE:

(1) SPLE principles (Chapter 1); SPLE experiences (Chapter 21)

(2) Key differences between single-system development and
SPLE; SPLE framework (Chapter 2)

Four lectures on the principles of variability and the documentation of
variability with special emphasis on the consistent definition of vari-
ability across the various development artefacts:

(3) Principles of product line variability illustrated by examples;
basic concepts (Chapter 4)

(4) Concepts of the orthogonal variability meta model illustrated
by examples (Chapter 4); documenting requirements artefacts
(Chapter 5)

(5) Documenting variability in requirements artefacts illustrated by
a comprehensive example (Chapter 5); interrelations to design
(Chapters 5 and 6)

1 The number in brackets indicates the lecture in the course sequence, followed by the key contents of the

lecture.

Requirements
engineering module

Software design
module

Basic principles
and framework

Documentation
of variability

Guidelines for Teaching XIII

(6) Documenting variability in design, realisation, and test arte-
facts based on the orthogonal variability model (Chapters 6, 7,
and 8)

Five lectures on the domain engineering sub-processes with special
emphasis on the differences between SPLE and development of single
software systems:

(7) Introduction to product management; product portfolio defini-
tion; scoping (Chapter 9)

(8) Domain requirements engineering sub-process; defining vari-
ability, commonality and variability analysis; modelling re-
quirements variability (Chapter 10)

(9) Domain design sub-process; refining requirements variability
into design variability; defining the reference architecture/ plat-
form (Chapter 11)

(10) Domain realisation; mapping design variability onto compo-
nents (Chapter 12); COTS selection in high-level design;
COTS selection technique (Chapter 14)

(11) Domain tests; strategies for domain testing; defining variability
in test artefacts under the consideration of requirements, de-
sign, and realisation variability (Chapter 13)

Two lectures on the derivation of application artefacts from domain
artefacts through the binding of predefined variability:

(12) Application requirements engineering and application design
sub-processes; defining requirements for product line applica-
tions; binding variability defined in domain requirements and
design artefacts; deriving the design of an application (Chap-
ters 15 and 16)

(13) Application realisation and application test sub-processes;
deriving the application realisation; deriving application test
artefacts from domain test artefacts based on the variability
binding established during application requirements engineer-
ing and application design (Chapters 17 and 18)

One lecture on organisational aspects with an emphasis on the orga-
nisational consequences encountered with, when introducing SPLE in
an organisation:

(14) Influence of the organisation structure on SPLE; estimations
for determining the ROI of SPLE; basic transition strategies for
introducing SPLE in an organisation (Chapters 19 and 20)

Domain
engineering

Application
engineering

Organisation
and transition

XIV Guidelines for Teaching

An alternative course outline could be based on organising the domain and
application engineering sub-process in such a way that each domain engin-
eering sub-process is followed by the corresponding application engineering
sub-process, i.e. domain requirements engineering, application requirements
engineering, domain design, application design, etc. Teaching the topics in
this sequence gives the advantage to emphasise the differences between
domain engineering and application engineering activities as well as their
interrelations. It has the disadvantage that the relations between the sub-
processes in domain engineering as well as the relations between the appli-
cation engineering sub-processes cannot be emphasised equally well as in
the standard course outline.

II. Two-Lecture Module on SPLE

The two-lecture SPLE module provides an introduction to SPLE. It is
designed to fit in an advanced software engineering course. In the two
lectures the students learn the key motivations for introducing the SPLE
paradigm in an organisation as well as the key differences from the devel-
opment of single software systems. We suggest the following contents for
the two lectures:

(1) Motivation and principles of SPLE (Chapter 1) including one or two
experiences (Chapter 21); key differences between SPLE and the
development of single systems (Chapter 2)

(2) The SPLE framework (Chapter 2); principles of software product
line variability; overview of variability modelling (Chapter 4)

III. Four-Lecture Module on SPLE

The four-lecture SPLE module provides a comprehensive introduction to
basic principles of SPLE and the differences between SPLE and the devel-
opment of single software systems. We recommend the four-lecture module
for an introduction to SPLE if time constraints permit it:

(1) Motivation and principles of SPLE (Chapter 1) including one or two
experiences (Chapter 21); key differences between SPLE and the
development of single systems (Chapter 2)

(2) The SPLE framework (Chapter 2); principles of software product
line variability; overview of variability modelling (Chapter 4)

Alternative
course structure

Motivation

Framework

Guidelines for Teaching XV

(3) Orthogonal variability meta model (Chapter 4); example of docu-
menting variability in requirements or in design (depending on the
phase chosen for this module in the next lecture)

(4) Specifics of the domain and application engineering processes; we
recommend the selection of a particular phase of domain and appli-
cation engineering to illustrate the specifics of the two processes; we
also recommend either the domain and application requirements
engineering sub-processes (Chapters 10 and 15) or the domain and
application design sub-processes (Chapters 11 and 16)

IV. One-Lecture Module on COTS Selection

This lecture focuses on the challenges of selecting COTS components for a
software product line during high-level design. In addition, our technique for
selecting COTS components should be part of this lecture. This technique
takes into account the domain requirements, the domain architecture, as well
as the variability of the product line (Chapter 14).

V. Three-Lecture Module on Testing in SPLE

This three-lecture module provides a brief introduction to SPLE and focuses
on the specifics of testing in the domain engineering and the application
engineering sub-processes.

(1) Motivation and principles of SPLE (Chapter 1); key differences
between SPLE and development of single systems (Chapter 2);
challenges for testing (Chapter 13)

(2) Principles of software product line variability; the orthogonal vari-
ability meta model (Chapter 4); documenting variability in test arte-
facts (Chapter 8)

(3) Test strategies and evaluation criteria; preserving variability in test
designs (Chapter 13); deriving application test cases from domain
test cases; reuse of test artefacts (Chapter 18)

VI. Exercises

We recommend two types of exercises. The first type is an exercise which
accompanies the lectures and aims at deepening the knowledge of the stu-
dents of the principles of SPLE, variability modelling, and the domain and
application engineering processes. The second type is an exercise after the

Orthogonal
variability model

Details of selected
development phase

COTS selection
technique

Motivation

Variability in
test artefacts

Test
strategies

XVI Guidelines for Teaching

lecture which, in addition to the first type, embeds practical exercises in
extending the capability of a software product line. We recommend doing
this by adding functional and non-functional features as well as deriving a
product line application.

Paper-Based Exercises
For understanding the principles of SPLE and gaining experience with the
orthogonal variability model as well as the various artefact models used in
domain and application engineering, we recommend the following exercises:

(1) Product line principles: The students should become familiar with
two to three experience reports (based on the annotated literature ref-
erences in Chapter 21). They should summarise and compare the
reported experiences and try to map the positive and negative
experiences to product line principles. The results should be pre-
sented in a 20 minutes’ talk and/or in written reports of about three to
four pages.

(2) Defining variability: Based on a natural language description of vari-
ability which has to be integrated into an existing software product
line, the students should extend the orthogonal variability model
(without considering the development artefacts).

(3) Modelling variability in requirements artefacts: The students are
given an existing requirements document and a new variation to be
integrated into the variability model as well as into the requirements
artefacts. They have to consider variability dependencies and con-
straints during the integration. The example should be small in size.

(4) Mapping variability in requirements artefacts to design artefacts:
The students are given a design document, a requirements document,
and an orthogonal variability model for the product line. In the vari-
ability model and the requirements model, newly introduced exten-
sions are marked. The students should map these extensions onto the
software architecture of the product line considering variability con-
straints and dependencies as well as design constraints. The example
should be small in size and, to avoid an unwanted focus, different
from the example used in Exercise (3).

Optional: In addition, the students could be given the task to inte-
grate internal design variability into the design. For example, they
could be asked to make the architecture flexible so that the introduc-
tion of different types of middleware is facilitated, allowing the
company to shift between different middleware providers.

Experience
reports

Variability
model

Variability in
requirements

Variability
in design

Guidelines for Teaching XVII

(5) Mapping variability in design artefacts to realisation artefacts: The
students are given a realisation document, a design document, a
requirements document, and an orthogonal variability model for the
product line. In the variability model and in the design models,
newly introduced extensions are marked. The students should map
these extensions to software components and their interfaces consid-
ering variability constraints and dependencies as well as realisation
constraints. The example should be small in size and, to avoid an
unwanted focus, different from the examples used in Exercises (3)
and (4).

(6) Defining domain test cases for system tests: Based on a requirements
document, a design document, and an orthogonal variability model,
the students should design a set of test cases for some part of the
requirements specification. The variability in the domain artefacts
should be preserved, i.e. should be adequately introduced into the
test case design.

(7) Mapping application requirements to domain requirements artefacts:
Based on a list of application requirements artefacts (e.g. features
and scenarios), the students have to identify the corresponding com-
monalities and the variability in the domain requirements artefacts.
In addition, they have to suggest an appropriate binding of the vari-
ability defined in the domain requirements artefacts to realise the
given application requirements.

(8) Deriving an application design: Based on the binding defined in the
application requirements (documented in the orthogonal variability
model and the application requirements artefacts), the students have
to derive an application design that binds the domain design vari-
ability according to the application requirements.

(9) Deriving system test case designs for an application: Based on the
variability bound in the orthogonal variability model, the students
have to derive system test cases from the domain test cases to test a
particular functional or quality feature of the given application.

(10) Desirable tool support: Based on their experiences gained during the
exercise, the students should define a desirable tool support for prod-
uct line engineering. Each student should focus on the support for a
particular domain and application engineering sub-process, e.g.
domain and application requirements engineering, or a cross-cutting
aspect such as variability modelling or configuration support.

(11) Extending the variability meta model: Based on their experience, the
students should suggest extensions to the variability meta model in

Variability in
realisation

Variability in
test artefacts

Application
requirements

Application
design

Application
test cases

Tool
support

Variability
meta model

XVIII Guidelines for Teaching

terms of a) specialisation of variation points and variants, b) relation-
ships to and between domain artefacts, and c) relationships to and
between application artefacts. The suggested extensions should be
presented and discussed.

In addition, lecturers may add question-based exercises as appropriate.

Extending a Product Line and Deriving an Application
A prerequisite for this exercise is the (partial) realisation of a software prod-
uct line including up-to-date documentation of the features, the require-
ments, the design, the components, and the test cases of the software product
line. This example product line may be based on the home automation
example used in this book (Chapter 3).

The goal of this exercise is two-fold. The first phase aims at deepening the
knowledge of SPLE by taking some of the exercises defined in Section V. In
the second phase, domain and application engineering is practised by adding
new features to an existing software product line as well as by deriving a
product line application. This involves adaptations and additions to the
models that are made in the first phase. Feedback between the steps in each
of the two processes, and from application engineering to domain engineer-
ing, should be stimulated. When there is sufficient time, active rework
should also follow from that. In contrast to the paper-based exercise, this is a
more hands-on exercise, i.e. the extensions are made using tool support and a
(partially) realised product line.

In the first phase, we recommend that the students are trained using a set of
the paper-based exercises introduced above, e.g. Exercises (2), (3), (4), (7),
and (8).

The second phase of the exercise consists of two parts:

Integration of a new feature: The students should add one or more
functional and/or non-functional features or requirements which pref-
erably affect the variability of an existing product line. If time permits
it, we suggest:

(1) choosing a new feature which leads to an extension of existing
variability and thereby letting the students experience that such
an integration is typically easy to achieve due to the variation
points, and

(2) choosing a feature that leads to the introduction of a new vari-
ation point – which is typically far more complex than the task
described in (1).

Example
product line

Simulation of
the two processes

Adding
features

Guidelines for Teaching XIX

The challenge in both cases is the coherent integration of the new fea-
ture in all product line artefacts, and, even more important, to consider
the effects of the integration on the domain assets as well as on the
existing applications. The students will experience the importance of
traceability as well as of the orthogonal variability model if the exten-
sions affect existing variations.

Derivation of a product line application: The students are given a list
of requirements artefacts (features, requirements, use cases, scenarios)
for a new application. The challenge to derive the new application is
two-fold. First, the students must map the application requirements to
the product line requirements and decide which variability has to be
bound to realise the given application requirements. Second, the stu-
dents gain experience with the support for deriving an application
based on the identified variability bindings in requirements, i.e. they
experience how the orthogonal variability model supports the mapping
of the variability bound during application requirements engineering
onto the application design, the application realisation, and the appli-
cation test designs. This exercise can be extended by giving the stu-
dents the requirements for an application, which involve application-
specific extensions of the application requirements artefacts (which
should not be mixed up with extending the domain artefacts).

Derivation of product
line application

Contents

Part I Introduction 1

1 Introduction to Software Product Line Engineering 3
1.1 Principles of Product Line Engineering .. 4
1.2 Engineering Customised Products... 7
1.3 Motivations for Product Line Engineering.. 9
1.4 Software Product Line Engineering .. 13

2 A Framework for Software Product Line Engineering 19
2.1 Introduction ... 20
2.2 Two Development Processes... 20
2.3 Overview of the Framework.. 21
2.4 Domain Engineering.. 23
2.5 Domain Artefacts .. 28
2.6 Application Engineering.. 30
2.7 Application Artefacts .. 34
2.8 Role of the Framework in the Book .. 36

3 Overview of the Example Domain: Home Automation 39
3.1 Smart Home Fundamentals ... 40
3.2 Building Blocks of a Home Automation System .. 43
3.3 An Example... 46
3.4 Software Variability in Smart Home Applications.. 50
3.5 Role of the Home Automation Domain in the Book... 52

Part II Product Line Variability 53

4 Principles of Variability 57
4.1 Introduction ... 58
4.2 Variability Subject and Variability Object .. 59
4.3 Variability in Software Product Line Engineering .. 61
4.4 Variability in Time vs. Variability in Space.. 65
4.5 Internal and External Variability ... 68
4.6 Orthogonal Variability Model ... 72
4.7 Handling Complexity in Variability Models ... 87

XXII Contents

4.8 Differences from Single-System Engineering... 88
4.9 Summary ... 88

5 Documenting Variability in Requirements Artefacts 89
5.1 Introduction ... 90
5.2 Documenting Requirements .. 91
5.3 Variability in Textual Requirements ... 96
5.4 Variability in Requirements Models ... 99
5.5 Traceability Between Variability Model and Requirements Artefacts.................. 109
5.6 Differences from Single-System Engineering... 112
5.7 Summary ... 113

6 Documenting Variability in Design Artefacts 115
6.1 Introduction ... 116
6.2 Architectural Artefacts .. 117
6.3 The Reference Architecture... 123
6.4 Variability in the Development View.. 124
6.5 Variability in the Process View... 131
6.6 Variability in the Code View... 132
6.7 Differences from Single-System Engineering... 134
6.8 Summary ... 134

7 Documenting Variability in Realisation Artefacts 135
7.1 Introduction ... 136
7.2 Detailed Design Artefacts ... 137
7.3 Component Interface Variability... 139
7.4 Internal Component Variability... 145
7.5 Differences from Single-System Engineering... 147
7.6 Summary ... 147

8 Documenting Variability in Test Artefacts 149
8.1 Introduction ... 150
8.2 Test Artefacts .. 151
8.3 Variability in Test Artefacts .. 152
8.4 Differences from Single-System Engineering... 157
8.5 Summary ... 157

Part III Domain Engineering 159

9 Product Management 163
9.1 Introduction ... 164
9.2 Terminology .. 166

Contents XXIII

9.3 Traditional Product Management Activities ... 167
9.4 Portfolio Management ... 168
9.5 Extension of the Product Portfolio .. 177
9.6 Management of Existing Products... 186
9.7 Scoping.. 188
9.8 Differences from Single-System Engineering... 189
9.9 Summary ... 191

10 Domain Requirements Engineering 193
10.1 Introduction ... 194
10.2 Traditional Requirements Engineering Activities ... 197
10.3 Challenges of Domain Requirements Engineering ... 198
10.4 Overview of Major Steps .. 199
10.5 Requirements Sources ... 201
10.6 Commonality Analysis .. 201
10.7 Variability Analysis... 204
10.8 Defining Requirements Variability ... 206
10.9 Example... 209
10.10 Differences from Single-System Engineering... 215
10.11 Summary ... 216

11 Domain Design 217
11.1 Introduction ... 218
11.2 Traditional Design Activities .. 220
11.3 Quality Requirements.. 221
11.4 Commonality and Variability in Design.. 225
11.5 Designing the Reference Architecture... 231
11.6 Architecture Validation ... 236
11.7 Differences from Single-System Engineering... 238
11.8 Summary ... 239

12 Domain Realisation 241
12.1 Introduction ... 242
12.2 Traditional Realisation Activities.. 244
12.3 Realising Interfaces ... 245
12.4 Realising Variable Components .. 248
12.5 Binding Time of Variability .. 250
12.6 Realising Configurability .. 253
12.7 Differences from Single-System Engineering... 255
12.8 Summary ... 255

13 Domain Testing 257
13.1 Introduction ... 258

XXIV Contents

13.2 Software Testing.. 262
13.3 Domain Testing and Application Testing.. 266
13.4 Testing Variability at Different Test Levels.. 267
13.5 Criteria for Product Line Test Strategies... 270
13.6 Product Line Test Strategies.. 271
13.7 Domain Test Activities.. 281
13.8 Differences from Single-System Engineering... 283
13.9 Summary ... 284

14 Selecting High-Level COTS Components 285
14.1 Introduction ... 286
14.2 The CoVAR Process ... 288
14.3 Differences from Single-System Engineering... 300
14.4 Summary ... 301

Part IV Application Engineering 303

15 Application Requirements Engineering 307
15.1 Introduction ... 308
15.2 Application Requirements Engineering Activities .. 312
15.3 Communication of the Product Line Variability ... 315
15.4 Analysis of Requirements Deltas .. 318
15.5 Documentation of the Application Requirements ... 326
15.6 Differences from Single-System Engineering... 328
15.7 Summary ... 329

16 Application Design 331
16.1 Introduction ... 332
16.2 Development of the Application Architecture .. 334
16.3 Feedback of Application Artefacts to the Domain .. 340
16.4 Effort and Cost of Variants ... 341
16.5 Differences from Single-System Engineering... 342
16.6 Summary ... 343

17 Application Realisation 345
17.1 Introduction ... 346
17.2 Configuration .. 348
17.3 Realisation of Application-Specific Components ... 350
17.4 Building the Application ... 351
17.5 Differences from Single-System Engineering... 353
17.6 Summary ... 354

Contents XXV

18 Application Testing 355
18.1 Introduction ... 356
18.2 Domain Test Artefact Reuse ... 359
18.3 Tests Related to Variability ... 362
18.4 Testing Variability at Different Test Levels.. 364
18.5 Application Test Coverage .. 365
18.6 Application Test Activities.. 367
18.7 Differences from Single-System Engineering... 369
18.8 Summary ... 370

Part V Organisation Aspects 371

19 Organisation 375
19.1 Introduction ... 376
19.2 Properties of Organisation Structures.. 376
19.3 Basic Hierarchical Organisation Structures... 378
19.4 Matrix Organisation Structures ... 384
19.5 Detailed Structure.. 389
19.6 Cross-Functional Teams.. 389
19.7 Organisation Theory.. 389
19.8 Differences from Single-System Engineering... 391
19.9 Summary ... 392

20 Transition Process 393
20.1 Introduction ... 394
20.2 Motivation and Business Objectives ... 394
20.3 Transition Strategies.. 395
20.4 Benefits and Drawbacks of the Transition Strategies.. 398
20.5 Cost Model .. 400
20.6 Application of the Cost Model to the Transition Strategies 402
20.7 Major Steps of a Transition Process.. 406
20.8 Summary ... 410

Part VI Experience and Future Research 411

21 Experiences with Software Product Line Engineering 413
21.1 ABB... 414
21.2 Boeing Company... 415
21.3 CelsiusTech Systems AB .. 416
21.4 Cummins Inc. .. 417
21.5 Hewlett-Packard .. 419

XXVI Contents

21.6 LG Industrial Systems Co., Ltd... 420
21.7 Lucent Technologies ... 421
21.8 MARKET MAKER Software AG... 422
21.9 Philips.. 424
21.10 Robert Bosch GmbH ... 427
21.11 Salion Inc... 428
21.12 Siemens AG Medical Solutions HS IM... 430
21.13 Testo AG ... 431
21.14 The National Reconnaissance Office .. 432
21.15 The Naval Undersea Warfare Center .. 433

22 Future Research 435
22.1 Domain Specialisation... 436
22.2 Quality Assurance ... 436
22.3 Model-Driven Development.. 436
22.4 Evolution ... 437
22.5 Multiple Product Lines.. 437
22.6 Tool Support.. 437
22.7 Process Improvement and Assessment.. 438
22.8 Economics ... 438

The Authors 439

References 445

Glossary 457

Index 461

Part I

Introduction

1
Introduction to

Software Product
Line Engineering

In this chapter you will learn:

o The key principles of product line engineering for mechanical and electronic
consumer products.

o The key ideas of the software product line engineering paradigm.
o The motivations and the prerequisites for adapting those principles to soft-

ware engineering.

Günter Böckle

4 1. Introduction to Software Product Line Engineering

1.1 Principles of Product Line Engineering

The way that goods are produced has changed significantly in the course of
time. Formerly goods were handcrafted for individual customers. By and by,
the number of people who could afford to buy various kinds of products
increased. In the domain of automobiles this led to Ford’s invention of the
production line, which enabled production for a mass market much more
cheaply than individual product creation on a handcrafted basis. However,
the production line reduced the possibilities for diversification.

Roughly, both types of products, individual and mass produced ones can be
identified in the software domain as well: they are denoted as individual
software and standard software. Generally, each of these types of products
has its drawbacks. Individual software products are rather expensive, while
standard software products lack sufficient diversification.2

1.1.1 Mass Customisation
Customers were content with standardised mass products for a while – but
not all people want the same kind of car for any purpose. Certain cars are
used for travelling by a single person others for big families. Some cars are
used by people living in cities, others mainly in the countryside. People want
to have another car or a better one than their neighbours. Thus, industry was
confronted with a rising demand for individualised products. This was the
beginning of mass customisation, which meant taking into account the cus-
tomers’ requirements and giving them what they wanted (see Fig. 1-1).

We use the following definition of mass customisation:

Definition 1-1: Mass Customisation

Mass customisation is the large-scale production of goods tailored to
individual customers’ needs.

[Davis 1987]

Example 1-1: Mass Customisation in Car Manufacturing

The four cars at the bottom of Fig. 1-1 are an example of mass
customisation: different cars that meet individual customers’ wishes,
each produced in large numbers.

2 See [Halmans and Pohl 2002] for a treatment of product line engineering for individual vs. mass-

market software.

Production
line

Individual and
standard software

Individualised
products

1.1 Principles of Product Line Engineering 5

1.1.2 Platforms
For the customer mass customisation means the ability to have an individ-
ualised product. For the company mass customisation means higher tech-
nological investments which leads to higher prices for the individualised
products and/or to lower profit margins for the company. Both effects are
undesirable. Thus many companies, especially in the car industry, started to
introduce common platforms for their different types of cars by planning
beforehand which parts will be used in different car types.

Originally, an automobile platform only consisted of floor panels, a suspen-
sion system, and rocker panels. Later more parts were added to the platform.
The platform provided a structure for major components determining the
body size and the size and type of the engine and transmission. The parts
comprising the platform were usually the most expensive subsystem in terms
of design and manufacturing preparation costs. The use of the platform for
different car types typically led to a reduction in the production cost for a
particular car type.

3 Picture drawn by Loe Feijs.

Fig. 1-1: Single product for all vs. individual products3

Not “one product
fits all”

Prerequisite for
mass customisation

6 1. Introduction to Software Product Line Engineering

The platform approach enabled car manufacturers to offer a larger variety of
products and to reduce costs at the same time. The result was that within
periods of three years (measured from 1980 to 1991 and averaged) those
companies using the best platform strategy increased sales by 35%, whereas
those companies starting from scratch for each new series of cars had a sales
loss of 7% (for details, see [Cusumano and Nobeoka 1998]). The same pat-
tern was observable in the camera industry and many others (Examples 1-2
and 1-3).

Example 1-2: From the Camera World

In 1987, Fuji released the Quicksnap, the first single-use camera. It
caught Kodak by surprise: Kodak had no such product in a market that
grew from then on by 50% annually, from 3 million in 1988 to 43
million in 1994. However, Kodak won back market share and in 1994,
it had conquered 70% of the US market. How did Kodak achieve it?
First, a series of clearly distinguishable, different camera models was
built based on a common platform. Between April 1989 and July
1990, Kodak reconstructed its standard model and created three add-
itional models, all with common components and the same manufac-
turing process. Thus, Kodak could develop the cameras faster and
with lower costs. The different models appealed to different customer
groups. Kodak soon had twice as many models as Fuji, conquered
shelf space in the shops and finally won significant market share this
way (for details see [Robertson and Ulrich 1999; Clark and
Wheelwright 1995]).

Example 1-3: Notion of Platform in Office Supplies

The “Post-It” notes from 3M are considered a platform from which
many individual products have been derived. For instance, “Post-it”
notes with a company logo, or markers to select pages in books, etc.
[Cooper et al. 2001].

Definition 1-2: Platform

A platform is any base of technologies on which other technologies or
processes are built.

[TechTarget 2004]

The term platform is used in various contexts as illustrated by Examples 1-1
to 1-3. A common definition of platform does not exist. For this book we use
the definition given in Definition 1-2. Note that this definition encompasses

Platform:
35% sales growth

“Platform” used in
various contexts

1.2 Engineering Customised Products 7

all kinds of reusable artefacts as well as all kinds of technological capabil-
ities.

1.1.3 Combining Platform-Based Development and Mass
Customisation

The combination of mass customisation and a common platform allows us to
reuse a common base of technology and, at the same time, to bring out prod-
ucts in close accordance with customers’ wishes. The systematic combina-
tion of mass customisation and the use of a common platform for the
development of software-intensive systems and software products is the key
focus of this book. We call the resulting software development paradigm
software product line engineering. In Section 1.2 we sketch the key implica-
tions of combining those approaches. The motivations behind the product
line engineering paradigm are outlined in Section 1.3.

1.2 Engineering Customised Products

Combining platform and mass customisation in order to provide customised
products has many implications for the development process as well as the
developing organisation. We briefly sketch the three key influences.

1.2.1 Creating the Platform
In single-system engineering, products are regarded as independent, self-
contained items. In the example presented in Fig. 1-1 (bottom), this means
having four distinct projects for developing four distinct products. Develop-
ing these four types of cars by product line engineering requires the creation
of a platform that suits all of them. This platform comprises all common
parts, for instance a gear box that can be applied in all or most of the cars (in
so far, the platform extends the original meaning of a car platform as
described in Section 1.1.2). Furthermore, the platform determines the specif-
ics that distinguish not only the four cars but also how to accommodate the
customers’ wishes for more individualised products. Briefly, creating the
platform implies preparing for mass customisation. For our example, this
means having four basic types of cars, each with numerous customisable
features.

The strategy that we have intuitively followed in the above example is, first,
to focus on what is common to all products, and next, to focus on what is
different. In the first step, artefacts are provided that can be reused for all
products. These artefacts may be built from scratch or derived from another
platform or earlier systems. Built-in flexibility makes it possible to reuse
these artefacts in different applications, providing mass customisation. Cre-

Platform and mass
customisation

Preparing for mass
customisation

Commonality first,
differences later

8 1. Introduction to Software Product Line Engineering

ating this flexibility requires some effort. Therefore, in the automobile
industry, the platform is usually developed by a distinct project. Several
other projects are commissioned to develop the single cars or, more fre-
quently, groups of cars, each group encompassing a subset of the product
line’s products.

1.2.2 Introducing Flexibility
To facilitate mass customisation, the artefacts used in different products have
to be sufficiently adaptable to fit into the different systems produced in the
product line. This means that throughout the development process we have
to identify and describe where the products of the product line may differ in
terms of the features they provide, the requirements they fulfil, or even in
terms of the underlying architecture etc. We thus have to provide flexibility
in all those artefacts to support mass customisation.

Different cars of the same product line may for instance have different wind-
shield wipers and washers. We design the cars in a way that allows a com-
mon approach to support the different motors for these different windshield
wipers/washers, their different sizes, etc. Such flexibility comes with a set of
constraints. If you drive a convertible, you would not want a rear window
washer splashing water onto the seats! Therefore, the selection of a convert-
ible car means the flexibility that the availability of the windshield wipers
and washers is restricted, so that the rear window washer is disabled when
the car roof is open.

This flexibility is a precondition for mass customisation; it also means that
we can predefine what possible realisations shall be developed (there are
only a certain number of windshield wiper configurations conceivable). In
addition, it means that we define exactly the places where the products can
differ so that they can have as much in common as possible.

The flexibility described here is called “variability” in the software product-
line context. This variability is the basis for mass customisation. Variability
is introduced and defined in detail in Part II of this book.

In the automotive industry, cars sharing the same platform and exhibiting
similar features were called a product line or a product family. At this stage,
the relation between a platform and a product line was straightforward. A
manageable set of cars belonged to one product line that was based on a
single platform. But soon, in the history of automobile development, plat-
forms were shared across different product lines. New product lines used
platforms of earlier product lines etc. Thus, the simple relation between plat-
form and product line vanished. Consequently, it became necessary to man-
age carefully the trace information from a platform to the products derived
from it. Without such trace information, it is barely possible to find out

Flexibility
is the key

Variability

Sharing platforms
between product lines

1.3 Motivations for Product Line Engineering 9

which parts of the platform have been used in which product. Thus, for
example, the estimation of the impact of changes becomes difficult.

1.2.3 Reorganising the Company
Migrating from single-system engineering to a platform approach has far-
reaching consequences. The products derived from platform artefacts can no
longer be treated as being independent. They are related through the under-
lying technology. This also has to be reflected in the organisation structure
of a company: it may be necessary to establish additional organisation units,
e.g. one unit responsible for the platform, or by setting up additional com-
munication paths between formerly independent units. Basically, the plat-
form approach leads to standardisation of procedures, workflows, and the
technology employed within an organisation or even across organisations.

1.3 Motivations for Product Line Engineering

We already conveyed a first idea of the goals that product line engineering
pursues: to provide customised products at reasonable costs. In this section,
we briefly outline the key motivations for developing software under the
product line engineering paradigm.

1.3.1 Reduction of Development Costs
A far-reaching change of engineering practices is usually not initiated with-
out sound economical justification. An essential reason for introducing prod-
uct line engineering is the reduction of costs. When artefacts from the plat-
form are reused in several different kinds of systems, this implies a cost
reduction for each system. Before the artefacts can be reused, investments
are necessary for creating them. In addition the way in which they shall be
reused has to be planned beforehand to provide managed reuse. This means
that the company has to make an up-front investment to create the platform
before it can reduce the costs per product by reusing platform artefacts.

Figure 1-2 shows the accumulated costs needed to develop n different sys-
tems. The solid line sketches the costs of developing the systems independ-
ently, while the dashed line shows the costs for product line engineering. In
the case of a few systems, the costs for product line engineering are relative-
ly high, whereas they are significantly lower for larger quantities. The loca-
tion at which both curves intersect marks the break-even point. At this point,
the costs are the same for developing the systems separately as for develop-
ing them by product line engineering. Empirical investigations revealed that,

A platform leads to
standardisation

Up-front
investment

Pay-off around
three systems

10 1. Introduction to Software Product Line Engineering

for software, the break-even point is already reached around three systems.4
A similar figure is shown in [Weiss and Lai 1999], where the break-even
point is located between three and four systems. The precise location of the
break-even point depends on various characteristics of the organisation and
the market it has envisaged, such as the customer base, the expertise, and the
range and kinds of products. The strategy that is used to initiate a product
line also influences the break-even point significantly [McGregor et al.
2002]. Chapter 20 elaborates on the initiation of product lines.

1.3.2 Enhancement of Quality
The artefacts in the platform are reviewed and tested in many products. They
have to prove their proper functioning in more than one kind of product. The
extensive quality assurance implies a significantly higher chance of detecting
faults and correcting them, thereby increasing the quality of all products.

1.3.3 Reduction of Time to Market
Often, a very critical success factor for a product is the time to market. For
single-product development, we assume it is roughly constant,5 mostly com-
prising the time to develop the product. For product line engineering, the
time to market indeed is initially higher, as the common artefacts have to be
built first. Yet, after having passed this hurdle, the time to market is consid-

4 [Clements and Northrop 2001]: The sidebar on p. 226, “It Takes Two”, provides a closer examination

of the break-even point for software product lines.
5 In practice, this number varies, but for showing the effect of single-system vs. product line engineering

this assumption is sufficiently accurate.

Lower
development cost

Accumulated
Costs

Number of
Different Systems

Single Systems
System Family

Break-Even
Point

Up-Front
Investment

Lower Costs
per System

approx. 3 Systems
(Software Engineering)

Fig. 1-2: Costs for developing n kinds of systems as single systems compared to product
line engineering

Improved quality
through reuse

Shorter
development cycles

1.3 Motivations for Product Line Engineering 11

erably shortened as many artefacts can be reused for each new product (see
Fig. 1-3).

1.3.4 Additional Motivations
In this section, we briefly outline additional motivations for introducing a
software product line engineering paradigm. An overview of further motiva-
tions (and also key principles and solutions) can be found in [Pohl et al.
2001b].

1.3.4.1 Reduction of Maintenance Effort
Whenever an artefact from the platform is changed, e.g. for the purpose of
error correction, the changes can be propagated to all products in which the
artefact is being used. This may be exploited to reduce maintenance effort.
At best, maintenance staff do not need to know all specific products and
their parts, thus also reducing learning effort. However, given the fact that
platform artefacts are changed, testing the products is still unavoidable. Yet,
the reuse of test procedures is within the focus of product line engineering as
well and helps reduce maintenance effort. The techniques used in product
line engineering make a system better maintainable as stated in [Coplien
1998]: “The same design techniques that lead to good reuse also lead to
extensibility and maintainability over time.”

1.3.4.2 Coping with Evolution
The introduction of a new artefact into the platform (or the change of an
existing one) gives the opportunity for the evolution of all kinds of products
derived from the platform. Similarly, developers who want to introduce a
trend towards certain product features may do so by adding specific artefacts

Time to
Market

Number of
Different Systems

Single Systems
System Family

Time for Building
Common Artefacts

Shorter Development
Cycles due to Reuse

Fig. 1-3: Time to market with and without product line engineering

Propagation of
error corrections

Organised
evolution

12 1. Introduction to Software Product Line Engineering

to the platform. Thus, it is possible to better organise development for evo-
lution of the product range and reduce the effort compared to single-system
engineering.

1.3.4.3 Coping with Complexity
Due to the increased number of customers’ wishes, the complexity of prod-
ucts increases. This holds especially for software, where code size and com-
plexity sometimes increase beyond being manageable. The reason for this
trend is that more and more functionality is put into software.

Example 1-4: Size of the Windows Operating System

In 1991 the size of Windows NT PDK 2 was 1.8 million SLOC,6 see
[Cusumano and Selby 1998] – Windows XP has about 45 million
SLOC.

In embedded systems, the complexity increase was further aggravated by
moving functionality from hardware to software. This was done for several
reasons, mostly because software provides more flexibility than hardware as
well as a higher level of abstraction. Software enables complex interactions
between functionality, and allows for distribution over a network. This
causes a significant increase in the complexity of the system, making it diffi-
cult for developers to conceive the whole functionality. If no adequate meas-
ures are taken, high complexity leads to rapidly increasing error rates, long
development cycles, and a higher time to market – influencing our key moti-
vations.

The fact that the common parts are reused throughout the product line
reduces complexity significantly. The platform provides a structure that
determines which components can be reused at what places by defining vari-
ability at distinct locations; this reduces complexity. The reuse of common
parts from the platform reduces the error rate and the development time.

1.3.4.4 Improving Cost Estimation
The development organisation can focus its marketing efforts on those prod-
ucts that it can easily produce within the product line. Nevertheless, it can
allow extensions not covered by the platform. Products that do need such
extensions can be sold for higher prices than those products built by reusing
platform artefacts only. Furthermore, calculating prices for products realised
within the product line is relatively straightforward and does not include
much risk. Consequently, the platform provides a sound basis for cost esti-
mation.

6 SLOC = Source Lines of Code, the number of non-comment lines of code in a source program.

Complexity by
size increase

Complexity by
hardware–software

migration

Platform reduces
complexity

Platform simplifies
cost estimation

1.4 Software Product Line Engineering 13

1.3.4.5 Benefits for the Customers
Customers get products adapted to their needs and wishes. This is just what
they ask for – previously, users had to adapt their own way of working to the
software. In the past, it often happened that customers had to get used to a
different user interface and a different installation procedure with each new
product. This annoyed them, in particular as it even happened when replac-
ing one version of a product by the next version. So customers began to ask
for improved software ergonomics. Accordingly, software packages were
developed to support common user interfaces and common installation pro-
cedures. The use of such packages contributed to the proliferation of the idea
of platforms. Moreover, customers can purchase these products at a reason-
able price as product line engineering helps to reduce the production costs.
Additionally, customers get higher quality products since the reusable com-
ponents and their configurations have been tested in many products devel-
oped earlier and proved dependable. Moreover, many requirements are
reviewed more often, not only in domain engineering but also in application
engineering, and the architecture review for application architectures helps
to find problems in the domain architecture, too.

Despite possessing individual features, the products of a product line have a
lot in common due to the artefacts reused from the platform. Similar or the
same user interfaces and similar major functionality make it easy for the
customer to switch from one product to another. The customer does not have
to learn new ways of using another product derived from the same platform.

1.4 Software Product Line Engineering

Until recently software, especially embedded software was relatively small7

and each product variant got its own variant of software. Software was a way
to easily implement on the same hardware individual product variants that
originally required individual hardware variants. Compared to hardware,
software is easy and cheap to copy, transport, and replace. This fact was
exploited by employing software flexibly and adapting it at very late stages
of development, thus easing many problems of system developers. Not much
thought was spent on how software was produced. Outside the embedded
system world, software was typically not regarded as being variable. Either a
customer could buy a software system including all possible features one
might ever need, or software was produced for a single purpose by order of a
single customer.

7 See the introduction of [V. Ommering 2004], where it is shown how TV-set software grew from 1 kB

in 1978 to 100 kB in 1990 and to 10,000 kB in 2004.

Customers get higher
quality for lower
prices

Common
look and feel

Past situation on
software market

14 1. Introduction to Software Product Line Engineering

However, the situation in software engineering has changed. Almost all sys-
tems of a certain complexity contain software. Many systems in our envi-
ronment are becoming software-intensive systems, not only because vari-
ability can be implemented more flexibly than in pure hardware, but also
because of the fact that software allows the introduction of new functionality
that could not easily be achieved without it. The amount of embedded soft-
ware is growing, and the amount of variability is growing even faster. In
many systems, this amount is now many times larger than before software
came into play. Therefore, presently a strong need for adopting product line
engineering can be observed in the software domain, especially when size
and complexity exceed the limits of what is feasible with traditional
approaches.

1.4.1 Definition
We define the term software product line engineering as follows:

Definition 1-3: Software Product Line Engineering

Software product line engineering is a paradigm to develop software
applications (software-intensive systems and software products) using
platforms and mass customisation.

Our definition covers the development of pure software products or systems
as well as the development of software that is embedded into a software-
intensive system, i.e. a system that closely integrates hardware and software.
Being an integral part of many everyday products, embedded software con-
stitutes a great proportion of the total amount of software being developed
and sold. With respect to this book, it is valid to consider both kinds of soft-
ware, as the principles of product line engineering are the same for them.

Developing applications using platforms means to plan proactively for reuse,
to build reusable parts, and to reuse what has been built for reuse. Building
applications for mass customisation means employing the concept of
managed variability, i.e. the commonalities and the differences in the
applications (in terms of requirements, architecture, components, and test
artefacts) of the product line have to be modelled in a common way. The
definition of the commonalities and the variability, the documentation, the
subsequent deployment, and the management are key focuses of this book.

Managed variability has a great impact on the way software is developed,
extended, and maintained. Usually, for those who understand how a piece of
software works, it is also easy to change it and adapt it to suit a new purpose.
However, such changes often corrupt the original structure of the software
and hamper quality aspects like understandability or maintainability. In order

Demand for product
line engineering

Pure and
embedded software

Managed
variability

Constraining
adaptations

1.4 Software Product Line Engineering 15

to be able to deal with adaptations in a managed way, they have to be
accomplished in a reproducible manner. The abundance of possibilities for
adapting a piece of software has to be restricted to those places where it
makes sense to do so. More than other engineering disciplines, software
product line engineering deals with ways to restrict variation in a manage-
able way.

1.4.2 Software Platform
Definition 1-3 makes use of the term platform. In the software industry, this
term is often used to denote the underlying computer system on which appli-
cation programs can run. This may be the hardware used, e.g. the processor,
or, more often, the combination of hardware and operating system (see
Example 1-5).

Example 1-5: Symbian as a Platform

The Symbian operating system is used by several companies as a plat-
form for some of their product lines of mobile phones, including
Nokia, Siemens, and Motorola.

In software architecture the term platform is used slightly differently but still
in line with the classic meaning. A software architecture usually consists of
multiple layers. From the viewpoint of one layer, its underlying layer is
called its platform.

Though the above interpretations of platform are quite common in software
engineering, they do not reflect what makes up a platform in software prod-
uct line engineering. This kind of software platform must enable the creation
of entire products from reusable parts. Therefore, we use the definition given
in Definition 1-4.

Definition 1-4: Software Platform

A software platform is a set of software subsystems and interfaces that
form a common structure from which a set of derivative products can
be efficiently developed and produced.

[Meyer and Lehnerd 1997]

The subsystems belonging to a software platform encompass not just code
but also requirements, architecture, and other artefacts of the development
process.

Classic computer
platform

Platforms in software
architecture

Meaning of platform
in this book

16 1. Introduction to Software Product Line Engineering

1.4.3 Prerequisites
The fact that product line engineering entered the software engineering
domain much later8 than other domains was due to several reasons. Past
barriers for adapting the product line engineering paradigm to software
development have been partly overcome but can still complicate the adop-
tion of software product line engineering if not taken carefully into consider-
ation. To overcome these barriers, certain prerequisites are necessary for
adopting software product line engineering.

1.4.3.1 Enabling Technologies
For a long time, an important barrier to adopting software product line
engineering was the lack of adequate technology for applying the principles
of product line engineering in an easy way. In addition, part of the technol-
ogy available was not used in practice. The development of such enabling
technology supported the introduction of software product line engineering.
Actually, the implementation technologies of standard software engineering
are used for product line engineering, no new ones are introduced. Coplien
states that “many software families are naturally expressed by existing pro-
gramming language constructs” [Coplien 1998].

Object-oriented programming is a major enabling technology. Many pro-
grams were (and still are) written in procedural programming languages.
These languages make encapsulation and information hiding hard to put into
practice. Yet, encapsulation is a prerequisite for realising managed variabil-
ity. Object-oriented modelling and programming concepts mitigated this
barrier by supporting approved design principles in a more natural way.

Another important achievement is the introduction of component techno-
logy. Component technology enables developers to package software as
loosely coupled parts. Components can be developed, compiled, linked and
loaded separately. Only at run-time are they combined into a working sys-
tem. This helps developers to focus on a particular component and thus to
cope with complexity. Besides, component technology limits the scope
where variation is possible and thus supports the realisation of managed
variability.

Late-binding techniques, especially installation and run-time dynamic bind-
ing, allow for late configuration choices. By applying late binding, variabil-
ity can be designed and implemented in a uniform way without bothering
about how the actual variants look. This facilitates the implementation of
platforms and provides an easy way to realise mass customisation.

8 However, the basic ideas had already been proposed in the 1970s by Dijkstra [Dijkstra 1972] and

Parnas [Parnas 1976].

Implementation
technology

Object-oriented
programming

Component
technology

Binding
techniques

1.4 Software Product Line Engineering 17

The quasi-standardisation of middleware, interoperability, and interface
descriptions supports late binding. It also speeds up the configuration of
applications enormously and helps in defining the platform and its bounda-
ries. Software from different origins can be used to work together inside an
application. Middleware facilitates the development of loosely coupled com-
ponents, thus contributing to reduced complexity and easing managed reuse.

Configuration management is another important prerequisite for being able
to cope with the complexity of large applications consisting of many parts in
different versions. Therefore, sophisticated configuration management is
necessary to succeed in software product line engineering.

1.4.3.2 Process Maturity
Lacking maturity in software engineering can affect the success of software
product line engineering even more seriously than technological matters.

For a long time, software development processes were unstructured, hardly
well defined, and also not well understood. The increasing application of
assessments, e.g. postulated by CMMI, led to better software development
processes. Process models such as CMMI help to identify the weak parts of
software development processes, thus driving their improvement and foster-
ing the use of sound engineering principles in software practice.

The CHAOS report [Standish Group 1995] showed that inadequate require-
ments engineering is a major cause of problems in software projects. Conse-
quently, thorough requirements engineering comprising the identification of
commonality and variability is a major prerequisite for software product line
engineering.

The history of software and system development shows that abstraction
plays a major role in making the complexity manageable. Although model-
ling techniques were available, they were often not used or people used dif-
ferent techniques, mostly on an ad hoc basis. The major driver for using
modelling techniques was the foundation of UML [OMG 2003], which has
become an industrial standard. This standardisation of modelling notations
helps engineers to become aware of methods for modelling variability, too.

1.4.3.3 Domain Characteristics and Expertise
Another major prerequisite for software product line engineering is sufficient
domain expertise. Only people who know their markets and/or customers
can identify commonalities and variability in an adequate way for develop-
ing platforms and variability.

Software is flexible and all sorts of variability can be added to it. Wrong
choices are, however, costly. The introduction of variability that is not used
leads to additional costs for developing it and, at a later stage, removing it

Middleware

Configuration
management

Process
models

Requirements
engineering

Modelling
techniques

Domain
knowledge

18 1. Introduction to Software Product Line Engineering

again. Failing to introduce the required variability leads to additional costs
for realising common and even variable parts in each product. Moreover, it
is important to use an appropriate level of abstraction to define the variabil-
ity of a product line. Ideally, the variability abstractions match the com-
monly used domain abstractions. Domain-related abstractions are known to
the customers and developers and thus help them to understand the variabil-
ity of the product line. Not knowing the domain leads to incorrect abstrac-
tions with the danger that they are not perceived by the stakeholders, and
thus cause wrong choices, which have to be repaired afterwards.

The better you know the domain and the more experience you have with
your products, the more likely it is that you can successfully introduce a
software product line.

The stability of the domain is also an important factor for the successful
introduction of software product line engineering. If everything changes
every half-year in an unpredictable way, the investment costs never pay off.
This situation is similar to not understanding the domain well: variability is
added that is not needed and the variability that is actually required is not
available.

Domain
stability

2
A Framework for

Software Product
Line Engineering

In this chapter you will learn:

o The principles of software product line engineering subsumed by our software
product line engineering framework.

o The difference between domain engineering and application engineering,
which are the two key processes of software product line engineering.

o Where variability of the product line is defined and where it is exploited.
o The structure of this book, which is derived from the framework.

Günter Böckle
Klaus Pohl
Frank van der Linden

20 2. A Framework for Software Product Line Engineering

2.1 Introduction

Our framework for software product line engineering incorporates the cen-
tral concepts of traditional product line engineering, namely the use of plat-
forms and the ability to provide mass customisation.

A platform is, in the software context, a collection of reusable artefacts
(Definition 1-4). These artefacts have to be reused in a consistent and
systematic way in order to build applications. Reusable artefacts encompass
all types of software development artefacts such as requirements models,
architectural models, software components, test plans, and test designs.

The experience from reuse projects in the 1990s shows that without proper
planning the costs for reuse may be higher than for developing the artefacts
from scratch. It is therefore crucial to plan beforehand the products for which
reuse is sensible, together with the features that characterise these products.
The planning for reuse continues throughout the whole development process.

To facilitate mass customisation (Definition 1-1) the platform must provide
the means to satisfy different stakeholder requirements. For this purpose the
concept of variability is introduced in the platform. As a consequence of
applying this concept, the artefacts that can differ in the applications of the
product line are modelled using variability.

The following sections outline our software product line engineering frame-
work.

2.2 Two Development Processes

The software product line engineering paradigm separates two processes:

The software product line engineering paradigm separates two processes (see
e.g. [Weiss and Lai 1999; Boeckle et al. 2004b; Pohl et al. 2001b, V.d.
Linden 2002]):

Domain engineering: This process is responsible for establishing the
reusable platform and thus for defining the commonality and the vari-
ability of the product line (Definition 2-1). The platform consists of all
types of software artefacts (requirements, design, realisation, tests, etc.).
Traceability links between these artefacts facilitate systematic and con-
sistent reuse.

Application engineering: This process is responsible for deriving prod-
uct line applications from the platform established in domain engineer-
ing; see Definition 2-2. It exploits the variability of the product line and

Platform
artefacts

Planning
for reuse

Mass customisation
through variability

Establishing
the platform

Deriving
applications

2.3 Overview of the Framework 21

ensures the correct binding of the variability according to the applica-
tions’ specific needs.

The advantage of this split is that there is a separation of the two concerns, to
build a robust platform and to build customer-specific applications in a short
time. To be effective, the two processes must interact in a manner that is
beneficial to both. For example, the platform must be designed in such a way
that it is of use for application development, and application development
must be aided in using the platform.

The separation into two processes also indicates a separation of concerns
with respect to variability. Domain engineering is responsible for ensuring
that the available variability is appropriate for producing the applications.
This involves common mechanisms for deriving a specific application. The
platform is defined with the right amount of flexibility in many reusable
artefacts. A large part of application engineering consists of reusing the plat-
form and binding the variability as required for the different applications.

Definition 2-1: Domain Engineering

Domain engineering is the process of software product line engineer-
ing in which the commonality and the variability of the product line
are defined and realised.

Definition 2-2: Application Engineering

Application engineering is the process of software product line engin-
eering in which the applications of the product line are built by
reusing domain artefacts and exploiting the product line variability.

2.3 Overview of the Framework

Our software product line engineering framework has its roots in the ITEA
projects ESAPS, CAFÉ, and FAMILIES [V.d. Linden 2002; Boeckle et al.
2004b; CAFÉ 2004] and is based on the differentiation between the domain
and application engineering processes proposed by Weiss and Lai [Weiss
and Lai 1999]. The framework is depicted in Fig. 2-1.

The domain engineering process (depicted in the upper part of Fig. 2-1) is
composed of five key sub-processes: product management, domain require-
ments engineering, domain design, domain realisation, and domain testing.
The domain engineering process produces the platform including the com-
monality of the applications and the variability to support mass customi-

Separation of
concerns

Flexibility and
variability

ITEA
projects

Domain
engineering

22 2. A Framework for Software Product Line Engineering

sation. We briefly describe the domain engineering process and its sub-
processes in Section 2.4.

The application engineering process (depicted in the lower part of Fig. 2-1)
is composed of the sub-processes application requirements engineering,
application design, application realisation, and application testing. We
briefly describe the application engineering process and its sub-processes in
Section 2.6.

The framework differentiates between different kinds of development arte-
facts (Definition 2-3): domain artefacts and applications artefacts. The
domain artefacts (Definition 2-4) subsume the platform of the software
product line. We briefly characterise the various artefacts in Section 2.5. The
application artefacts (Definition 2-5) represent all kinds of development
artefacts of specific applications. We briefly characterise these artefacts in
Section 2.7. As the platform is used to derive more than one application,
application engineering has to maintain the application-specific artefacts for
each application separately. This is indicated in the lower part of Fig. 2-1.

Application
engineering

Domain and
application artefacts

D
om

ai
n

E
ng

in
ee

ri
ng

A
pp

lic
at

io
n

E
ng

in
ee

ri
ng

Domain
Requirements
Engineering

Domain
Realisation

Domain
Testing

Domain
Design

Application
Requirements
Engineering

Application
Realisation

Application
Testing

Application 1 – Artefacts incl. Variability Model

Architecture Components TestsRequirements

Domain Artefacts incl. Variability Model

Product
Management

Application N – Artefacts incl. Variability Model

Application
Design

Requirements Architecture Components Tests

Fig. 2-1: The software product line engineering framework

2.4 Domain Engineering 23

Note that neither the sub-processes of the domain and application engineer-
ing processes, nor their activities, have to be performed in a sequential order.
We have indicated this by a loop with an arrow in Fig. 2-1 for each process.

In this book, we define the key activities that have to be part of each product
line engineering process. The order in which they are performed depends on
the particular process that is established in an organisation. Thus, the sub-
processes and their activities described in this book can be combined with
existing development methods such as RUP (Rational Unified Process, see
[Kruchten 2000]), the spiral model [Boehm 1988], or other development
processes.

When the domain engineering process and the application engineering pro-
cess are embedded into other processes of an organisation, each sub-process
depicted in Fig. 2-1 gets an organisation-specific internal structure.
Nevertheless, the activities presented in this book have to be present. An
example of an organisation-specific process is the FAST process presented
in [Weiss and Lai 1999].

Definition 2-3: Development Artefact

A development artefact is the output of a sub-process of domain or
application engineering. Development artefacts encompass require-
ments, architecture, components, and tests.

Definition 2-4: Domain Artefacts

Domain artefacts are reusable development artefacts created in the
sub-processes of domain engineering.

Definition 2-5: Application Artefacts

Application artefacts are the development artefacts of specific product
line applications.

2.4 Domain Engineering

The key goals of the domain engineering process are to:

Define the commonality and the variability of the software product line.

Define the set of applications the software product line is planned for,
i.e. define the scope of the software product line.

No sequential
order implied

Combination with
existing processes

Organisation-specific
adaptation

Main
goals

24 2. A Framework for Software Product Line Engineering

Define and construct reusable artefacts that accomplish the desired vari-
ability.

The goals of domain engineering are accomplished by the domain engineer-
ing sub-process. Each of them has to:

Detail and refine the variability determined by the preceding sub-
process.

Provide feedback about the feasibility of realising the required variabil-
ity to the preceding sub-process.

The domain engineering part of the software product line engineering
framework is highlighted in Fig. 2-2. We briefly explain the domain
engineering sub-processes in this section, whereas domain artefacts are
explained separately in Section 2.5.

2.4.1 Product Management
Product management deals with the economic aspects of the software prod-
uct line and in particular with the market strategy. Its main concern is the
management of the product portfolio of the company or business unit. In

Five sub-
processes

Fig. 2-2: The domain engineering process

Scope of the
product line

2.4 Domain Engineering 25

product line engineering, product management employs scoping techniques
to define what is within the scope of the product line and what is outside.

The input for product management consists of the company goals defined by
top management. The output of product management is a product roadmap
that determines the major common and variable features9 of future products
as well as a schedule with their planned release dates. In addition, product
management provides a list of existing products and/or development arte-
facts that can be reused for establishing the platform.

Product management for software product lines differs from product man-
agement for single systems for the following reasons:

The platform has an essential strategic meaning for the company. The
introduction and elimination of an entire platform have a strong influ-
ence on entrepreneurial success.

A major strength of software product line engineering is the generation
of a multitude of product variants at reasonable cost.

The products in the product portfolio are closely related as they are
based on a common platform.

Product management anticipates prospective changes in features, legal
constraints, and standards for the future applications of the software
product line and formulates (models) the features accordingly. This
means that the evolution of market needs, of technology, and of con-
straints for future applications is taken into account.

We deal with the principles of product management, activities, and artefacts
in Chapter 9.

2.4.2 Domain Requirements Engineering
The domain requirements engineering sub-process encompasses all activities
for eliciting and documenting the common and variable requirements of the
product line.

The input for this sub-process consists of the product roadmap. The output
comprises reusable, textual and model-based requirements and, in particular,
the variability model of the product line. Hence, the output does not include
the requirements specification of a particular application, but the common
and variable requirements for all foreseeable applications of the product line.

9 A feature is an abstract requirement (see Definition 5-4 for the definition of “feature” by Kang et al.).

Input and
output

Differences from
single-system
engineering

Elicitation and
documentation

Input and
output

26 2. A Framework for Software Product Line Engineering

Domain requirements engineering differs from requirements engineering for
single systems because:

The requirements are analysed to identify those that are common to all
applications and those that are specific for particular applications (i.e.
that differ among several applications).

The possible choices with regard to requirements are explicitly docu-
mented in the variability model, which is an abstraction of the variabil-
ity of the domain requirements.

Based on the input from product management, domain requirements
engineering anticipates prospective changes in requirements, such as
laws, standards, technology changes, and market needs for future appli-
cations.

The artefacts and activities of domain requirements engineering are de-
scribed in detail in Chapter 5 and Chapter 10.

2.4.3 Domain Design
The domain design sub-process encompasses all activities for defining the
reference architecture of the product line. The reference architecture pro-
vides a common, high-level structure for all product line applications.

The input for this sub-process consists of the domain requirements and the
variability model from domain requirements engineering. The output encom-
passes the reference architecture and a refined variability model that includes
so-called internal variability (e.g. variability that is necessary for technical
reasons).

Domain design differs from design for single systems because:

Domain design incorporates configuration mechanisms into the refer-
ence architecture to support the variability of the product line.

Domain design considers flexibility from the very first, so that the refer-
ence architecture can be adapted to the requirements of future applica-
tions.

Domain design defines common rules for the development of specific
applications based on the reference architecture.

Domain design designates reusable parts, which are developed and
tested in domain engineering, as well as application-specific parts,
which are developed and tested in application engineering.

The artefacts and activities of domain design are described in detail in
Chapter 6 and Chapter 11.

Differences from
single-system

engineering

Definition of
reference architecture

Input and
output

Differences from
single-system

engineering

2.4 Domain Engineering 27

2.4.4 Domain Realisation
The domain realisation sub-process deals with the detailed design and the
implementation of reusable software components.

The input for this sub-process consists of the reference architecture including
a list of reusable software artefacts to be developed in domain realisation.
The output of domain realisation encompasses the detailed design and imple-
mentation assets of reusable software components.

Domain realisation differs from the realisation of single systems because:

The result of domain realisation consists of loosely coupled, configur-
able components, not of a running application.

Each component is planned, designed, and implemented for the reuse in
different contexts, i.e. the applications of the product line. The interface
of a reusable component has to support the different contexts.

Domain realisation incorporates configuration mechanisms into the
components (as defined by the reference architecture) to realise the
variability of the software product line.

The artefacts and activities of domain realisation are described in detail in
Chapter 7 and Chapter 12.

2.4.5 Domain Testing
Domain testing is responsible for the validation and verification of reusable
components. Domain testing tests the components against their specification,
i.e. requirements, architecture, and design artefacts. In addition, domain
testing develops reusable test artefacts to reduce the effort for application
testing.

The input for domain testing comprises domain requirements, the reference
architecture, component and interface designs, and the implemented reusable
components. The output encompasses the test results of the tests performed
in domain testing as well as reusable test artefacts.

Domain testing differs from testing in single-system engineering, because:

There is no running application to be tested in domain testing. Indeed,
product management defines such applications, but the applications are
available only in application testing. At first glance, only single compo-
nents and integrated chunks composed of common parts can be tested in
domain testing.

Domain testing can embark on different strategies with regard to testing
integrated chunks that contain variable parts. It is possible to create a

Detailed design and
implementation

Input and
output

Differences from
single-system
engineering

Validation of reusable
components

Input and
output

Differences from
single-system
engineering

28 2. A Framework for Software Product Line Engineering

sample application, to predefine variable test artefacts and apply them
in application testing, or to apply a mixture of the former two strategies.

We describe the artefacts produced by domain testing in Chapter 8 and deal
with product line test strategies and techniques in Chapter 13.

2.4.6 Other Software Quality Assurance Techniques
Besides testing, other software quality assurance techniques are also applica-
ble to software product line engineering, most notably inspections, reviews,
and walkthroughs. These techniques have to be integrated into the domain
and application engineering processes.

To our knowledge, specialised techniques for software product line inspec-
tions, reviews, or walkthroughs have not been proposed. There is also a lack
of experience reports identifying required adaptations of inspection, review,
and walkthrough techniques known from the development of single software
systems. We thus refer the interested reader to the standard literature on soft-
ware inspections, reviews, and walkthroughs such as [Fagan 1976; Fagan
1986; Freedman and Weinberg 1990; Gilb and Graham 1993; Yourdon
1989].

2.5 Domain Artefacts

Domain artefacts (or domain assets; see Definition 2-4) compose the plat-
form of the software product line and are stored in a common repository.
They are produced by the sub-processes described in Section 2.4. The arte-
facts are interrelated by traceability links to ensure the consistent definition
of the commonality and the variability of the software product line through-
out all artefacts. In the following, we briefly characterise each kind of arte-
fact including the variability model.

2.5.1 Product Roadmap
The product roadmap describes the features of all applications of the soft-
ware product line and categorises the feature into common features that are
part of each application and variable features that are only part of some
applications. In addition, the roadmap defines a schedule for market intro-
duction. The product roadmap is a plan for the future development of the
product portfolio. Its role in domain engineering is to outline the scope of the
platform and to sketch the required variability of the product line. Its role in
application engineering is to capture the feature mix of each planned appli-
cation.

Inspections, reviews,
and walkthroughs

Techniques for
single systems

Common
platform

Major features of
all applications

2.5 Domain Artefacts 29

Note that the output of product management (the product roadmap) is not
contained in the framework picture. The main reason for this is that the
product roadmap is not a software development artefact in the common
sense. Moreover, it guides both domain and application engineering, and is
not an artefact to be reused in application engineering. In domain engineer-
ing, it guides the definition of the commonality and the variability of the
software product line. In application engineering it guides the development
of the specific products. We thus decided to define the product roadmap
neither as a domain nor as an application artefact. We deal with the essential
techniques for defining the product roadmap in Chapter 9.

2.5.2 Domain Variability Model
The domain variability model defines the variability of the software product
line. It defines what can vary, i.e. it introduces variation points for the prod-
uct line. It also defines the types of variation offered for a particular vari-
ation point, i.e. it defines the variants offered by the product line. Moreover,
the domain variability model defines variability dependencies and variability
constraints which have to be considered when deriving product line applica-
tions. Last but not least, the domain variability model interrelates the vari-
ability that exists in the various development artefacts such as variability in
requirements artefacts, variability in design artefacts, variability in compo-
nents, and variability in test artefacts. It thus supports the consistent defini-
tion of variability in all domain artefacts.

We describe the variability model in greater detail in Chapter 4. To distin-
guish our variability model from the definition of variability within other
development artefacts, we call it the “orthogonal variability model”.

2.5.3 Domain Requirements
Domain requirements encompass requirements that are common to all
applications of the software product line as well as variable requirements
that enable the derivation of customised requirements for different applica-
tions. Requirements are documented in natural language (textual require-
ments) or by conceptual models (model-based requirements). Variability
occurs in functional as well as in quality requirements. In Chapter 5, we
elaborate on modelling variability in requirements using the orthogonal vari-
ability model.

2.5.4 Domain Architecture
The domain architecture or reference architecture determines the structure
and the texture of the applications in the software product line. The structure
determines the static and dynamic decomposition that is valid for all appli-

Product roadmap not
in framework picture

Product line
variability

Orthogonal
variability model

Reusable
requirements
artefacts

Core structure and
common texture

30 2. A Framework for Software Product Line Engineering

cations of the product line. The texture is the collection of common rules
guiding the design and realisation of the parts, and how they are combined to
form applications. Variability in the architecture is documented by refining
the orthogonal variability model and adding internal variability (i.e. variabil-
ity that is only visible to the engineers). The architectural texture defines
common ways to deal with variability in domain realisation as well as in
application design and application realisation. Chapter 6 elaborates on the
documentation of variability in design artefacts using the orthogonal vari-
ability model.

2.5.5 Domain Realisation Artefacts
Domain realisation artefacts comprise the design and implementation arte-
facts of reusable software components and interfaces. The design artefacts
encompass different kinds of models that capture the static and the dynamic
structure of each component. The implementation artefacts include source
code files, configuration files, and makefiles. Components realise variability
by providing suitable configuration parameters in their interface. In addition
to being configurable, each component may exist in different variants to
realise large differences in functionality and/or quality. We elaborate on
variability in domain realisation artefacts in Chapter 7.

2.5.6 Domain Test Artefacts
Domain test artefacts include the domain test plan, the domain test cases,
and the domain test case scenarios. The domain test plan defines the test
strategy for domain testing, the test artefacts to be created, and the test cases
to be executed. It also defines the schedule and the allocation of resources
for domain test activities. The test cases and test case scenarios provide
detailed instructions for the test engineer who performs a test and thus make
testing traceable and repeatable. We include variability definitions in domain
test artefacts to enable the large-scale reuse of test artefacts in application
testing. We deal with the documentation of variability in test artefacts in
Chapter 8.

2.6 Application Engineering

The key goals of the application engineering process are to:

Achieve an as high as possible reuse of the domain assets when defining
and developing a product line application.
Exploit the commonality and the variability of the software product line
during the development of a product line application.

Detailed design and
implementation

Reusable test
designs

Main
goals

2.6 Application Engineering 31

Document the application artefacts, i.e. application requirements, archi-
tecture, components, and tests, and relate them to the domain artefacts.
Bind the variability according to the application needs from require-
ments over architecture, to components, and test cases.
Estimate the impacts of the differences between application and domain
requirements on architecture, components, and tests.

The framework introduces four application engineering sub-processes:
application requirements engineering, application design, application realisa-
tion, and application test. Each of the sub-processes uses domain artefacts
and produces application artefacts. Figure 2-3 highlights the application
engineering part of the software product line engineering framework. We
characterise the application engineering sub-processes in this section. Appli-
cation artefacts are described in Section 2.7.

2.6.1 Application Requirements Engineering
The application requirements engineering sub-process encompasses all
activities for developing the application requirements specification. The
achievable amount of domain artefact reuse depends heavily on the applica-

Fig. 2-3: Application engineering

Four sub-
processes

Specification of
applications

32 2. A Framework for Software Product Line Engineering

tion requirements. Hence, a major concern of application requirements
engineering is the detection of deltas between application requirements and
the available capabilities of the platform.

The input to this sub-process comprises the domain requirements and the
product roadmap with the major features of the corresponding application.
Additionally, there may be specific requirements (e.g. from a customer) for
the particular application that have not been captured during domain
requirements engineering. The output is the requirements specification for
the particular application.

Application requirements engineering differs from requirements engineering
for single systems for the following reasons:

Requirements elicitation is based on the communication of the available
commonality and variability of the software product line. Most of the
requirements are not elicited anew, but are derived from the domain
requirements.

During elicitation, deltas between application requirements and domain
requirements must be detected, evaluated with regard to the required
adaptation effort, and documented suitably. If the required adaptation
effort is known early, trade-off decisions concerning the application
requirements are possible to reduce the effort and to increase the
amount of domain artefact reuse.

We deal with the specific activities of application requirements engineering
in Chapter 15.

2.6.2 Application Design
The application design sub-process encompasses the activities for producing
the application architecture. Application design uses the reference architec-
ture to instantiate the application architecture. It selects and configures the
required parts of the reference architecture and incorporates application-
specific adaptations. The variability bound in application design relates to
the overall structure of the considered system (e.g. the specific hardware
devices available in the system).

The input for application design consists of the reference architecture and the
application requirements specification. The output comprises the application
architecture for the application at hand.

Application design differs from the design process for single systems for the
following reasons:

Application design does not develop the application architecture from
scratch, but derives it from the reference architecture by binding vari-

Input and
output

Differences from
single-system

engineering

Specialisation of
reference architecture

Input and
output

Differences from
single-system

engineering

2.6 Application Engineering 33

ability, i.e. making specific choices at places where the reference archi-
tecture offers different variants to choose from.

Application design has to comply with the rules defined in the texture of
the reference architecture. The rules cover the binding of variability as
well as the incorporation of application-specific adaptations.

Application design must evaluate the realisation effort for each required
adaptation and may reject structural changes that would require a simi-
lar effort as for developing the application from scratch.

We elaborate on the key problems and solutions of application design in
Chapter 16.

2.6.3 Application Realisation
The application realisation sub-process creates the considered application.
The main concerns are the selection and configuration of reusable software
components as well as the realisation of application-specific assets. Reusable
and application-specific assets are assembled to form the application.

The input consists of the application architecture and the reusable realisation
artefacts from the platform. The output consists of a running application
together with the detailed design artefacts.

Application realisation differs from the realisation of single systems because:

Many components, interfaces, and other software assets are not created
anew. Instead, they are derived from the platform by binding variability.
Variability is bound, e.g. by providing specific values for component-
internal configuration parameters.

Application-specific realisations must fit into the overall structure, e.g.
they must conform to the reusable interfaces. Many detailed design
options are predetermined by the architectural texture. Application-
specific components can often be realised as variants of existing compo-
nents that are already contained in the platform.

We deal with the challenges of application realisation in Chapter 17.

2.6.4 Application Testing
The application testing sub-process comprises the activities necessary to
validate and verify an application against its specification.

Component
configuration and
development

Input and output

Differences from
single-system
engineering

Complete
application test

34 2. A Framework for Software Product Line Engineering

The input for application testing comprises all kinds of application artefacts
to be used as a test reference,10 the implemented application, and the
reusable test artefacts provided by domain testing. The output comprises a
test report with the results of all tests that have been performed. Addition-
ally, the detected defects are documented in more detail in problem reports.

The major differences from single-system testing are:

Many test artefacts are not created anew, but are derived from the plat-
form. Where necessary, variability is bound by selecting the appropriate
variants.

Application testing performs additional tests in order to detect defective
configurations and to ensure that exactly the specified variants have
been bound.

To determine the achieved test coverage, application testing must take
into account the reused common and variable parts of the application as
well as newly developed application-specific parts.

We elaborate on the specific challenges and the activities of application
testing in Chapter 18.

2.7 Application Artefacts

Application artefacts (or application assets) comprise all development arte-
facts of a specific application including the configured and tested application
itself. They are produced by the sub-processes described in Section 2.6. The
application artefacts are interrelated by traceability links. The links between
different application artefacts are required, for instance, to ensure the correct
binding of variability throughout all application artefacts.

Many application artefacts are specific instances of reusable domain arte-
facts. The orthogonal variability model is used to bind variability in domain
artefacts consistently in the entire application. Traceability links between
application artefacts and the underlying domain artefacts are captured to
support the various activities of the application engineering sub-processes.
These links also support the consistent evolution of the product line. For
example, if a domain artefact changes, the application artefacts affected by
this change can be easily determined. In the following, we briefly character-
ise each kind of application artefact.

10 The artefacts used as a test reference comprise the application requirements specification, the

application architecture, and the component and interface designs.

Input and
output

Differences from
single-system

engineering

Traceability between
application artefacts

Traceability
between domain and

application

2.7 Application Artefacts 35

2.7.1 Application Variability Model
The application variability model documents, for a particular application, the
binding of the variability, together with the rationales for selecting those
bindings. It is restricted by the variability dependencies and constraints
defined in the domain variability model. Moreover, the application variabil-
ity model documents extensions to the domain variability model that have
been made for the application. For example, it documents if a new variant
has been introduced for the application. It also documents if existing variants
have been adapted to match the application requirements better and if new
variation points have been introduced for the application. Briefly, the appli-
cation variability model documents the variability bindings made and all
extensions and changes made for a particular application. Note that, similar
to other application artefacts, a separate application variability model is
introduced for each product line application. We deal with the definition of
the application variability model in Chapter 15.

2.7.2 Application Requirements
Application requirements constitute the complete requirements specification
of a particular application. They comprise reused requirements as well as
application-specific requirements. The reuse of domain requirements
involves the use of the orthogonal variability model to bind the available
variability. Application-specific requirements are either newly developed
requirements or reused requirements that have been adapted. Chapter 15
elaborates on how to define the application requirements specification.

2.7.3 Application Architecture
The application architecture determines the overall structure of the consid-
ered application. It is a specific instance of the reference architecture. For the
success of a product line, it is essential to reuse the reference architecture for
all applications. Its built-in variability and flexibility should support the
entire range of application architectures. The application architecture is
derived by binding the variability of the reference architecture that is docu-
mented in the orthogonal variability model. If application-specific require-
ments make it necessary to adapt the reference architecture, the stakeholders
must carefully weigh up the cost and benefit against each other. We deal
with the development of the application architecture based on application
requirements and the reference architecture in Chapter 16.

2.7.4 Application Realisation Artefacts
Application realisation artefacts encompass the component and interface
designs of a specific application as well as the configured, executable appli-
cation itself. The required values for configuration parameters can be pro-

Variability bindings
for applications

Complete
specification

Specific instance of
reference architecture

Configuration
parameters

36 2. A Framework for Software Product Line Engineering

vided, for example, via configuration files. These parameter values are
evaluated, for example, by makefiles or the run-time system. The values can
be derived from the application variability model.

Many application realisation artefacts are created by reusing domain arte-
facts and binding the available variability. However, part of the realisation
artefacts usually has to be developed in the application realisation sub-
process for the specific application. Chapter 17 deals with the development
of an application based on reusable components.

2.7.5 Application Test Artefacts
Application test artefacts comprise the test documentation for a specific
application. This documentation makes application testing traceable and
repeatable. Many application test artefacts can be created by binding the
variability of domain test artefacts which is captured in the orthogonal vari-
ability model. Moreover, detailed test instructions such as the particular
input values to be used must be supplemented. For application-specific
developments, additional test artefacts must be created. We deal with the
development of application test artefacts in Chapter 18.

2.8 Role of the Framework in the Book

The book is organised according to the two key differences between soft-
ware product line engineering and single-system development:

The need for two distinct development processes, namely the domain
engineering process and the application engineering process.

The need to explicitly define and manage variability.

Part II elaborates on the definition of variability, which is the central concept
for realising mass customisation in software product line engineering. The
part consists of five chapters:

Principles of Variability (Chapter 4)

Documenting Variability in Requirements Artefacts (Chapter 5)

Documenting Variability in Design Artefacts (Chapter 6)

Documenting Variability in Realisation Artefacts (Chapter 7)

Documenting Variability in Test Artefacts (Chapter 8)

Application-specific
realisation

Complete test
documentation

Two processes
and variability

Part II
chapters

2.8 Role of the Framework in the Book 37

Part III elaborates on the creation of the platform and thus on the definition
of the commonality and the variability of the software product line. The
chapters are shown in the upper half of Fig. 2-4. Each of the first five chap-
ters of Part III elaborates on one of the sub-processes of domain engineering
(as shown in the upper part of Fig. 2-4). The last chapter of Part III deals
with the specific problem of selecting off-the-shelf components in domain
engineering. The chapters of Part III are:

Product Management (Chapter 9)

Domain Requirements Engineering (Chapter 10)

Domain Design (Chapter 11)

Domain Realisation (Chapter 12)

Domain Testing (Chapter 13)

Selecting High-Level COTS11 Components (Chapter 14)

11 COTS is the acronym for Commercial Off-The-Shelf. A high-level COTS component provides a

significant fraction of the functionality of a software product line.

Fig. 2-4: Structure of Parts III and IV

Part III
chapters

38 2. A Framework for Software Product Line Engineering

Part IV elaborates on the use of the platform to derive specific product line
applications. It shows how product line variability is exploited to develop
different applications. Each chapter explains one of the four application
engineering sub-processes (shown in the lower half of Fig. 2-4):

Application Requirements Engineering (Chapter 15)

Application Design (Chapter 16)

Application Realisation (Chapter 17)

Application Testing (Chapter 18)

Part V deals with the institutionalisation of software product line engineering
in an organisation. Its focus is on the separation between the domain and
application engineering processes. The chapters of Part V are:

Organisation (Chapter 19)

Transition Process (Chapter 20).

Part VI presents experiences with software product line engineering gained
in 15 organisations and briefly characterises essential fields for future
research. Whenever possible, we employ the terminology introduced in our
framework to make clear the relationships between the topics considered in
Part VI and our framework. The chapters of Part VI are:

Experiences with Software Product Line Engineering (Chapter 21)

Future Research (Chapter 22)

Part IV
chapters

Part V
chapters

Part VI
chapters

3
Overview of the

Example Domain:
Home Automation

In this chapter you will learn:

o Basic domain knowledge about the home automation domain, from which
most of the examples in this book have been taken.

o Examples of goals, functions, and variability in the home automation domain.
o The key building blocks of a home automation system illustrated by an

example.

Klaus Pohl
Ernst Sikora

40 3. Overview of the Example Domain: Home Automation

3.1 Smart Home Fundamentals

In recent times, smart homes have moved into the focus of scientific and
technological research and development. Most everyday-life technical
devices are controlled by microprocessors. Home automation integrates such
devices into a network. The network allows the devices to coordinate their
behaviour in order to fulfil complex tasks without human intervention. Intui-
tive user interfaces allow easy access to the functionality of a smart home.

A variety of domains contribute to the evolution of smart homes. An over-
view is given in Fig. 3-1. The relation between home automation and these
domains becomes clearer in the course of this chapter. For example, ‘web
technology’ allows to access home functions remotely through the Internet.

3.1.1 Goals
The home automation domain tackles four major goals: comfort, security,
life safety, and low costs. Smart home technology addresses these goals in
different ways. Comfort is increased by automating tedious tasks and by an
intuitive and well-designed user interface. Security is addressed by identifi-
cation mechanisms and surveillance equipment like outdoor cameras. Notifi-
cation mechanisms additionally contribute to security by allowing for imme-
diate reaction, e.g. in the case of an attempted burglary. A similar reasoning
holds for life safety. Here, sensors detect danger to life – for example,
caused by fire or electricity. Another aspect of life safety is health monitor-
ing, which can be part of a smart home as well. The fourth goal of home
automation, namely low costs, has two facets. First, expenses for purchasing
and installing the system should be low. Second, home automation helps to
reduce running costs by smart energy management, which prevents unneces-
sary heating, lighting, and other kinds of energy consumption. For example,

Major
characteristics

Related
domains

Home
Automation

Field Bus
Technology

Artificial
Intelligence

Ubiquitous
Computing

Local Area
Networks

Embedded
Devices

Human-Computer
Interaction

Web
Technology

Automation
Standards

Sensors &
Actuators

Fig. 3-1: Domains related to home automation

Comfort, security,
safety, low cost

3.1 Smart Home Fundamentals 41

when a resident opens a window, heating can be turned down automatically
for that room.

3.1.2 Stakeholders
Various stakeholders are involved in the development, installation, and
usage process of a home automation system. When dealing with home auto-
mation, the interests of these stakeholders have to be accounted for. The
interest of the residents of the home defines a large part of the requirements
that a smart home must satisfy. Residents are not necessarily identical with
the building owner who invests money for the installation of the system.
Thus, the building owner has own interests as well. In many cases, a care-
taker may also be involved, who is responsible for the administration of the
house and for accounting tasks. Managers of the company developing the
home automation system and bringing it to market have a strong interest in
the features of their products as well. Regarding the development process,
the installation, and technical maintenance of the smart home, three more
stakeholders can be identified: developers, installers, and maintenance per-
sonnel (technicians). This non-exhaustive list of stakeholders is depicted in
Fig. 3-2.

3.1.3 Smart Homes vs. Conventional Homes
Regarding technical equipment in homes as it is today reveals that in most
cases only few functions are automated. For example, the residents of a con-
ventional home switch lights on and off manually when entering or leaving a
room. Similarly, they check whether windows are closed by walking from
room to room, for instance when a storm is expected, or for security reasons.
Often, there are already some automated functions in a conventional home
such as alarm equipment, sensor-controlled roller shutters or programmable
timers for power outlets. But in contrast to smart homes these devices do not
cooperate. A typical situation that shows the drawbacks of isolated devices is
when the heating is on and some windows are open at the same time.

Viewpoints

Developers Installers Technicians

Smart HomeSmart Home

Residents Owner Caretaker

Managers …

Fig. 3-2: Examples of stakeholders in the smart home domain.

Conventionally
low automation

42 3. Overview of the Example Domain: Home Automation

Window sensors belonging to the alarm equipment would not remind the
residents to adjust heating or notify the heating system about open windows.

Smart homes are characterised by a high degree of automation. Their devices
are integrated into a home network. So, the smart home constitutes an entire
system that is made up of individual subsystems and whose behaviour is
determined by the software controlling it. Thus, it is possible to coordinate
the functions provided by different subsystems.

A major advantage that comes along with networking and software control is
the facility to provide a unified management layer for the whole system. In
order to interact with a particular device of a smart home, the residents do
not have to frequent this device and operate its individual user interface.
Instead the user can access all devices via a common user interface such as a
touch screen. The consequence is for example that residents do not need to
walk from room to room in order to check if some window is open, because
they can get this information from a centralised user interface.

In fact, the residents can use Internet applications and mobile computers to
control their home from any place. Figure 3-3 illustrates the possibility to
control home functions remotely via the Internet, e.g. from the home
owner’s work place (right side of the picture) or via a wireless, handheld PC
(bottom left). A simple scenario that shows the value of remote access is
checking whether an electric iron has been switched off, after already having
left on a vacation trip.

Software control
in smart homes

Common user
interface

Heating

Lighting

Home Appliances

Security

…

Fig. 3-3: Remote access to the smart home

Remote
access

3.2 Building Blocks of a Home Automation System 43

3.2 Building Blocks of a Home Automation System

In this section, we take a more technical viewpoint on home automation in
order to elaborate on typical components that a smart home contains.

3.2.1 Sensors and Actuators
Sensors and actuators are mechanical or electronic components that measure
and respectively influence physical values of their environment. Sensors
gather information from the physical environment and make it available to
the system. For example, infrared sensors can be used to detect the presence
of a person in a room. Likewise, the system can act on its environment by
means of actuators. An example is a light actuator that is capable of switch-
ing on or off or of dimming one or more electric lights.

3.2.2 Smart Control Devices
Smart control devices read data from sensors, process this data, and activate
actuators, if necessary. A single control device is responsible only for a frac-
tion of the total functionality of the smart home, such as the lighting of one
room. For many control and automation tasks a smart control device can act
autonomously, i.e. without control by a central server. But there are also
tasks that demand communication among different control devices or with
the home gateway (see next section).

Example 3-1: Electronic Door Locks

Later in the book, we use examples that deal with door locks, which
provide different kinds of authentication such as fingerprint-based
authentication. The technical realisation of an electronic door lock
employs actuators for locking and unlocking a door, and possibly sen-
sors that detect the state of a door (e.g. open or closed). The sensors
and actuators are connected to a control device that is responsible for a
particular door and has to communicate with other devices, e.g. to
access a database with fingerprint data of authorised persons. As this
book is about software product line engineering, we do not consider
the hardware configuration in our examples but the software necessary
to provide the door lock functionality. We assume that this software is
somehow deployed on the home automation hardware.

There are two major types of control devices: devices that are produced to be
flexibly adaptable to a wide range of tasks, and devices that are dedicated to
a special purpose. The former type are able to execute custom software and
connect different kinds of sensors and actuators. The latter type often come
together with sensors and actuators necessary for the given purpose. The

Measuring and
influencing the
environment

Control
automation

General and special
purpose devices

44 3. Overview of the Example Domain: Home Automation

examples used in this book do not explicitly distinguish between the two
types. However, we assume that some kind of software is necessary to pro-
vide the functionality of the control device. Example 3-1 illustrates the role
of control devices in the examples in this book.

3.2.3 The Home Gateway
The home gateway is the central server of a smart home. It offers the proces-
sing and data storage capabilities required for complex applications. Users
such as residents or technicians can access the services offered by the home
gateway via different front-ends that interact with the home gateway and
provide the user interface. The services offered by the home gateway mostly
pertain to overall system management functionality such as the configura-
tion, monitoring, and control of the subsystems and their devices, or the
detection of failures.

User management is a necessary component of the home gateway software.
Each individual user has different access rights and different preferences
with regard to the system functions. This kind of information is stored in the
database of the home gateway and can be accessed by other devices such as
electronic door locks (see Example 3-1). Moreover, the home gateway stores
a model of the home automation system. This model captures the types,
physical and logical locations, configuration parameters, etc., of all devices
in the home automation system.

As stated above, smart control devices can operate autonomously. For
example, the application program of a lighting control device can handle an
event, caused by a resident operating a light switch, without involving the
home gateway. However, in a home automation system various events can
occur that may demand complex reactions or a multitude of processing steps
from the system. Different events and reactions can be combined to work-
flows. The management and processing of workflows is within the responsi-
bility of the home gateway. Example 3-2 illustrates such a workflow.

The home gateway may also support other functions, such as audio and
video entertainment, Internet access, e-shopping, or email (see for example
[InHouse 2004]).

Configuring and
monitoring

Database

Workflows

Other
functions

3.2 Building Blocks of a Home Automation System 45

Example 3-2: An Example Workflow for Fire Detection

On the detection of fire, the home gateway shuts all windows, closes
gas valves, deactivates power outlets, switches on emergency lights,
unlocks doors, activates the alarm, and informs the fire station. Each
of these steps may involve several sub-steps and additional events.
Moreover, the event of detecting fire may coincide with other events
such as the detection of glass breakage, which otherwise indicates an
attempted burglary. The different events may demand reactions that
are in conflict with each other, e.g. unlocking doors on the detection
of fire and locking doors on the detection of glass breakage. Rules are
necessary how to deal with the coincidence of different events.

3.2.4 Networking
Like conventional computer networks, the network of a smart home can be
based on various communication media, e.g. twisted pair cable. To avoid
additional cabling, power-line communication or wireless communication
can be used. A realistic home automation system is inclined to employ a
heterogeneous network made up of various network standards and various
communication media. Network interfaces are devices that allow for inte-
grating diverse types of networks and communication media into the home
network. Apart from the internal network that links devices inside the home,
external networks such as the public Internet, ISDN, and mobile phone net-
works can be integrated as well.

It is not just that network technology comes in many different forms; the
devices connected to the home network can also differ greatly with respect
to their functionality and their software and hardware. As a consequence, the
software architecture of a smart home must be able to cope with all kinds of
networks and technical devices. This aspect is characteristic of many distrib-
uted systems.

3.2.5 Standards in the Home Automation Domain
Technological standards simplify the development of complex technical
systems and help to achieve compatibility between devices developed by
different manufacturers. In the home automation domain, standards are used
for instance with regard to network technology. Typically, the networking of
a smart home is based on field bus technology such as the European Instal-
lation Bus (EIB, see [EIBA 2004]) and the Local Operating Network (LON,
LonWorks, see [Echelon 1999; LonMark 2004]), or on local area network
technology (e.g. Ethernet or wireless LAN).

Heterogeneous
network

Software architecture
supporting
heterogeneity

Network
standards

46 3. Overview of the Example Domain: Home Automation

Certain aspects of the software architecture are standardised. A well-known
framework employed in the home automation domain is the OSGi frame-
work (Open Service Gateway Initiative, see [OSGi 2003]). Apart from the
OSGi standard, other vendor-specific software frameworks are also avail-
able.

3.3 An Example

In order to follow the examples presented in this book, it is useful to exam-
ine some simple example models of a home automation system before going
into software engineering details.

3.3.1 System Functionality
Figure 3-4 contains a schematic picture of a smart home with some net-
worked devices from the following subsystems: lighting control, door and
window control, and home appliances control. In the following, these sub-
systems are described in more detail.

The lighting control subsystem comprises switches, lights and sensors. A
smart home is expected to adapt lighting based on a number of factors. The
overall intensity of light in a room and the presence of persons are two basic
factors lighting control should take into account. However, the favoured
lighting can also depend on the current activity of the residents and on indi-
vidual habits. For example, different lighting would be desired for a dinner
party than for reading a book. Moreover, a smart home can offer an elaborate
vacation mode that uses lighting control and other subsystems to let the
house appear occupied.

The door and window control subsystem monitors the state of doors and
windows. Endowed with the information about all doors and windows, i.e.
whether they are open, closed, locked, or unlocked, the smart home can for
example remind the residents to shut some windows in certain situations.
Outer doors can be unlocked electronically based on some kind of identifi-
cation mechanism (see Example 3-1).

Window control also encompasses electric roller shutters. However, opening
and closing roller shutters affects lighting. Hence, the door and window
control subsystem and the lighting control subsystem have to interact with
each other. For example, when roller shutters are closed, lighting control can
switch on a lamp without the residents having to intervene or to operate both
subsystems individually.

The basic function of home appliances control is to monitor and control
power outlets. This allows the residents to monitor power consumption and

Software
frameworks

Smart
lighting

Doors and
windows

Roller
shutters

Home
appliances

3.3 An Example 47

switch off individual power outlets. In recent times, microprocessor-con-
trolled home appliances have become available that provide sophisticated
device interfaces enabling a tight integration into the smart home. This kind
of integration allows, for example, monitoring and operating a washing
machine at the user interface of the home automation system.

Smart homes contain more subsystems, such as heating, fire and smoke
detection, access control, audio and video equipment, Internet access, etc.
However, the previous considerations suffice to give a general understanding
of typical smart home applications.

The value of home automation becomes obvious if we consider that all the
functions so far mentioned are available at the same user interface. In addi-
tion, being equipped with an Internet or ISDN connection, the smart home
can offer remote access functionality (see Fig. 3-3). The user interface itself
may be realised in different ways. It is possible to employ a TV set, a wall-
mounted touch screen, a handheld PC or some other device. The user inter-

Fig. 3-4: Schematic picture of a smart home with lighting, door and window, and home
appliances control

Other
subsystems

Different user
interfaces

48 3. Overview of the Example Domain: Home Automation

face software can provide a graphical user interface but may also offer a
speech interface or – as sometimes suggested by human–computer inter-
action research – a human-like embodied character. The following, brief
scenario gives an idea of the prospects home automation can provide:

Example 3-3: Remote Access to the Smart Home

The residents are going on holiday. On the motorway they doubt
whether they have shut all the windows and locked the door in their
hurry. They access their home using a handheld PC with mobile Inter-
net connectivity. After ascertaining themselves that everything is all
right, they activate the vacation mode for their home in order to save
energy and protect it from burglars.

3.3.2 A Simple System Configuration
In the following, we briefly sketch a system configuration that facilitates
lighting control as depicted in Fig. 3-5. This system consists of a home gate-
way and two control devices, all of which are connected to a common net-
work. One of the control devices is responsible for monitoring the state of
light switches. The other one controls the lights attached to it.

Light
control

Smart Control Device

I/O Services

Communication
Services

Application
Program

I/O Interface

Network Interface

Smart Control Device

I/O Services

Communication
Services

Application
Program

I/O Interface

Network Interface

Home Gateway

I/O Services

Communication
Services

Application
Program

I/O Interface

Network Interface

Home Network (e.g. LON)

Network Interface

Internet

Management
Services

Lighting

on off

on off

on off

Fig. 3-5: Example configuration of a home automation system

3.3 An Example 49

The application programs that run on the control devices determine the reac-
tion of the system to the activation of a light switch. The application pro-
grams use I/O services provided by the lighting control devices that monitor
the switches and control the lights. The communication services provided by
the control devices enable the exchange of messages among the application
programs.

The software of the home gateway comprises a server application that can
interact with various front-ends. The front-end shown in Fig. 3-5 provides a
touch screen as user interface. Moreover the home gateway enables Internet
access to the smart home through an additional network interface

3.3.3 System Component Interaction
To portray the dynamics of a home automation system, we consider an
example scenario describing internal system interactions. The scenario in
Fig. 3-6 assumes that the system is equipped with sensors that are able to
detect water intrusion, e.g. in the basement of the house.

When a sensor detects water intrusion, the smart control device reports this
emergency event to the home gateway, which holds the knowledge about the
workflow that deals with this event. The home gateway acknowledges
receipt of the emergency message with a confirmation message. Having
received the confirmation, the smart control device leaves further processing
to the home gateway. The home gateway enquires of the security subsystem
whether any residents are in the house. Failing to identify any residents, the
home gateway sends a notification to the PDA user interface and waits for
further instructions from a resident. After some period of time has elapsed

Control
devices

Home
gateway

Smart
Control
Device

Home
Gateway

Water
Intrusion
Sensor

1. Raise Interrupt

2. Report Emergency

3. Confirm

4. Check Presence

PDA User
Interface

5. Send Notification

ISDN Phone
Network

6. Make Emergency Call

Fig. 3-6: Scenario with internal system interactions

Water intrusion
scenario

50 3. Overview of the Example Domain: Home Automation

without an answer from the mobile user interface, the home gateway calls an
emergency phone number that has been chosen by the residents for the case
of water intrusion. This action marks the end of the depicted workflow.

3.4 Software Variability in Smart Home Applications

The reason for dealing with home automation systems was to get insight into
a domain in which applying product line engineering is almost imperative.
The following examination demonstrates variability that is inherent to a
home automation system.

3.4.1 Examples of Variability
Variability allows choosing between different options, which we call vari-
ants. By a different choice of variants, one home automation system can
differ from another. In the following we present some examples of variabil-
ity in a home automation system:

User interface variability: One aspect of smart homes, where variability
is easy to identify, is the user interface. Various realisations of local and
remote user interfaces have been discussed or hinted at throughout the
chapter. Part of them constitute alternatives, others tend to coexist in the
same system. A typical set of variants might for example comprise a
graphical TV interface, a web-based interface, and a PDA interface.
Software variability is necessary to support different kinds of user inter-
faces for the home automation system.

Available sensors: The kinds of sensors installed in the home automa-
tion system influence the possible realisations of control tasks. A simple
example is the task of roller shade control. When timer control and
luminance sensors are available, the rules for opening and closing roller
shades depend on the current time and on the amount of daylight. When
weather sensors are additionally available, roller shades can be opened
in case of strong wind in order to prevent damage. Software variability
allows the provision of different control algorithms according to the
available sensors in the home automation system.

Fail-safety: The home automation system may support different levels
of fail-safety. For example, the basic level can provide self-tests and
failure reports. Higher levels can include redundant system components
for the most important functions. Software variability is needed to sup-
port different levels of fail-safety. For example, the software of a
redundant system has to detect malfunctions, deactivate defective com-
ponents and relocate tasks to back up components.

Choice of
variants

Different remote and
local user interfaces

Different control
algorithms

Different levels of
fail-safety

3.4 Software Variability in Smart Home Applications 51

Assistance for older and handicapped people: Home automation sys-
tems must fulfil additional requirements when they are used by older
and handicapped people. These users may have difficulties with every-
day activities and in the operation of the normal user interface. The
additional requirements, which only apply for a certain group of cus-
tomers, are realised by certain variants of the software.

The essence of the above examples is that the support of different options
leads to variability in the software of the smart home. This is the most
important observation with regard to the use of the examples in the book.

3.4.2 Causes of Variability
In this section we analyse the reasons for software variability such as the
variability presented in the examples of the previous section.

In order to make the system work, each individual configuration of hardware
devices must be supplied with appropriate software. Hardware and software
have to be compatible with each other. The support of different hardware
configurations demands software variability. This is the software engineers’
point of view on variability as software engineers have to deal with the dif-
ferent technologies that are supported or used by the home automation sys-
tem. The technical point of view is typically a minor concern for the cus-
tomer, who is mostly interested in the functionality of the home automation
system.

The interrelation between customer wishes, hardware, and software is illus-
trated in Fig. 3-7. The customer demands certain functionality and certain
quality. The home automation system has to satisfy the required functional-
ity and quality. It consists of a specific hardware configuration and a soft-
ware configuration that depend on each other.

Different customers have different demands with respect to the overall level
of automation as well as to the specific functions of their home automation

Different kinds
of assistance

Software
variability

Customer wishes and
technical constraints

Functionality
and quality

Customer

Functionality

Quality

Home Automation System

Hardware

Software

demands

satisfies

satisfies

operatesaffects

Fig. 3-7: Interrelations between customer needs, hardware, and software

Different
customer needs

52 3. Overview of the Example Domain: Home Automation

system. In addition, customers have different demands with regard to the
quality of the system. Both required functionality and required quality affect
the price of the home automation system. The differences in customer needs
are a reason for variability.

Example 3-4: Variability Caused by Customer Needs

It may be the case that one customer wants to have electronically
controlled door locks with fingerprint authentication while another
customer does not want to have electronic door locks at all for cost
reasons. In order to be able to provide both customers with applica-
tions that satisfy their individual wishes, the home automation system
has to support variability in door locks.

Not only differences in customer needs but also technical reasons cause vari-
ability as illustrated in Example 3-5.

Example 3-5: Variability Caused by Differences in Hardware

The home automation system supports fingerprint sensors from two
different manufacturers, which differ in the resolution of the scanned
fingerprints. Hence, the software of the home automation system has
to support variability in the resolution of fingerprint images.

3.5 Role of the Home Automation Domain in the Book

The remaining chapters of this book make use of the example domain in
order to explain software product line engineering techniques. The example
domain is used to illustrate the commonality as well as possible variability
among the applications of a product line. Requirements engineers, architects,
programmers, and test engineers have to deal with the commonality and
variability when developing a platform of reusable software artefacts, e.g.
for a home automation system. Such a platform allows the creation of a vari-
ety of customised home automation applications by reusing the platform
artefacts.

Typically, each chapter uses only a fragment of the smart home, whereas the
purpose of this chapter was to provide a coherent overall picture. Moreover,
each chapter uses the home automation example in a slightly different way
depending on the main focus of the chapter. Though some examples are
closely related, in general, the examples are independent of each other. They
are not meant to depict a single, consistent model of a home automation
software product line.

Hardware

Commonality
and variability

Independent
examples

Part II

Product Line
Variability

Part II: Overview

Documenting and managing variability is one of the two key properties character-
ising software product line engineering. The explicit definition and management of
variability distinguishes software product line engineering from both single-system
development and software reuse.

In this part you will learn:

The principles of software product line variability.

How to document explicitly the variability of a software product line in require-
ments, design, realisation, and test artefacts.

How to facilitate the consistent management of variability across the various
domain artefacts.

The documentation of the commonalities and the variability in all artefacts is illus-
trated using examples from the home automation domain.

Fig. II-1: Chapter overview of Part II

4
Principles of

Variability

In this chapter you will learn:

o Basic knowledge about the variability of a software product line.
o The difference between external and internal software product line variability.
o The basic concepts for modelling variability: variation points, variants, and

their interrelation.
o An orthogonal variability model used throughout this book to define variabil-

ity across all software development artefacts.

Kim Lauenroth
Klaus Pohl

58 4. Principles of Variability

4.1 Introduction

We introduce variability modelling in order to support the development and
the reuse of variable development artefacts. In software product line engin-
eering, variability is an essential property of domain artefacts. Hence, we use
variability modelling in this book to capture the variability of domain
requirements, architecture, components, and tests (the artefacts highlighted
in Fig. 4-1).

Variability is introduced during the product management sub-process when
common and variable features of the software product line applications are
identified. As domain requirements detail the features defined in product
management, variability is carried over to domain requirements. Similarly,
this holds for design, realisation, and testing. Requirements engineering,
design, and realisation deal with models of a system at different levels of
abstraction. At each level, variability from the previous level is refined and
additional variability is introduced, which is not a result of refinement. For
instance, it may be necessary to introduce variability at the architectural
level in order to make a component compatible with different versions of a

Variability in
domain artefacts

Fig. 4-1: Focus of variability modelling

Abstraction
levels

4.2 Variability Subject and Variability Object 59

standard component library. Variability at different abstraction levels is con-
sidered in more detail in Section 4.5.4.

We refer to the sum of all activities concerned with the identification and
documentation of variability as defining variability. Variability is defined
during domain engineering. It is exploited during application engineering by
binding the appropriate variants.

Defining and exploiting variability throughout the different life cycle stages
of a software product line is supported by the concept of managed variabil-
ity. This concept basically encompasses the following issues:

Supporting activities concerned with defining variability.

Managing variable artefacts.

Supporting activities concerned with resolving variability.

Collecting, storing, and managing trace information necessary to fulfil
these tasks.

Each sub-process in application engineering binds variability introduced by
the corresponding sub-process in domain engineering. This has to be done in
a consistent way to ensure that the required variant is built correctly. The
moment of variability resolution in realisation is often called the binding
time of the variability. The binding time is not within the focus of variability
modelling. To increase flexibility, the design may demand moving the
binding time to a rather late phase in the realisation, for instance during the
building of the actual system. There is a trend to decide very late on the
binding time, and thus make the binding time variable; see [V. Ommering
2004]. For further reading on variability management; see [Bosch et al.
2002; Bachmann et al. 2003].

4.2 Variability Subject and Variability Object

In common language use, the term variability refers to the ability or the ten-
dency to change. To be more precise, the kind of variability we are interested
in does not occur by chance but is brought about on purpose. We illustrate
variability in the real world with a few examples:

An electric bulb can be lit or unlit.

A software application can support different languages.

Chewing gum can be sweet or sour.

A triple band mobile phone supports three different network standards.

Defining and
exploiting variability

Managed
variability

Binding
time

“Variability” in
common language

60 4. Principles of Variability

It might be a good exercise for the reader to search for variability in his or
her surroundings. In order to characterise variability in more detail, we for-
mulate three questions that are helpful in defining product line variability.

The first essential question is “what does vary?” Answering this question
means identifying precisely the variable item or property of the real world.
The question leads us to the definition of the term variability subject.

Definition 4-1: Variability Subject

A variability subject is a variable item of the real world or a variable
property of such an item.

The second question is “why does it vary?” There are different reasons for
an item or property to vary: different stakeholder needs, different country
laws, technical reasons, etc. Moreover, in the case of interdependent items,
the reason for an item to vary can be the variation of another item.

The third question is “how does it vary?” This question deals with the differ-
ent shapes a variability subject can take. To identify the different shapes of a
variability subject we define the term variability object.

Definition 4-2: Variability Object

A variability object is a particular instance of a variability subject.

A vital effect of regarding the three questions is a shift in the way of thinking
about variability. Being aware of variability and dealing with it consciously
is an important prerequisite of variability modelling. In order to provide a
better understanding of variability subject and variability object, we give
some examples from different domains (Examples 4-1 to 4-3). Note that the
variability space, i.e. the available options, may be very large or even infi-
nite, such as the number of possible colours in Example 4-1.

Example 4-1: Variability Subject and Objects for “Colour”

The variability subject “colour” identifies a property of real-world
items. Examples of variability objects for this variability subject are
red, green, and blue.

Example 4-2: Variability Subject and Objects for “Payment Method”

Payment method is a variability subject and payment by credit card,
payment by cash card, payment by bill, and payment by cash are
examples of variability objects.

Three
questions

What does
vary?

Why does
it vary?

How does
it vary?

Consciousness
of variability

4.3 Variability in Software Product Line Engineering 61

Example 4-3: Variability Subject and Objects for “Identification
Mechanism”

The identification mechanism of a home security system is a variabil-
ity subject, keypad and fingerprint scanner are examples of variability
objects.
The reasons for the variability subject to vary can be for instance dif-
ferent security standards or different customer needs. Changing the
identification mechanism of an electronic door lock also leads to
changes in other system components like the database that stores the
keys:
a) Keypad: The database for this identification mechanism stores

numerical keys.
b) Fingerprint scanner: In this case, the database stores graphical

information, i.e. the characteristics of a fingerprint.
In this example, changing the identification mechanism of a door lock
from keypads to fingerprint scanners causes variability in the key
database.

4.3 Variability in Software Product Line Engineering

In this section, we define the central concepts for variability in software
product line engineering.

4.3.1 Variation Point
In software product line engineering, variability subjects and the corres-
ponding variability objects are embedded into the context of a software
product line. They represent a subset of all possible variability subjects and a
subset of all possible variability objects from the real world, which are
necessary to realise a particular software product line. We reflect this transi-
tion in our terminology and define the term variation point12 (Definition 4-3)
accordingly.

The definition applies to all kinds of development artefacts, i.e. require-
ments, architecture, design, code, and tests. Contextual information of a vari-
ation point encompasses the details about the embedding of the variability
subject into the software product line, such as the reason why the variation

12 Jacobson et al. define variation point as “one or more locations at which the variation will occur”

[Jacobson et al. 1997]. This definition is similar to the definition presented in this book, but Jacobson
et al. focus on UML models, whereas this chapter takes a more general view on variability by linking
variability in the real world and variability in software product lines. Furthermore, our definition
emphasises that a variation point exists in a certain context.

Variability in product
line context

Contextual
information

62 4. Principles of Variability

point was introduced. Examples of such reasons are the specifics of different
countries in which the software product line applications are sold, different
stakeholder needs, or different marketing strategies for the applications.

Definition 4-3: Variation Point

A variation point is a representation of a variability subject within
domain artefacts enriched by contextual information.

4.3.2 Variant
We define the term variant, which is a representation of a variability object,
in analogy to the term variation point (Definition 4-4). We illustrate the
transition from variability subjects to variation points, and from variability
objects to variants in Example 4-4.

It is important to recognise that variation points and variants are self-
contained entities that are distinct from artefacts like requirements, archi-
tecture, etc. A variant identifies a single option of a variation point and can
be associated with other artefacts to indicate that those artefacts correspond
to a particular option. Yet, for the sake of simplicity, in cases in which there
is no danger of confusion, the artefacts associated to a variant are referred to
as variants themselves (Section 4.6.9 deals with such terminology issues in
more detail).

Definition 4-4: Variant

A variant is a representation of a variability object within domain arte-
facts.

Example 4-4: Colour of a Car as Variation Point

The variability subject ‘colour’13 shown on the left of Fig. 4-2 has sev-
eral variability objects (‘red’, ‘blue’, ‘green’, ‘yellow’, etc.). An
automotive company wants to build cars in different colours, therefore
a variation point “colour of a car” (car is the context of the variation
point) is defined.
An example automotive company builds red and green cars, therefore
only the variants ‘red (car)’ and ‘green (car)’ are defined on the right
of Fig. 4-2. Other variability objects (‘yellow’, etc.) are not considered
as variants for the automotive company, e.g. for marketing reasons.

13 We use single quotes when we refer to the elements of a figure, such as ‘colour’ in Fig. 4-2.

Variability object
representation

Self-contained
entities

4.3 Variability in Software Product Line Engineering 63

4.3.3 Defining Variation Points and Variants
Variation points and variants are used to define the variability of a software
product line. Thus, it is essential to be able to identify variation points and
variants in a systematic manner. In the following, we provide three basic
steps for accomplishing this task.

The first step is to identify the item of the real world that varies, i.e. identi-
fying the variability subject (Example 4-5).

The second step is to define a variation point within the context of the soft-
ware product line. This step is necessary as there is a difference between
variability in the real world (represented by variability subjects) and vari-
ability in a software product line (represented by variation points). For
instance, a variation point only offers an excerpt of the possible variability in
the real world. A variation point becomes part of the model of the system
under consideration and affects this model in different ways. For example, a
variation point can mean that there are different requirements to choose from
and that there will be different applications, which result from a particular
choice model.

In the third step, the variants are defined. For this purpose, it is necessary to
select variability objects of the identified variability subject and define them
as variants of the variation point. Adding the variants supplements the
information provided by the variation point by specific instances. However,
the variation point still captures unique information not represented by the
variants. For example, the variants do not capture the variability subject.
Moreover, the set of variants is likely to change over time, while the vari-
ation point tends to remain constant.

Colour
(Variability Subject)

Red
(Variability Object)

Colour of a Car
(Variation Point)

Red Car
(Variant)

Real World

Green Car
(Variant)

Blue
(Variability Object)

Green
(Variability Object)

...

Yellow
(Variability Object)

Model

Fig. 4-2: Relation between variability in the real world and in a model of the real world

Three
steps

Identify
variability subject

Define
variation point

Define
variants

64 4. Principles of Variability

Example 4-5: Identifying the Variability Subject

The engineers of a home automation software product line suggest dif-
ferent ways of communication between system components, e.g.
cabled LAN, wireless LAN, Bluetooth, or power line. The engineers’
suggestions yield the variability subject “kind of network”.

Example 4-6: Creating a Variation Point

Example 4-5 defined the variability subject “kind of network”. The
resulting variation point for the home automation system is “home
automation system network”. The variation point indicates that the
home automation product line has to support different kinds of net-
works, yet without stating which ones. The development artefacts to
be developed are already affected by the existence of the variation
point. For example, it may be necessary to introduce an architectural
layer that provides a common view of different types of networks.

Example 4-7: Defining Variants

Example 4-5 already mentioned possible variability objects for the
variability subject “type of network”. The engineers select cabled
LAN and wireless LAN and define them as variants of the variation
point “home automation system network”. The variants make clear
that the software to be developed has to support cabled LAN as well
as wireless LAN. This allows engineers to develop the software far
more efficiently than would be possible knowing only that there are
different kinds of networks. Still the engineers have to prepare for
future changes in the set of variants, i.e. the addition of other kinds of
networks.

4.3.4 Variability of a Software Product Line
Variability of a software product line is variability that is modelled to enable
the development of customised applications by reusing predefined, adjust-
able artefacts. Hence, variability of a software product line distinguishes
different applications of the product line. Example 4-8 illustrates what we
mean by the variability of a software product line.

Commonality denotes features that are part of each application in exactly the
same form. Example 4-9 illustrates what we mean by commonality. In soft-
ware product line engineering, one can often decide whether a feature is
variable for the software product line (Example 4-8) or whether it is com-
mon to all software product applications and thus adds to the commonality
(Example 4-9).

Customised
applications enabled

Decision: variability
or commonality

4.4 Variability in Time vs. Variability in Space 65

Example 4-8: Variability in the User Interface Language

The customers of a home automation system can decide on the lan-
guage of the user interface before the system is installed. Moreover,
for an additional charge, a multilingual version is offered that allows
selecting the user’s favourite language at any time (e.g. by selecting a
flag symbol on a touch screen).

Example 4-9: User Interface Language as Commonality

The user interface of a home automation system offers users a choice
of their preferred language. This feature is part of each home automa-
tion system sold to any customer.

4.4 Variability in Time vs. Variability in Space

There is a fundamental distinction between variability in time and variability
in space that is essential for software product line engineering (see [Bosch et
al. 2002; Coplien 1998]). We define variability in time as follows:

Definition 4-5: Variability in Time

Variability in time is the existence of different versions of an artefact
that are valid at different times.

An unavoidable fact in software engineering is that development artefacts
evolve over time, e.g. when they have to be adapted due to technological
progress. This kind of change is denoted as evolution or as variability in
time. Variability in time applies to single-system engineering as well as to
software product line engineering. Configuration management is a common
technique used to manage different versions of development artefacts that
are valid at different times.

Yet, there is an important difference between single systems and software
product lines with regard to variability in time. In the domain artefacts of a
software product line, there are predefined locations, identified by variation
points, at which it is relatively easy to introduce changes. If the required
change pertains to such a variation point, engineers have already recognised
the need for change with respect to a certain variability subject. The follow-
ing example illustrates this situation:

Configuration
management

Evolution supported
by variation points

66 4. Principles of Variability

Example 4-10: Evolution in a Software Product Line

The engineers of a home automation system expect technological pro-
gress in identification mechanisms. Therefore they define a variation
point “door lock identification mechanism” with just one variant
“magnetic card”. Later, when sufficiently reliable fingerprint scanners
appear on the market, the engineers replace the variant “magnetic
card” by the variant “fingerprint scanner”.

Hence, variation points help to keep the impact of changes small by provid-
ing guidance for software engineers who can then enforce separation of con-
cerns for the variable aspect. The necessary changes tend to have only local
impact. Thus, less effort is necessary to add a new variant than to realise
arbitrary changes. However, in our example it could also have happened that
the engineers were not aware of future variability in identification mecha-
nisms. In this case the amount of rework for replacing the old identification
mechanism would probably be much higher as there would be no predeter-
mined locations in the development artefacts to introduce such a change.
This might even cause the engineers to argue for keeping the old mechanism
instead of integrating the new one.

Next, we define variability in space:

Definition 4-6: Variability in Space

Variability in space is the existence of an artefact in different shapes at
the same time.

We associate the different shapes of a variable artefact with variants and
assign these variants to the same variation point (see Section 4.6).

Example 4-11: Variability in Space

A home automation system offers the variation point “system access
by” with four variants: web browser, mobile phone (SMS), telephone
call (computer voice), and secure shell client (SSH). These variants
are associated, for instance, with requirements artefacts of the soft-
ware product line.

Variability in space is quite different from variability in time. The time
dimension covers the change of a variable artefact over time. The space
dimension covers the simultaneous use of a variable artefact in different
shapes by different products. The time dimension of variability is synonym-

Predetermined
locations for changes

Variants assigned to
variation point

Differences from
variability in time

4.4 Variability in Time vs. Variability in Space 67

ous with software evolution, whereas the space dimension of variability is a
younger field of research.

Single-system engineering does not provide the means to deal with variabil-
ity in space in an adequate manner, whereas the goal of software product line
engineering is to build similar products that differ within a defined scope.
These products are normally offered at the same time and therefore – in
contrast to single software system development – understanding and hand-
ling variability in space is an important issue of software product line engin-
eering. Hence a major goal of this book is to provide the reader with
sufficient information on variability in space. When speaking of variability
we mostly mean variability in space. If necessary, we use the complete terms
variability in time and variability in space to avoid confusion.

Development artefacts vary in time as well as in space. In addition, the cate-
gorisation of the occurrence of variability in a development artefact as vari-
ability in time or variability in space can change over time. Figure 4-3
illustrates the usage of keypads, magnetic cards, and fingerprint scanners in
an ‘economy line’ and a ‘professional line’ of a home automation system.
Magnetic cards on the one hand and keypads or fingerprint scanners on the
other hand are clearly examples of variability in space. Yet, there is a small
area that marks the transition from keypads to fingerprint scanners (indicated
by small waves). This area expresses that the transition from keypads to
fingerprint scanners is a smooth one. During the time period highlighted by
the waves (Fig. 4-3), both versions of electronic door locks are used in the
professional line of home automation systems. According to Definition 4-6
the coexistence of both variants is considered as variability in space.

Our focus:
variability in space

Change of
variability over time

Space

Time

Professional
Line

Economy
Line

1990 1995 2000 2005

Magnetic Cards

Keypad Fingerprint Scanner

Fig. 4-3: Variability in time and space

68 4. Principles of Variability

4.5 Internal and External Variability

Different stakeholders perceive differently what is variable: customers want
applications customised to their individual needs. This entails that customers
must be aware of at least a part of the variability of a software product line
(Fig. 4-4).

On the other hand, variability is an integral part of domain artefacts and thus
a major concern of the organisation that develops the software product line.
In order to be able to differentiate between these two views we define the
terms external variability and internal variability:

Definition 4-7: External Variability

External variability is the variability of domain artefacts that is visible
to customers.

As external variability is visible to customers, they can choose the variants
they need. This can happen either directly or indirectly. In the former case,
customers decide for each variant whether they need it or not. In the latter
case product management selects the variants thereby defining a set of dif-
ferent applications among which the customers can choose. The two cases
can also be combined, i.e. product management defines a set of applications
but only binds a part of the external variability. Thus the customers are able
to decide about the unbound variants themselves.

Definition 4-8: Internal Variability

Internal variability is the variability of domain artefacts that is hidden
from customers.

All decisions that concern defining and resolving internal variability are
within the responsibility of the stakeholders representing the provider of a

Customer
view

Customer

External Variability

Variability Customer

Internal Variability

Variability

Fig. 4-4: Internal and External Variability

Developer
view

External
variability

Internal
variability

4.5 Internal and External Variability 69

software product line. The customer does not have to take internal variability
into account when deciding about variants.

Example 4-12: External Variability

The customers of a home automation system can choose between
three electronic door lock identification mechanisms: keypad, mag-
netic card, and fingerprint scanners.

Example 4-13: Internal Variability

The communication protocol of a home automation system network
offers two different modes: one is optimised for high bandwidth, the
other for error correction. The installers measure the quality of the
available communication medium and choose the mode based on the
measurement results.

4.5.1 Causes of External Variability
External variability directly contributes to customer satisfaction as customers
are aware of this kind of variability and can select those options that serve
their needs best. Thus, different stakeholder needs are a cause of external
variability.

Yet, there are more causes. External variability can for example be intro-
duced because of differences in laws that apply to the domain of the software
product line (e.g. the medical domain or the home automation domain).
Similarly, different standards that have to be fulfilled by the applications of a
software product line can be the reason for external variability.

Example 4-14: Different Standards Causing External Variability

A home automation product line supports two security standards,
which are officially imposed by a home automation association,
namely basic security and high security. The basic security standard
demands that the front door is secured by a numeric keypad. The high
security standard demands a numeric keypad and additionally a bio-
metric identification mechanism. Only homes compliant with the lat-
ter standard receive an official security certificate.

4.5.2 Causes of Internal Variability
Internal variability often emerges when refining or realising external vari-
ability. The realisation of each option offered to the customer typically
demands several fine-grained options at a lower abstraction level. The

Stakeholder
needs

Laws and
standards

Refinement of
external variability

70 4. Principles of Variability

customer is usually interested in high-level decisions, not in those at a fine-
grained level. Therefore, the different realisation alternatives need not be
communicated to the customer.

Similarly, the realisation or refinement of internal variability can lead to
more internal variability at a lower abstraction level. The relation between
variable artefacts at different abstraction levels is a complex one. For
instance, a variable requirement can relate to a couple of variable artefacts at
the architecture level. Conversely, it is possible that one variable artefact at
the architecture level is influenced by a couple of variable requirements.
Thus there is an n-to-m relation between artefacts at different abstraction
levels.

Finally, technical issues that do not have to be considered by the customer
can be the cause of internal variability. Typical examples of such technical
reasons are testing, implementation, installation, or maintenance issues or
matters of scalability, portability, etc.

Example 4-15: Technical Issues as Causes of Internal Variability

The fingerprint scanner door lock in a home automation system can
use two different ways of storing fingerprint images, compressed and
uncompressed. The uncompressed algorithm is used during system
maintenance and development to enable fine-tuning and testing of the
algorithm. Compressed image storage is used during the normal sys-
tem operation to save database capacity.

4.5.3 Deciding between Internal and External Variability
Different considerations have to be weighed up to declare whether variabil-
ity is internal or external. For instance, customer interest, business strategy,
and marketing issues have to be considered.

Hiding variability from the customer (internal variability) leads to reduced
complexity to be considered by the customer. Being faced with all possible
decisions necessary to derive an application from domain artefacts, the cus-
tomer would be overwhelmed with the number of possible decisions and
their interrelations. Hence, restricting the customer’s view by hiding internal
variability makes the decision process more convenient and thereby attracts
more customers.

In addition, declaring variability as being internal can contribute to protec-
ting company secrets from competitors and thus hinder them from imitating
innovative ideas too early. This illustrates that also business strategy influ-
ences the differentiation between internal and external variability.

Refinement of
internal variability

Technical
reasons

Reduced
complexity

Business
strategy

4.5 Internal and External Variability 71

Example 4-16: Internal Variability as a Part of Business Strategy

The use of a LAN as an alternative to the EIB (European Installation
Bus; see Chapter 3) in a home automation system might be a competi-
tive advantage for the company, since it allows the use of low-cost
components. It might be wise not to draw competitors’ attention to
this feature too early.

Finally, marketing is a crucial aspect to consider when declaring variability
as internal or external. Being able to choose between several variants can
significantly increase the customer’s perceived value of a product. Yet, there
may be other cases in which the variability of a new software product line
interferes with older applications that still generate high profits for the com-
pany. Then, it might be advisable not to offer this variability to customers
until sales of the other applications drop. Hence, marketing people have to
consider carefully the pros and cons of making variability visible to custom-
ers.

4.5.4 The Variability Pyramid
Variability is defined at some abstraction level of domain artefacts and
refined at lower abstraction levels. When creating application artefacts, the
variability of domain artefacts is considered again in order to bind the
required variants.14 The variability pyramid in Fig. 4-5 illustrates the amount
of variability15 that has to be considered at each abstraction level.

Stakeholder needs, laws, and standards make up the top of the pyramid. The
growth of the pyramid represents the typical increase of the complexity of
variability from higher to lower abstraction levels:

Requirements variability usually leads to a larger amount of variability
in architecture. For example, a requirement is typically mapped to more
than one design element. Consequently, the variability in a requirement
leads to variability in several design elements and thus to an increase of
the variability definitions. Similarly, variability in design is refined into
variability in components which again increases the variability com-
plexity. Finally, software testing also has to take into account the vari-
ability defined in requirements, in design, and in components. The
variability must, for example, be considered in test cases but, equally, in
test environments, test mock-ups, and simulators. Therefore, the com-
plexity of the variability is again increased.

14 Svahnberg et al. deal with resolving variability at different stages of software product line engineering

in [Svahnberg et al. 2001].
15 The amount of variability is introduced as an abstract entity here. The reader can think of the amount of

variability as a measure based on the number of variation points, variants and variable artefacts.

Marketing
reasons

Defining and
binding variability

Increase of variability
complexity

72 4. Principles of Variability

The complexity of variability also increases due to the introduction of
additional internal variability. The introduction of internal variability is
represented in Fig. 4-5 by the arrows leading from outside the pyramid
to its interior (see Section 4.5.2 for examples of internal variability).

With the increase of variability definitions, the number of variants and vari-
ation points increases together with an increase of the interrelations between
variants, variation points, and development artefacts, i.e. the complexity of
the variability increases.

External variability is represented as a grey area at the core of the pyramid,
shrinking in size from top to bottom. This represents the decrease of external
variability from higher to lower abstraction levels. The reason for this
decrease is that the customer is primarily interested in the features or
requirements of an application but usually less interested in the internal
realisation. A customer may have to decide on specific aspects of the archi-
tecture but probably does not want to deal with implementation issues.
Curved arrows in Fig. 4-5 leading from the core of the pyramid to its outer
regions represent external variability causing internal variability.

The large amount and high complexity of variability inherent in the variabil-
ity pyramid can only be handled by means of managed variability. The first
step towards managed variability is a common notation for variability as
introduced in the following section.

4.6 Orthogonal Variability Model

In this section we introduce the meta model and the graphical notation of our
orthogonal variability model.

Increase of
interrelations

External
variability

Variability
pyramid Stakeholder Needs / Laws / Standards

Requirements

Design

Components

TestsInternal
Variability

Internal
Variability

External
Variability

Le
ve

ls
 o

f A
bs

tra
ct

io
n

R
ef

in
em

en
t

Fig. 4-5: Amount of variability at different abstraction levels

4.6 Orthogonal Variability Model 73

4.6.1 Explicit Documentation of Variability
An adequate documentation of variability information should at least include
all the information needed to answer the following questions:

What varies? To be able to answer this question the variable properties
of the different development artefacts have to be explicitly defined and
documented by variation points. For documenting the variability in
requirements one has to take into account textual requirements, features,
scenarios, and traditional requirements models (Chapter 5). Variability
in the product line architecture may affect the system structure, behav-
iour, or the deployment of software to hardware (Chapter 6). Variability
in realisation artefacts includes variability in components and interfaces
as well as variability implementation mechanisms, such as aspect-
oriented programming or pre-compiler macros (Chapter 7).

Why does it vary? This question was analysed in Section 4.5 for internal
and external variability. The causes of external variability are, for
instance, stakeholder needs, laws, and standards, or simply product
management decisions. The causes of internal variability include the
realisation of external variability, realisation of other internal variabil-
ity, as well as technical variability. We capture the causes of variability
in textual annotations of variation points and variants.

How does it vary? Answering this question means explicitly document-
ing the available variants and linking them to domain model elements
that correspond to these variants by trace links. We call the links “arte-
fact dependencies”.

For whom is it documented? The distinction between internal and exter-
nal variability defines the audience of a variation point and/or its vari-
ants. This distinction is based on the fact that, for instance, variability
documentation for customers is different from variability documenta-
tion for software test engineers. The separation in presenting internal
and external variability can be achieved in different ways, e.g. by using
different documents for different stakeholders. We record the separation
by distinguishing between internal and external variation points.

The explicit documentation of variability has significant advantages as men-
tioned in the previous sections. The three key advantages are the improve-
ment of making decisions, communication, and traceability. We briefly
characterise each of these aspects:

Explicitly documented variability improves decision making by forcing
engineers to document the rationales for introducing a certain variation
point or a certain variant. The documentation of rationales can be used
for example by customers (external variability) in their choice of a cer-

Required variability
information

What?

Why?

How?

Documented
for whom?

Advantages of explicit
documentation

Decision
making

74 4. Principles of Variability

tain variant or by engineers in their task of defining or binding variabil-
ity.

Explicit variability modelling improves communication about the vari-
ability of a software product line by providing a high-level abstraction
of variable artefacts. For instance, communicating variability to cus-
tomers benefits from the existence of an explicit variability model. The
explicit documentation of variability subjects as variation points enables
customers to pinpoint the decisions to be made. The explicit documen-
tation of variability objects as variants allows customers to consider the
available options for each decision.

Explicitly documented variability allows for improved traceability of
variability, for instance between its sources and the corresponding vari-
able artefacts. This type of link is necessary, for example, to perform
application requirements engineering efficiently (Chapter 15). In addi-
tion, traceability links facilitate the implementation of changes, e.g.
with respect to a variation point. Thus, the variability model of a soft-
ware product line provides an entry point to navigate through all kinds
of development artefacts.

Example 4-17: Improved Customer Communication

The customers of a home automation system are interested in remote
access to the system. A brochure on the home describes the variation
point ‘remote access by’ with the variants ‘dial-up isdn access’ and
‘internet-based access‘. This tells the customers that the home automa-
tion system supports two different ways of satisfying their needs.

4.6.2 Orthogonal Variability Definition
Variability can be defined either as an integral part of development artefacts
or in a separate variability model. Many research contributions have sug-
gested the integration of variability in traditional software development dia-
grams or models such as use case models, feature models, message sequence
diagrams, and class diagrams. Kang et al. and Fey et al. use feature models
to represent variability [Kang et al. 2002; Fey et al. 2002]. Halmans and Pohl
and von der Maßen and Lichter introduce variability in use case models
[Bühne et al. 2003; Halmans and Pohl 2003; V.d. Maßen and Lichter 2002].
Bosch et al. and Svahnberg et al. deal with variability in implementation
structures [Bosch et al. 2002; Svahnberg et al. 2001].

Modelling variability within the traditional software development models
has some significant shortcomings. First, if variability information is spread
across different models it is almost impossible to keep the information con-

Communication

Traceability

Variability in
artefact models

Shortcomings of
integrated variability

4.6 Orthogonal Variability Model 75

sistent. Second, it is hard to determine, for instance, which variability infor-
mation in requirements has influenced which variability information in
design, realisation, or test artefacts. Third, the software development models
(e.g. feature models) are already complex, and they get overloaded by
adding the variability information. Fourth, the concepts used to define vari-
ability differ between the different kinds of software development models.
Consequently, the variability defined in different models does not integrate
well into an overall picture of the software variability. Yet, such an overall
picture turns out to be essential for software product line engineering. Fifth,
the definition of the variability information within a single development
model often leads to ambiguous definitions of the variability contained in
development artefacts (we provide an example of such an ambiguous
definition in Section 5.4.1).

For these and other reasons (for instance, those described in [Bachmann et
al. 2003; Geyer and Becker 2002; Muthig and Atkinson 2002; Bühne et al.
2004b; Bühne et al. 2005]), approaches have been proposed that suggest
defining the variability information in a separate model. We call such a
model an “orthogonal variability model” (Definition 4-9). The variability
model presented in this chapter is such a model.

Definition 4-9: Orthogonal Variability Model

An orthogonal variability model is a model that defines the variability
of a software product line. It relates the variability defined to other
software development models such as feature models, use case
models, design models, component models, and test models.

An orthogonal variability model provides a cross-sectional view of the vari-
ability across all software development artefacts. In the following subsec-
tions we incrementally introduce the elements of our orthogonal variability
model. For each element we define a graphical notation. We use the
orthogonal variability model throughout the book for the definition of the
variability of a software product line across all development artefacts.

4.6.3 Variation Points, Variants, and Variability Dependencies
The basic elements of our orthogonal variability model are defined in the
meta model in Fig. 4-6 using UML 2 notation. The two central elements of
the variability meta model are the ‘variation point’ and ‘variant’ classes
(Definitions 4-3 and 4-4).

The ‘variation point’ class is an abstract class (indicated by the italic font in
Fig. 4-6) and is specialised into the two classes ‘internal variation point’ and
‘external variation point’. This specialisation is complete and disjoint. Con-

Orthogonal
variability modelling

Variability
meta model

Basic
elements

Internal and external
variation points

76 4. Principles of Variability

sequently, every variation point is either of the class ‘internal variation
point’ or ‘external variation point’. The two classes have different semantics.
The ‘internal variation point’ has associated variants that are only visible to
developers but not to customers. The ‘external variation point’ has associ-
ated variants that are visible to developers and customers.

Each model element depicted in Fig. 4-6 has an attribute called textual anno-
tation that allows us, for instance, to record the rationales for introducing the
element. For the sake of simplicity, the attributes are shown neither in Fig.
4-6 nor in the other models in this chapter.

A variability dependency is the association class of an association between
the ‘variation point’ and the ‘variant’ classes. The association states that a
variation point offers a certain variant. The multiplicities of the association
enforce the following conditions:

Each variation point must be associated with at least one variant.

Each variant must be associated with at least one variation point.

A variation point can offer more than one variant.

A variant can be associated with different variation points.

The variability dependency is defined as an abstract class (indicated by the
italic font). We specialise the variability dependency relationship into a
mandatory and an optional relationship (Fig. 4-6). The specialisation is
defined as complete and disjoint.

The optional variability dependency states that a variant related to the vari-
ation point can be a part of a particular product line application but does not
need to be a part of it (Definition 4-10).

Variant

Internal
Variation Point

External
Variation Point

Optional Mandatory

{complete, disjoint}

Variability
Dependency

{complete, disjoint}

Variation Point
1..n1..n

Fig. 4-6: Variation point, variant, and the variability dependency in the variability meta
model

Textual
annotations

Variability
dependency

Optional variability
dependency

4.6 Orthogonal Variability Model 77

Definition 4-10: Optional Variability Dependency

The optional variability dependency states that a variant can (but does
not need to) be a part of a product line application.

Example 4-18: Optional Variability Dependency

Defining three identification mechanisms, ‘keypad’, ‘magnetic card’,
and ‘fingerprint scanner’, as optional variants allows the customer to
choose any combination of variants. The customer can decide to have
none of the identification mechanisms, only one, any combination of
two mechanisms, or all of them as a part of the home security system.

The mandatory variability dependency states that a variant is required for a
variation point to which it is related. This does not imply that the variant has
to be included in all applications of the software product line. A mandatory
variant is only part of an application if the related variation point is part of it.

Definition 4-11: Mandatory Variability Dependency

The mandatory variability dependency defines that a variant must be
selected for an application if and only if the associated variation point
is part of the application.

Example 4-19: Mandatory Variability Dependency

A home automation system offers different key lengths for encrypted
remote communication (128 bits to 1024 bits). The software product
line engineer wants to state that 128 bit encryption is required for
minimal data protection and that it must be available in each applica-
tion that offers remote access. Therefore, the engineer defines the 128
bit encryption as a mandatory variant and 256 bit, 512 bit, and 1024
bit encryption as optional variants. The 128 bit encryption is, how-
ever, only part of applications which include remote communication.

4.6.4 Alternative Choice
A variability model must offer the facility to define the minimum and the
maximum number of optional variants to be selected from a given group of
variants. Consequently, we define a modelling element that allows us to
group optional variants and to define multiplicities for each group
(Definition 4-12).

Mandatory variability
dependency

Selectable
amount of variants

78 4. Principles of Variability

Definition 4-12: Alternative Choice

The alternative choice groups a set of variants that are related through
an optional variability dependency to the same variation point and
defines the range for the amount of optional variants to be selected for
this group.

Figure 4-7 shows the necessary extensions of the variability meta model.
Newly introduced elements are depicted in dark grey, whereas previously
introduced elements are depicted in light grey. The meta model contains an
additional class ‘alternative choice’. The class is associated with the
‘optional’ class by a ‘part of’ association. The multiplicities of the ‘part of’
association enforce the following conditions:

The alternative choice groups at least two optional variability depend-
encies.

Each optional variability dependency may be part of at most one alter-
native choice but does not have to be part of one.

Example 4-20: Alternative Choice

By declaring the optional variants ‘keypad’, ‘magnetic card’, and
‘fingerprint scanner’ as alternative choices with ‘min’ taking the value
“1” and ‘max’ taking the value “2”, the variability model states that at
least one and at most two of the variants can be selected.

The ‘alternative choice’ class contains two attributes, ‘min’ and ‘max’. They
are needed to specify the range for the permissible numbers of variants to be
selected from the group. Additionally, the ‘alternative choice’ class has the

Alternative
choice

Variant

Internal
Variation Point

External
Variation Point

Alternative
Choice

min
max

Optional Mandatory

{complete, disjoint}

Variability
Dependency

{complete, disjoint}

Variation Point

part of

2..n

0..1

1..n1..n

Fig. 4-7: ‘Alternative choice’ in the variability meta model

‘Alternative choice’
meta class

4.6 Orthogonal Variability Model 79

constraint (which is not clear from Fig. 4-7) that the optional variability
dependencies that are part of a group must refer to the same variation point.

4.6.5 Variability Constraints
The variability meta model described so far does, amongst other things, not
support the documentation of relationships between variants that belong to
different variation points. Yet such restrictions are required in variability
modelling, for instance in the following cases:

The modeller wants to state that a variant V1 requires a variant V2 to
function correctly. Consequently, if V1 is selected for an application, V2
also has to be selected.

The modeller wants to state that if variant V1 is selected, variant V2 must
not be selected.

The modeller wants to state that a variation point must be part of an
application depending on the selection of a particular variant made for
another variation point.

The first two cases describe relationships between a variant and another
variant. We call the first relationship a “requires” dependency and the
second one an “excludes” dependency. The third case describes a “requires”
dependency between a variant and a variation point. Similarly, there may be
“requires” and “excludes” relationships between variation points. To model
these kinds of relationships we extend the variability meta model by three
types of constraint dependencies (Fig. 4-8). A constraint dependency docu-
ments a restriction that exists between two variants (Definition 4-13),
between a variation point and a variant (Definition 4-14), or between two
variations points (Definition 4-15). Each restriction is either of the type
“requires” or “excludes”.

The meta model in Fig. 4-8 represents the variant constraint dependency
(Definition 4-13) by the abstract association class ‘variant constraint depend-
ency’ which is specialised into a ‘requires_V_V’ class and an
‘excludes_V_V’ class. The specialisation in the meta model is defined as
complete and disjoint. The multiplicity at both ends of the ‘constrains’ asso-
ciation is ‘0..n’, because a variant can (but need not) be constrained by an
arbitrary number of other variants and a variant can (but need not) constrain
an arbitrary number of other variants.

Additional
restrictions required

Constraint
dependency types

Variant to
variant constraints

80 4. Principles of Variability

Definition 4-13: Variant Constraint Dependency

A variant constraint dependency describes a relationship between two
variants, which may be of one of two types:

a) Variant requires variant (requires_V_V): The selection of a variant
V1 requires the selection of another variant V2 independent of the
variation points the variants are associated with.

b) Variant excludes variant (excludes_V_V): The selection of a vari-
ant V1 excludes the selection of the related variant V2 independent
of the variation points the variants are associated with.

Example 4-21: Variant Requires Variant

A home automation system provides a variation point ‘wireless com-
munication’ with two variants ‘WLAN’ and ‘Bluetooth’ and a vari-
ation point ‘secure connection’ with two variants ‘VPN’ (Virtual
Private Network) and ‘SSH’ (Secure Shell). The selection of ‘WLAN’
requires the selection of ‘VPN’ as a secure connection. This is docu-
mented by introducing a requires_V_V relationship between the
‘WLAN’ and the ‘VPN’ variants.

Variant

Internal
Variation Point

External
Variation Point

Alternative
Choice

min
max

Optional Mandatory

Requires
VP_VP

Excludes
VP_VP

Excludes
V_VP

Requires
V_VP

Excludes
V_V

Requires
V_V

Variation Point to
Variant Constraint

Dependency

Variant Constraint
Dependency

Variation Point
Constraint

Dependency

{complete, disjoint} {complete, disjoint} {complete, disjoint}

{complete, disjoint}

Variability
Dependency

{complete, disjoint}

Variation Point

constrains constrains constrains

part of

2..n

0..1

0..n

0..n0..n0..n0..n

1..n1..n0..n

Fig. 4-8: The constraint dependency in the variability meta model

4.6 Orthogonal Variability Model 81

Example 4-22: Variant Excludes Variant

A home automation system provides a variation point ‘wireless com-
munication’ with two variants ‘WLAN’ and ‘Bluetooth’ and another
variation point ‘motion detection’ with two variants ‘optical sensors’
and ‘radar-based sensors’. It is not possible to combine the variant
‘WLAN’ with the variant ‘radar-based sensors’ because both use
similar frequencies and interfere with each other. This is documented
by introducing an excludes_V_V dependency between the variants
‘WLAN’ and ‘radar-based sensors’.

The extensions required in the meta model for including the variant to vari-
ation point constraint dependency (Definition 4-14) are similar to those
made for the variant constraint dependency, i.e. an association with multi-
plicities, an abstract class, and two concrete sub-classes (Fig. 4-8).

Definition 4-14: Variant to Variation Point Constraint Dependency

The variant to variation point constraint dependency describes a rela-
tionship between a variant and a variation point, which may be of one
of the two types:

a) Variant requires variation point (requires_V_VP): The selection of
a variant V1 requires the consideration of a variation point VP2.

b) Variant excludes variation point (excludes_V_VP): The selection
of a variant V1 excludes the consideration of a variation point VP2.

Example 4-23: Variant Requires Variation Point

Wireless LAN provides different standards with different transfer
speeds. Hence, the variant ‘WLAN’ requires a variation point ‘LAN
Standard’ that is related to variants representing the different stan-
dards of wireless LAN communication (e.g. IEEE 802.11a, b, and g).
This is represented by introducing a requires_V_VP relation between
the variant ‘WLAN’ and the variation point ‘LAN-Standard’.

Example 4-24: Variant Excludes Variation Point

If only one LAN type can be selected, the selection of cabled LAN
makes the selection of different antennas for wireless communication
unnecessary. This is represented by introducing an excludes_V_VP
relation between the variant ‘cabled LAN’ and the variation point
‘antenna for wireless communication’.

Variant to variation
point constraints

82 4. Principles of Variability

To include the variation point constraint dependency (Definition 4-15), the
meta model is extended in a similar way as for the former two dependencies
(an association with multiplicities, an abstract class, and two concrete sub-
classes; see Fig. 4-8). The variation point constraint dependency affects the
variants that are assigned to a variation point. If a variation point is excluded
its variants are also excluded. The modeller should therefore handle variation
point dependencies with care.

Definition 4-15: Variation Point Constraint Dependency

A variation point constraint dependency describes a relationship
between two variation points, which may be of one of two types:

a) Variation point requires variation point (requires_VP_VP): A vari-
ation point requires the consideration of another variation point in
order to be realised.

b) Variation point excludes variation point (excludes_VP_VP): The
consideration of a variation point excludes the consideration of
another variation point.

Example 4-25: Variation Point Requires Variation Point

Any selection of a variant at the variation point ‘wireless communica-
tion’ requires the selection of some variant at the variation point
‘antenna for wireless communication’. This is represented by intro-
ducing a requires_VP_VP relation between the variation point ‘wire-
less communication’ and the variation point ‘antenna for wireless
communication’.

Example 4-26: Variation Point Excludes Variation Point

The home automation system does not support combining wireless
communication and cabled communication. Hence the variation points
‘wireless communication’ and ‘cabled communication’ exclude each
other – represented by an excludes_VP_VP relation between those
two variation points.

4.6.6 Traceability between Variability Model and Other
Development Artefacts

Modelling variation points, variants, and their relationships is only part of
the work when modelling the variability of software product line artefacts.
Developers also have to relate the variability defined in the variability model
to software artefacts specified in other models, textual documents, and code

Variation point
constraints

Variability in
software artefacts

4.6 Orthogonal Variability Model 83

(Fig. 4-9). The means to document such relationships is to define traceability
links between the variability model and other development artefacts.

The arrows depicted in Fig. 4-9 relate the variability definitions or, to be
more precise, the variants in the variability model with software artefacts,
such as requirements, design, realisation, and test artefacts, that document
the refinement and/or realisation of the variability at the different develop-
ment stages. Basically, variants may be related to artefacts of an arbitrary
granularity, e.g. to an entire use case or to a single step of a use case scenario
(Chapter 5).

To be able to relate variability definitions to other software artefacts we
extend the variability meta model (Fig. 4-10) by a relationship which we call
“artefact dependency”.

The meta model depicted in Fig. 4-10 contains an additional class ‘develop-
ment artefact’ that represents any kind of development artefact. Particular
development artefacts are sub-classes of the ‘development artefact’ class.
The ‘realised by’ association relates the ‘variant’ class with the newly intro-
duced ‘development artefact’ class. The artefact dependency is realised as an
association class of the ‘realised by’ association. The multiplicities of the
association define the following conditions:

A development artefact can but does not have to be related to one or
several variants (multiplicity ‘0..n’).

A variant must be related to at least one development artefact and may
be related to more than one development artefact (multiplicity ‘1..n’).

There are cases in which a development artefact needs to represent a vari-
ation point. For instance, in design, an abstract class may realise the common
behaviour of several variants. In other cases, developers may want to antici-
pate that there are variants, which are not yet defined. These situations are
covered by introducing an artefact dependency between a variation point and

Relating artefacts
to variants

lock door
via electronic

keypad

lock door
via magnetic

card

lock door

<<extend>>

<<extend>>

<<extend>>

lock door
via fingerprint

scanner

Requirements Design

key
database

fingerprint
database

key
databasefingerprint

scanner
terminal

Door
Terminal

keypad
terminal

magnetic card
terminal

Realisation

transferBalanceToWebServerSecure(…) {
initiateSecureSession();
sendWWW(openDB.getAmount(id));
closeSecureSession();

}

transferBalanceToWebServer(…) {
sendWWW(openDB.getAmount(id));

}

Variability

Test

Fig. 4-9: Relating variants and development artefacts

Artefact
dependency

Variant
realisation

Variation point
representation

84 4. Principles of Variability

a development artefact. The variability meta model is extended by a ‘repre-
sented by’ association, which relates the ‘variation point’ class with the
‘development artefact’ class. This artefact dependency is realised as an
association class of the ‘represented by’ association. The multiplicities of the
association define the following conditions:

A development artefact can but does not have to be related to one or
several variation points (multiplicity ‘0..n’).

A variation point can but does not have to be related to one or more
development artefacts (multiplicity ‘0..n’).

The artefact dependency can be further specialised, for example to capture
domain-specific dependencies. Such a specialisation is, however, not within
the scope of this book.

4.6.7 Graphical Notation
To be able to graphically represent the variability information defined under
the meta model introduced in the previous sections, we associate each con-
crete class in the meta model with a graphical notation as depicted in Fig.
4-11.

Specialisation of
artefact dependency

Variant

Internal
Variation Point

External
Variation Point

Alternative
Choice

min
max

Optional Mandatory Artefact
Dependency

VP Artefact
Dependency

Requires
VP_VP

Excludes
VP_VP

Excludes
V_VP

Requires
V_VP

Excludes
V_V

Requires
V_V

Variation Point to
Variant Constraint

Dependency

Variant Constraint
Dependency

Variation Point
Constraint

Dependency

{complete, disjoint} {complete, disjoint} {complete, disjoint}

{complete, disjoint}

Variability
Dependency

{complete, disjoint}

Development
Artefact

Variation Point

constrains constrains constrains

part of

2..n

0..1

0..n

1..n

0..n

0..n0..n0..n0..n

1..n1..n0..n

0..n

0..n

realised
by

represented by

Fig. 4-10: Development artefact and artefact dependency in the variability meta model

4.6 Orthogonal Variability Model 85

The graphical notation for the alternative choice shows the permissible range
[min..max] in square brackets. The default range is [1..1]. In the diagrams of
this book we omit the range if it is the default range.

4.6.8 An Example
Figure 4-12 illustrates a simple example of orthogonal variability modelling.
The use case diagram contains a single use case ‘open front door’ of the
actor ‘inhabitant’. This use case includes two other use cases, ‘unlock door
by keypad’ and ‘unlock door by fingerprint’. The variability diagram defines
a single variation point ‘door lock’ with two variants ‘keypad’ and ‘finger-
print scanner’, related to the variation point by an alternative choice with the
default range [1..1]. Each variant is associated with the corresponding use
case by an artefact dependency.

optional

mandatory
VP

[name]
[name]

V

Variability Dependencies

Constraint Dependencies

Variation Point Variant

requires_V_VP requires_v_vprequires_V_V requires_VP_VPrequires_v_v requires_vp_vp

excludes_V_VP excludes_v_vpexcludes_V_V excludes_VP_VPexcludes_v_v excludes_vp_vp

Alternative Choice

[min..max]

Artefact Dependencies

artefact dependency

VP artefact dependency

Fig. 4-11: Graphical notation for variability models

Default range of
alternative choice

Orthogonal
variability modelling

VP

Door Lock

Keypad

V

Fingerprint
Scanner

VUnlock Door
by Keypad

Unlock Door
by Fingerprint

Open Front Door

<<include>><<include>>
Inhabitant

Use Case Diagram Variability Diagram

Fig. 4-12: Example of orthogonal variability modelling

86 4. Principles of Variability

Using the graphical notation proposed by Halmans and Pohl [Halmans and
Pohl 2003], Fig. 4-13 depicts the variability defined in Fig. 4-12 within the
use case diagram. Based on the artefact dependencies between the variants in
the orthogonal variability model and the use cases, the two use cases ‘unlock
door by keypad’ and ‘unlock door by fingerprint’ have been stereotyped as
variants (depicted by the black ‘V’). In addition, the two use cases are
related to an explicit representation of the variation point within the use case
model (as suggested in [Halmans and Pohl 2003]), which is related by an
‘includes’ relationship to the use case ‘open front door’. Note that for repre-
senting this information within the use case diagram, no additional informa-
tion is required other than the information contained in the orthogonal vari-
ability model. The representation of the variability information within the
use case diagram is deduced from the orthogonal variability model and the
artefact dependencies depicted in Fig. 4-12. Similarly, variability can also be
highlighted in other conceptual models or even textual documents based on
the orthogonal variability and its relations to the artefacts.

4.6.9 Terminology Issues
Despite being a self-contained entity of the variability model, a variation
point is also an abstraction of development artefacts that represent variability
(e.g. interface definitions). In order to allow simpler wording, these develop-
ment artefacts are sometimes also referred to as variation points, though,
strictly speaking, they are representations of a variation point defined in the
variability model.

A similar statement holds for variants. Artefacts which are associated to a
variant are frequently referred to as variants themselves, though, strictly
speaking, they merely realise a certain aspect of a variant. The strict form
corresponds to the orthogonal view of variability as illustrated by the ex-
ample in Fig. 4-12, whereas the short form hints at the possibility of repre-
senting variability within development artefacts as illustrated in Fig. 4-13.

Representing
variability in

use case diagram

Artefacts representing
variation points

Artefacts realising
variants

VP

Door Lock
Open Front Door

Inhabitant

Use Case Diagram (with Integrated Variability)

<<include>>

V

Unlock Door
by Keypad

Unlock Door
by Fingerprint

V

Fig. 4-13: Representing variability in a use case diagram

4.7 Handling Complexity in Variability Models 87

4.7 Handling Complexity in Variability Models

An orthogonal variability model can easily become very complex. For
example, a variability model for automotive software easily offers more than
a thousand variation points and several thousand variants. A typical way of
dealing with the complexity is to introduce abstract variation points which
combine concrete variation points and predefine the bindings of their vari-
ants. For example, the automotive industry offers equipment packages for
cars like a business package or a family package. By choosing one of those
packages several variations are chosen, i.e. if a customer selects a business
package, implicitly several variants are selected, e.g. automatic air-
conditioning, a mobile phone, and a navigation system.

The orthogonal variability meta model facilitates the packaging of variation
points and variants. The different packages are represented by a variation
point. Each package is represented as a variant of this variation point. A
variant representing a package is linked to the variants that are included in
the package via ‘requires_v_v’ dependencies. Note that a variant that is
included in a package can include other variants that represent other pack-
ages. We illustrate the use of packaging in Example 4-27.

Example 4-27: Packaged Variants

The variability model in Fig. 4-14 includes the variation point ‘secur-
ity package’ and the two alternative variants ‘basic’ and ‘advanced’.
These variants represent packages. Selecting the ‘basic’ package also
selects the variant ‘motion sensors’ of the variation point ‘intrusion
detection’ and the variant ‘keypad’ of the variation point ‘door locks’.
If the ‘advanced’ package (variant) is selected, the variants ‘camera
surveillance’ and ‘fingerprint scanner’ are chosen.

Complexity of
variability models

Package
definition

VP

Security
Package

Advanced

V

Basic

V

VP

Intrusion
Detection

Cullet
Detection

V

Camera
Surveillance

V

Motion
Sensors

V

VP
Door
Locks

Keypad

V

Fingerprint
Scanner

V

requires_v_v
requires_v_v

Fig. 4-14: Example of packages realised by abstract variants

88 4. Principles of Variability

4.8 Differences from Single-System Engineering

Single-system engineering deals with variability in time and employs con-
figuration management to manage different versions of development arte-
facts. Software product line engineering has to deal with variability in time
as well as variability in space. The presence of variability in space means
that the same set of development artefacts is used to derive multiple applica-
tions with different features. The shift to software product line engineering
has far-reaching consequences on the development process and artefacts
created by this process. Therefore variability has to be explicitly defined.
This makes variability a first-class subject.

Variation points and variants provide a high-level abstraction of vari-
able development artefacts that significantly improves the management
of these parts.

Variability modelling restricts the set of variants that can be chosen
together by introducing different kinds of dependencies between vari-
ation points and variants. Therefore, amongst other things, the consist-
ent definition of applications is eased.

Variability modelling supports the communication of the variability of
the product line, e.g. to customers.

4.9 Summary

Variability modelling is a central technique required to put software product
line engineering into practice. The variability of a software product line is
specified in a separate model consisting of variation points, variants, and
their relationships. In domain engineering, variants are linked to domain
artefacts realising the variability of the software product line. Variation
points and variants can be introduced at each abstraction level of domain
artefacts and refined at lower abstraction levels.

Variability modelling, as an integral part of software product line engineer-
ing, focuses on the explicit documentation of the variability of a software
product line. Variability enables the derivation of distinguishable product
line applications. The importance of being able to communicate the available
variability of a software product line to customers entails the distinction
between internal and external variability.

Establishing tool support for modelling variability and managing it across
different development artefacts is still a research challenge (see Section
22.6). The focus of the PRIME project [PRIME 2005] is the development of
a variability management tool.

Variability
documented explicitly

Variation point
and variant

Dependencies and
constraints

Separate model
for variability

Internal and external
variability

Tool
support

5
Documenting Variability

in Requirements Artefacts

In this chapter you will learn:

o About the documentation of requirements for a software product line.
o How to document requirements variability using the orthogonal variability

model.
o How to document variability in textual requirements, use cases, and scenarios

as well as in requirements models such as feature models, class diagrams,
data flow diagrams, and state machine diagrams.

Klaus Pohl
Thorsten Weyer

90 5. Documenting Variability in Requirements Artefacts

5.1 Introduction

We describe the way of documenting variability in different kinds of require-
ments artefacts in order to provide the reader with the basic knowledge that
is necessary to document requirements variability in the domain artefacts of
a software product line. The sub-processes and artefacts closely related to
documenting variability in domain requirements are highlighted in Fig. 5-1.

Domain requirements are created in the domain requirements engineering
sub-process. They encompass requirements common to all applications of
the software product line as well as variable requirements enabling the cre-
ation of different applications. Domain requirements artefacts are the input
for the domain design sub-process, which is concerned with developing the
domain architecture. Domain testing uses domain requirements artefacts to
provide reusable test artefacts for the software product line. Application
requirements artefacts are created in the application engineering sub-process
by exploiting the common and variable domain requirements artefacts.

The IEEE defines the term requirement as follows:

Variability in
domain requirements

Fig. 5-1: Focus of documenting variability in requirements artefacts

Embedding in
the framework

Requirements

5.2 Documenting Requirements 91

Definition 5-1: Requirement

A requirement is:

(1) A condition or capability needed by a user to solve a problem or
achieve an objective.

(2) A condition or capability that must be met or possessed by a sys-
tem or system component to satisfy a contract, standard, specifi-
cation, or other formally imposed document.

(3) A documented representation of a condition or capability as in
(1) or (2).

[IEEE 1990]

When we refer to requirements in this book, we consider a requirement as an
object with a unique identifier imposing a prescriptive, self-contained state-
ment about the properties of the system under consideration.

5.2 Documenting Requirements

Requirements are documented using natural language text (textual require-
ments documentation) or using a requirements modelling language such as
data models, behavioural models, or functional models (see e.g. [Davis
1993; Wieringa 1996]).

5.2.1 Model-Based vs. Textual Requirements Documentation
A textual requirements specification, on the one hand, does not limit the
expressiveness of the specified requirements. On the other hand, the use of
natural language introduces the danger of ambiguity, i.e. textual require-
ments specifications typically allow more than one interpretation and are
thus often a source for misunderstanding.

Model-based requirements have an underlying model, which defines the set
of permissible language elements, the set of composition rules, and, if the
modelling language is a formal language, the formal semantics. An example
of a modelling language is a finite state automaton, which allows system
behaviour to be documented in terms of states, inputs, outputs, and state
transitions. Model-based requirements have a restricted expressiveness in
contrast to natural language.

A model defines an abstraction of a system at a chosen level of detail from a
particular viewpoint (which is typically determined by the purpose of the

Textual
requirements

Model-based
requirements

Model vs.
diagram

92 5. Documenting Variability in Requirements Artefacts

model). In contrast, a diagram is a graphical presentation of a collection of
model elements [Rumbaugh et al. 2003].

5.2.2 Requirements Artefacts
Requirements artefacts support the documentation of requirements in terms
of text and various kinds of models. We define the term requirements arte-
facts as follows:

Definition 5-2: Requirements Artefacts

Requirements artefacts are products of the requirements engineering
process specified using natural language and/or requirements models.

Examples of requirements artefacts are textual requirements, goals, features,
use cases, and scenarios as well as behavioural, functional, and data models.

5.2.3 Goals and Features
Goals describe the intent of a stakeholder with respect to the system under
consideration, whereas features describe the characteristics that a system
offers to its customer. This leads to the following definitions:

Definition 5-3: Goal

A goal is an objective the system under consideration should achieve.

[V. Lamsweerde 2001]

Definition 5-4: Feature

A feature is an end-user visible characteristic of a system.

[Kang et al. 1990]

There is an overlap between the goal and feature definitions. In most cases,
feature and goal models define similar information. Goal models have been
introduced by the requirements engineering community to express high-level
intentions regarding the system, which are refined into more concrete
requirements. Feature models have been introduced by the software design
community to abstract from a given high-level architectural design, i.e. to
express the high-level requirements of an architecture. To express the inten-
tions of a system, goal models as well as feature models can be used. For
example, unlocking the front door of a home electronically can be both a
goal as well as a feature. In this chapter, we describe the documentation of

Text and
models

Stakeholder intent,
system characteristics

Overlap of goal and
feature definitions

5.2 Documenting Requirements 93

variability in feature models. Yet, the proposed notation can also be used to
define variability in goal models.

5.2.4 Scenarios and Use Cases
Customers and users typically prefer talking about concrete sequences of
actions that describe system usage rather than talking about abstract models
of a system (see e.g. [Carroll 2000; Weidenhaupt et al. 1998]). For this rea-
son, scenarios are widely used in requirements engineering. Scenarios
describe concrete sequences of actions related to the intended application.
Scenarios can be documented in different representation formats, such as
natural language, tabular notation, or sequence diagrams. A scenario is
defined as follows:

Definition 5-5: Scenario

A scenario is a concrete description of system usage which provides a
clear benefit for the actor of the system.

Pohl and Haumer distinguish between three types of scenarios [Pohl and
Haumer 1997]:

System internal scenarios focus on the system itself, i.e. they do not
consider the context in which the system is embedded. System internal
scenarios are used, for example, to represent interactions between sys-
tem components or subsystems.

Interaction scenarios focus on the interaction of the system with stake-
holders and/or other systems.

Contextual scenarios additionally represent information about the con-
text of the system itself. For example, business goals are stated and
related to the services provided by a system, relationships between
stakeholders external to the system are represented, the use of informa-
tion obtained from the system is expressed, or organisational policies
are stated. Consequently, contextual scenarios extend interaction scen-
arios.

Scenarios are well suited for capturing the context of a system, developing
innovative requirements, and establishing traceability, e.g. to goal models
(see e.g. [Pohl and Haumer 1997; Haumer et al. 1999; Rolland et al. 1998;
Carroll 1995]).

To cope with the complexity of distributed, heavily interacting (embedded)
systems, it is necessary to refine scenarios hierarchically and thereby capture
requirements at different levels of abstraction (e.g. system level, subsystem
level, etc.; see [Pohl and Sikora 2005]).

Concrete sequence
of actions

Three kinds
of scenarios

Scenario usage in
development practice

Scenario
abstraction levels

94 5. Documenting Variability in Requirements Artefacts

A use case represents an interaction of one ore more actors (user and/or sys-
tem) with the considered system, which offers a concrete benefit to these
actors. The concrete interactions between the actors and the system are
described in terms of scenarios, the so-called use case scenarios. Use case
scenarios typically focus on the actor–system interactions, but also provide
contextual information such as the goals behind an interaction. Thus, a use
case scenario typically defines a certain way of achieving a given goal.
Usually, there are several use case scenarios representing alternatives of
accomplishing the same goal or failing to accomplish it, e.g. due to unexpec-
ted events. Consequently, a use case comprises a number of positive and
negative use case scenarios. Moreover, use cases provide information about
the system state before and after the execution of the use case scenarios in
terms of pre- and post-conditions. We define the term use case as follows
(see also [Rumbaugh et al. 2003]):

Definition 5-6: Use Case

A use case is a description of system behaviour in terms of scenarios
illustrating different ways to succeed or fail in attaining one or more
goals.

A use case template is a tabular structure consisting of so-called slots. Each
slot represents a different type of information necessary to define a use case.
The use case name, the use case goal, its primary actors, its preconditions,
and the initiator of the use case are examples of such slots. The use case
template guides the documentation of a use case (see e.g. [Halmans and Pohl
2003; Cockburn 2000; Schneider and Winters 2001; Kulak and Guiney
2003]). We define a use case template as follows:

Definition 5-7: Use Case Template

A use case template is a tabular structure guiding the textual docu-
mentation of use cases.

A use case diagram is a graphical notation that provides an overview of the
use cases of a system.16 It shows the relationship between actors and use
cases as well as the interrelations among use cases themselves. Use cases can
be related by “extend”, “include”, and by generalisation relationships.

16 Large systems are typically subdivided into several abstraction levels, such as system level, subsystem

level, and component level. The use case diagram can be used to provide an overview of the use cases
at any abstraction level, i.e. of the system use cases as well as the subsystem and component use cases.

System
interactions

Structured use
case definition

Overview of
system use cases

5.2 Documenting Requirements 95

A use case model captures the functionality of a system. To document a use
case model, at least the following three components are necessary [Larman
2002]:

The template-based description of all use cases.

The adequate documentation of all use case scenarios.

One or more use case diagrams providing an overview of all use cases.

5.2.5 Traditional Requirements Models
There are three kinds of traditional models, namely models of function, data,
and behaviour (see e.g. [Davis 1993; Wieringa 1996] for examples of such
models).

Functional analysis is based on decomposing the system under consideration
into a set of functions and their interrelations. For example, the data flow
diagram (DFD) is used in structured analysis [DeMarco 1979]. It documents
graphically:

The data flows of a system.

The manipulation of data (functions or processes).

The location of persistent data (data stores).

The data sources and sinks outside the context of the system.

Data flow diagrams describe a system at different levels of abstraction. The
data flow diagrams at a coarse-grained level are refined by those at finer
grained levels. Data flow diagrams are supplemented by so-called mini-
specs, which define the atomic functions, and by a data dictionary, which
defines all terms used (see [DeMarco 1979; McMenamin and Palmer 1984]
for details).

Data modelling focuses on the data processed and stored in a system as well
as the relations between the data. A popular data modelling approach is the
entity relationship model [Chen 1976]. UML 2 (Unified Modelling
Language [OMG 2003]) introduces the class diagram to define the data, or
more generally, the static structure of a system.

In requirements engineering, class diagrams document the essential entities
of the system under consideration.17 Relationships between classes represent
relationships between concrete or abstract real world items that are essential
for the system. The class diagram provides different kinds of relationships

17 The class diagram is also used at other stages of software development. We use it in domain realisation

to describe the internal structure of components. Similar statements hold for the state machine diagram
also described in this section.

Use case
model

Structured
analysis

Data flow diagram
refinement

Stored/processed
data of a system

UML class
diagram

96 5. Documenting Variability in Requirements Artefacts

such as associations and generalisations. Class diagrams are at the so-called
type layer, which means that a class diagram defines a set of valid instances.
An instance of a class diagram consists of objects, i.e. instances of classes,
and links between objects, i.e. instances of associations. Multiplicities
determine the admissible lower and upper bounds for the number of
instances that can participate in an association. Associations may carry
association names and roles. In addition, attributes and operations can be
defined for a class. Such details are considered particularly in detailed design
(Chapter 7). The class diagram notation itself can be extended and thereby
adapted to different modelling purposes. The UML 2 enables extensibility
for example by means of stereotypes, which allow the semantics of model
elements to be enriched. For more details, see e.g. [OMG 2003; Rumbaugh
et al. 2003; Booch et al. 1999].

The third kind of traditional requirements models focuses on the behaviour
of a system. Behavioural requirements can be modelled in different ways,
e.g. in terms of actions, interactions or state transitions. The state machine
model is a popular example of behavioural modelling. Its basic elements are
states and state transitions. A state transition is triggered by an external
stimulus. Guard conditions restrict the permissible state changes. A state
change can only happen when the guard condition is satisfied. A state
machine can additionally initiate actions that are executed within a state or
during a state transition. Statecharts [Harel 1987] are a popular state machine
notation. UML 2 incorporates them in terms of the state machine diagram:

Definition 5-8: State Machine Diagram

A state machine diagram depicts discrete behaviour modelled through
finite state-transition systems. In particular, it specifies the sequences
of states that an object or an interaction goes through during its life in
response to events, together with its responses and actions.

[OMG 2003]

5.3 Variability in Textual Requirements

Textual requirements express variability by certain keywords or phrases.
Yet, documenting requirements variability in this way leaves room for ambi-
guity. Additionally, it suffers from other shortcomings (Section 5.2).

Example 5-1: Variability in Textual Requirements

The home security system shall be equipped with either black and
white or colour cameras capable of taking infrared pictures.

State-dependent
system behaviour

Ambiguity in
natural language

5.3 Variability in Textual Requirements 97

In Example 5-1 it is not clear whether only colour cameras or both types of
cameras must be capable of infrared shooting. Requirements variability has
to be documented in an unambiguous systematic way that also supports
traceability between different kinds of artefacts. Therefore, either explicit
variability modelling has to be enabled for textual requirements, or develop-
ers have to use model-based requirements. The former solution is presented
in this section.

5.3.1 Defining Variability in Textual Requirements
Figure 5-2 illustrates a text fragment, in which requirements variability has
been made explicit by highlighting the variation point and its variants thus
adding more accuracy to Example 5-1.

In fact, the variation point in this example is the ‘type of camera of the home
security system’. Yet, this cannot be expressed without rewriting the text.
Moreover, the effects of a variation point are not necessarily restricted to a
single part of the textual requirements specification.

It is possible that the selection of a variant has an influence on several differ-
ent parts of the document. The orthogonal variability model circumvents
these problems. Figure 5-3 illustrates the use of orthogonal variability mod-
elling in a slightly extended version of Example 5-1. The orthogonal
variability model allows the selection of a chunk of text corresponding to the
selected variant. The variant ‘colour cameras’ influences two different parts
of the document, namely the requirements concerning the installed cameras
and the requirements concerning the required storage system.

Clear variability
documentation

Explicit variability in
textual documentation

Variant …either black and white…

…or colour cameras…

The home security system shall be equipped with…

…capable of infrared shooting.

Variant

Variation Point

Fig. 5-2: Variability in textual requirements

Orthogonal
variability definition

98 5. Documenting Variability in Requirements Artefacts

5.3.2 Documenting Variability Using XML
Text can be augmented in different ways in order to improve the documen-
tation of variability, e.g. by using tabular structures, different kinds of
markup structures, or hyper-references. In Internet applications, XML
(eXtensible Markup Language, [Laurent and Cerami 1999]) and XSLT
(eXtensible Stylesheet Language Transformation, [Kay and Houser 2001])
are commonly used for exchanging and processing text-based documents.

XML and XSLT can also be applied to enable the explicit documentation of
variability in textual requirements. XML provides the means to document
variability and XSLT provides the capability of processing XML documents,
e.g. in order to generate a document for a specific selection of variants (see
Fig. 5-4). Thus, the XML-based approach is able to cope with defining as
well as with binding variability.

Variability DiagramVariability Diagram

…black and white cameras.

Textual Requirements

The home security system
shall be equipped with…

…colour cameras.

The video storage system shall compress
colour video data by approximately
1:200.

[…]

Camera
Type

VP

Black and
White

V

Colour

V

Fig. 5-3: Orthogonal variability modelling in textual requirements

XML and
XSLT

XML-based
variability

documentation

Selected Variability

Document with
Variability

(described by XML)

Generated
Documents

XSLT-Processor

Fig. 5-4: Variability in textual requirements documentation with XML and XSLT

5.4 Variability in Requirements Models 99

Yet, the approach implies adding structural information to natural language
text in terms of XML tags. For example, it is possible to enclose text frag-
ments by XML tags, include unique identifiers in the tags and thus enable
establishing links from the orthogonal variability model to the textual
requirements document. The notation used in Example 5-2 employs tags to
mark text fragments. It provides an identifier of the corresponding variant
for each fragment. Consequently, it is possible to select the text fragments
that belong to specific variants. However, requirements documents of this
kind are more difficult to write, and their readability is restricted unless they
are processed, for example, as outlined in Fig. 5-4. For more details on
XML-based variability documentation, we refer to [John and Muthig 2002].

Example 5-2: Text Enriched by XML Tags

The home security system shall be equipped with
<text-fragment variant-id= v1 >black and white cameras.</text-
fragment>
<text-fragment variant-id= v2 >colour cameras.</text-fragment>
[…]
<text-fragment variant-id= v2 >
The video storage system shall compress colour video data by
approximately 1:200.
</text-fragment>

5.4 Variability in Requirements Models

Model-based requirements encompass features (or goals), use case models,
and traditional requirements models – i.e. functional models, data models,
and behavioural models. In their basic forms, these models are mostly not
able to document variability as required by software product line engineer-
ing. Therefore, diverse extensions of model-based requirements artefacts
have been proposed by research and industry such as the use of stereotypes
in UML diagrams. Yet, these approaches integrate variability modelling into
requirements models. The orthogonal variability model allows variability to
be documented in a common way across different models without modifying
the existing notations.

5.4.1 Variability in Feature Models
Features describe the functional as well as the quality characteristics of the
system under consideration. The feature modelling approach allows a hier-
archical decomposition of features which yields a feature tree:

XML tags
for variants

Approaches
using extended
requirements models

Functionality
and quality

100 5. Documenting Variability in Requirements Artefacts

Definition 5-9: Feature Tree

A feature tree hierarchically structures the set of features of a system.
A feature can be decomposed into several sub-features that are man-
datory, optional, or alternative.

Figure 5-5 presents an example feature tree for a home security system.
Besides the features of the system, feature trees typically also define part of
the variability of the system since they define:

Optional features, which can be selected or left out at will and

Alternative features, which allow the choice of one feature out of a
given set.

The typical notation used for representing mandatory, optional, and alterna-
tive features is similar to the notation used in our orthogonal variability
model (Section 4.6.7).

A shortcoming of the feature tree is its inability to distinguish between alter-
native features that are common to all applications (and therefore should be
denoted as a commonality of the software product line) and alternative fea-
tures that can be selected separately for a specific application.

Modelling variability in a feature model may lead to misinterpretations
(Example 5-3). Moreover, the feature tree lacks a grouping mechanism that
would allow arbitrary features to be assigned to some variant.

Defining the variability of a feature tree with the orthogonal variability
model enhances the expressive capabilities (compared to representing the
variability within the feature tree). It leads to clearer variability definitions
and avoids misinterpretations.

Optional and
alternative features

Graphical
notation

Home Security

Room
Surveillance

Admittance
Control

Camera
Surveillance

Indoor
Motion

Detection

Intrusion
Detection

Cullet
Detection

Outdoor
Camera

Surveillance

Outdoor
Motion

Detection

Magnet Card
Access

PIN
Access

Fig. 5-5: Feature tree of a home security software product line

Ambiguous
variability definition

Lack of grouping
mechanism

Variability model
provides clarity

5.4 Variability in Requirements Models 101

Example 5-3: Ambiguity in a Feature Tree for Home Security

Figure 5-5 contains two alternative features that are related to ‘admit-
tance control’: ‘magnet card access’ and ‘PIN access’. ‘Admittance
control’ itself is a mandatory feature of the ‘home security’ system.
This part of the feature tree allows different interpretations:
a) Each application shall support exactly one of the two types of

admittance control.
b) Each application shall support both types of admittance control.

The users are allowed to choose whether they use magnet card
access or PIN access.

c) An application shall support either one of the two types of admit-
tance control or both types and allow the users to decide which one
to use.

The interpretations a) and c) indicate that the feature tree foresees
variability which is, however, different in a) and c). According to
these interpretations, it is possible to build at least two home security
systems which differ in the realisation of admittance control. In con-
trast, interpretation b) indicates that the admittance control is invariant
for all applications and thus represents a commonality.

Example 5-4: Grouping Features of the Home Security System

The developing organisation might want to offer two variants, ‘camera
surveillance’ and ‘motion detection’, that apply to ‘room surveillance’
as well as to ‘intrusion detection’. The features that belong to each of
the variants are split across different branches of the feature tree in
Fig. 5-5. Restructuring the feature tree according to the grouping is
not always a viable solution as the original decomposition of the sys-
tem is then lost. Moreover, some other variant might require a differ-
ent structure which is in conflict with the structure imposed by
‘camera surveillance’ and ‘motion detection’.

Example 5-5: Use of the Orthogonal Variability Model

Figure 5-6 depicts a part of the variability contained in the feature tree
in Fig. 5-5 using the orthogonal variability model. The variability dia-
gram consists of the variation point ‘home security by’ with two alter-
native variants, ‘camera surveillance’ and ‘motion detection’. The
variants are linked to the corresponding subsets of the feature tree by
artefact dependencies.

102 5. Documenting Variability in Requirements Artefacts

The variability model enables the selection of parts of the feature tree by
selecting variants in the variability model. Figure 5-7 illustrates the effects of
selecting the variant ‘camera surveillance’ in Example 5-5.

A more detailed comparison of modelling software product line variability
using the orthogonal variability model vs. using a feature tree is given in
[Bühne et al. 2004b] and [Bühne et al. 2004c].

Fig. 5-6: Feature tree of a home security system

Variant
selection

Feature TreeFeature Tree Variability DiagramVariability Diagram

Home Security

Room
Surveillance

Admittance
Control

Camera
Surveillance

Indoor
Motion

Detection

Intrusion
Detection

Cullet
Detection

Outdoor
Camera

Surveillance

Camera
Surveillance

V
Motion

Detection

V

Home
Security by

VP

Outdoor
Motion

Detection

Fig. 5-7: Effects of selecting the variant ‘camera surveillance’

5.4 Variability in Requirements Models 103

5.4.2 Variability in Use Case Models
A use case is typically documented using template-based use case descrip-
tions, use case scenarios, and/or use case diagrams. In each of these docu-
mentations variability can occur. We elaborate on the documentation of vari-
ability in those documentations. We further illustrate how the orthogonal
variability model glues together the variability expressed in the different
types of documentations.

5.4.2.1 Template-Based Use Case Descriptions
Textual use case descriptions are typically structured using use case tem-
plates (see [Halmans and Pohl 2003] for an example). In principle, each use
case slot (such as Primary Actor, Precondition or Main-Scenario) can be
used to express variability of the product line. The documentation of the
variability within the slots is in textual form and thus the guidelines for
documenting textual requirements hold (see Section 5.3). In addition, the
variability defined in a use case template has obvious relations with the other
use case documentations like use case diagrams or use case scenarios. Those
interrelations can be managed via the orthogonal variability model as illus-
trated in Chapter 4.

5.4.2.2 Use Case Scenarios
As scenarios document sequences of interactions between two or more
actors, basically, they are able to describe variability by varying the inter-
actions as well as the constellation of actors.

A common way to document scenarios is to use a tabular notation as illus-
trated in Fig. 5-8. The scenario in Fig. 5-8 contains the basic steps that are
necessary to unlock the front door of the intelligent home. As there are two

Variability within
use case slots

Variability in
interactions

Variability DiagramVariability DiagramTabular ScenarioTabular Scenario

4. System permits
entry to the home

3. Inhabitant touches the
fingerprint sensor

3. Inhabitant enters the
PIN

2. System requests
authentication

1. Inhabitant approaches
the front door

Home Security
System

Inhabitant
VP

Door Lock

Keypad

V

Fingerprint
Scanner

V

Fig. 5-8: Example of documenting variability in a tabular scenario

Tabular
notation

104 5. Documenting Variability in Requirements Artefacts

variants for authenticating to the system, namely ‘keypad’ and ‘fingerprint
scanner’, the scenario contains a variable step. The variants are linked to the
corresponding scenario steps by artefact dependencies. When a variant is
selected, only those parts remain in the scenario description that are related
to this variant. As before, variants can be linked to multiple steps even in
different scenarios.

Another way of documenting scenarios is the use of sequence diagrams, e.g.
as defined by the UML 2 standard. In general, a sequence diagram can be of
two different types: the generic type documents all conceivable scenarios in
one sequence diagram, whereas the instance type documents a single scen-
ario [Booch et al. 1999]. Documenting variability in sequence diagrams
implies using the generic type. Figure 5-9 exemplifies the documentation of
variability scenarios using sequence diagram notation.

5.4.2.3 Use Case Diagrams
Use case diagrams can be used to document variability in terms of use cases
provided by the system, actors interacting with those use cases, and the
“includes” and “extends” relations between use cases. Compared with the
variability which can be represented in use case scenarios or use case tem-
plates, the variability which can be documented in use case diagrams is on a
more abstract level. Figure 5-10 illustrates the documentation of variability
in a use case diagram.

Sequence
diagram

Sequence DiagramSequence Diagram

House
Owner

Security
System

Variability DiagramVariability Diagram

VP

Door Lock

Keypad
V

Fingerprint
Scanner

V

approach the front door

request authentication

enter the PIN

touch fingerprint sensor

permit entrance

Fig. 5-9: Example of documenting variability in scenarios using sequence diagram nota-
tion

Common and
variable use cases

5.4 Variability in Requirements Models 105

5.4.2.4 Traceability between Variability Model and Use Case Model
The definitions of variability in use case diagrams, use case scenarios, and
use case templates can overlap. For example, an actor of the system is
defined in all three types of use case documentations. If one introduces a
variability of an actor in one type of documentation, e.g. in a use case dia-
gram, this variability must be “propagated” to the other documentations, i.e.
the three types of documentations must be kept consistent.

In order to manage the overlapping and potentially different definitions of
variability within the use case model, we use our orthogonal variability
model. The orthogonal variability model allows to link a variant with the
different definitions of variability within the use case model. Following the
traceability links – or, to be more precise – the artefact dependencies
(Section 4.6), the analyst can determine how a given variant is realised in the
use case model and check if the different definitions of variability are con-
sistent. In Fig. 5-11 the variant ‘motion detection’ is represented through the
dark shaded areas of the use case model. Similarly, the variant ‘camera sur-
veillance' is depicted with light grey shading. Without the use of the
orthogonal variability model it would be much harder or, in a large system,
close to impossible, to relate the various documentations of the same kind of
variability.

5.4.3 Variability in Traditional Requirements Models
Besides feature models and use case models, traditional requirements models
still play an important role in requirements engineering for software product
lines. Therefore, it is necessary to document variability in data flow models,
class models, and state machine models.

Use Case DiagramUse Case Diagram Variability DiagramVariability Diagram

Activate Camera
Surveillance

Activate Motion
Detection

Activate Security
System

<<include>><<include>>Inhabitant

Home
Security by

VP

Camera
Surveillance

V

Motion
Detection

V

Fig. 5-10: Example of documenting variability in a use case diagram

Overlapping
information

Related variability
definitions

Functions, data,
behaviour

106 5. Documenting Variability in Requirements Artefacts

5.4.3.1 Variability in Data Flow Diagrams
Since a functional model describes the flow and manipulation of data in a
system, it can be used to express variability in the flow of data and in the
functions manipulating the data.

Example 5-6: Data Flow Diagram for Home Security

Figure 5-12 shows a data flow diagram describing example data flows
for the two variants ‘camera surveillance’ and ‘motion detection’ of
the variation point ‘home security by’. The data flow diagram shows
the functions, data stores, and data flows that are necessary to realise
both variants. Two areas of different grey shading highlight the frag-
ments of the data flow diagram corresponding to the variants ‘camera
surveillance’ and ‘motion detection’.

Fig. 5-11: Use of the orthogonal variability model to interrelate variability in a use case
model

Variable data
flows and functions

5.4 Variability in Requirements Models 107

The graphical notation presented in Fig. 5-12 supports documenting variabil-
ity within a single data flow diagram instead of having to provide multiple
diagrams for different variants. Yet, fine-grained aspects, such as variability
within a function, data flow, or data store not refined in a child data flow
diagram, have to be documented in the corresponding mini-specs or in the
data dictionary.

Example 5-7: Selecting Variants

The selection of a variant within the variability model implies
choosing the corresponding subset of diagram elements of the data
flow diagram. Figure 5-13 shows the resulting data flow diagram after
selecting the variant ‘camera surveillance’ (left) or the variant ‘motion
detection’ (right) respectively.

Fig. 5-12: Example of documenting variability in a data flow diagram

Fine-grained
variability

Data Flow Diagram: Motion DetectionData Flow Diagram: Motion DetectionData Flow Diagram: Camera SurveillanceData Flow Diagram: Camera Surveillance

Configure
Cams

House
Owner Security

Service

Intruder

Get
Security
Status

Alarm

Surveillance
Data

House
Owner

Security
Service

Intruder

Get
Security
Status

Alarm

Configure
Areas

Areas

Fig. 5-13: Effects of selecting a variant

108 5. Documenting Variability in Requirements Artefacts

5.4.3.2 Variability in Class Diagrams
Class diagrams document structural requirements variability. The structural
variability within a class model frequently involves variability in behaviour,
quality, or function. These occurrences of variability are documented within
other requirements models (e.g. use case models).

Basically, variability is inherent in class models due to the fact that a class
model specifies a set of instances. These instances may for example differ in
the number of objects and their links. The inherent variability of class
models is typically used to specify the valid instances of the class model that
exist at run-time. Therefore, product line variability cannot be documented
using the standard class diagram notations and concepts. For example, a
multiplicity could denote inherent class variability or product line variability.
We thus propose to model product line variability in class diagrams using
the orthogonal variability model. Thereby, we can clearly differentiate
between product line variability (defined using the orthogonal variability
model) and the inherent class variability. The relation between multiplicities
and variability is discussed in detail in Chapter 7.

In this chapter, we focus on those aspects of variability in class diagrams
necessary to document requirements variability. This means that we asso-
ciate variants with coarse-grained subsets of classes. However, variability
may have more fine-grained manifestations, which then requires variants to
be associated with single elements of the class diagram. Figure 5-14 illus-
trates the representation of requirements variability within a class model
using the orthogonal variability model.

Fig. 5-14: Example of documenting variability in a class diagram

Structural
variability

Standard class
diagram insufficient

Coarse- and fine-
grained variability

5.5 Traceability Between Variability Model and Requirements Artefacts 109

5.4.3.3 Variability in State Machine Diagrams
A state machine model documents requirements concerning the behaviour of
the intended applications. We document requirements variability by linking
variants to certain parts of a state machine diagram. Like data flow diagrams,
state machine diagrams also support hierarchical refinement, which allows
the introduction of variability at different levels of detail. Figure 5-15 pro-
vides an example of modelling the behavioural aspects of variants in a state
machine diagram.

5.5 Traceability Between Variability Model and
Requirements Artefacts

The orthogonal variability model documents the variability of a software
product line and defines traceability links between variants and variation
points and the corresponding definitions of the variability in requirements
artefacts. Variability in requirements is expressed in different models such
as:

Feature models
Textual requirements
Use case descriptions
Traditional requirements (data, function, and behaviour)

Orthogonal to those models, the variability model defines the variations of
the software product line. Through the relationship between a variant of the
orthogonal variability model and the associated development artefacts, it is
possible to document the characteristics of the variant concerned from dif-

Fig. 5-15: Example of documenting variability in a state machine diagram

Behavioural
variability

Variants and
associated artefacts

110 5. Documenting Variability in Requirements Artefacts

ferent perspectives (e.g. data, function, behaviour, and quality). Furthermore,
the relationships support the consistent implementation of changes. Starting
from a changed development artefact, other artefacts affected by the change
can be found by following the relation to the associated variant and from the
variant to the other associated artefacts. This procedure is shown in Fig.
5-16.

The traceability between the variability model and the different types of
requirements models is established through artefact dependencies. Figure
5-17 depicts the basic types of relationships between the variants defined in
the orthogonal variability model and different types of requirements arte-
facts.

The relationship between the variability model and the feature model
(in Fig. 5-17) links the variants to the corresponding features. A fea-
ture can be linked to an arbitrary number of variants within the variabil-
ity model and vice versa.

The relationship between the variability model and textual requirements
(in Fig. 5-17) marks aspects of variants that have to be expressed by
textual descriptions (almost qualitative aspects, e.g. laws and standards).

The relationship between the variability model and traditional require-
ments models (in Fig. 5-17) marks aspects of variants that are
expressed by traditional requirements artefacts (i.e. behavioural, struc-
tural, functional, and qualitative aspects).

VP
…

Req-1: …
…
Req-2: …

Req-3: …

…

…

V

.

…

Use Case Description
(Template)

…

…

…

…

Statechart

Textual Description

Variability Model

1

2

Initial Modification

Derived Change

Fig. 5-16: Use of the orthogonal variability model for performing consistent changes

Traceability

To features

To textual
requirements

To traditional
requirements models

5.5 Traceability Between Variability Model and Requirements Artefacts 111

The relationship between the variability model and use case models (
in Fig. 5-17) describes aspects of variants that are documented by use
cases, use case scenarios, and template-based use case descriptions.

We illustrate the usage of artefact dependencies in Example 5-8. For further
reading on interrelating different kinds of requirements (at different levels of
abstraction), we refer to [Bühne et al. 2004a].

Example 5-8: Usage of the Artefact Dependencies

Figure 5-18 exemplifies the documentation of the variant ‘colour
camera surveillance’ through feature models, use case models, tradi-
tional requirements, and textual descriptions. The functional, behav-
ioural, structural, and qualitative characteristics of the variant ‘camera
surveillance’ are described through the associated artefacts. The vari-
ant ‘colour camera surveillance’ influences specific parts within each
model. When the analyst, changes a use case related to ‘colour camera
surveillance’, the traceability links indicate the parts of the textual
description, the class diagram, etc. affected by the change.

To use case
models

Fig. 5-17: Relationships between requirements artefacts and the variability model

112 5. Documenting Variability in Requirements Artefacts

5.6 Differences from Single-System Engineering

In single-system engineering, requirements for each application are docu-
mented separately without keeping track of the commonalities and the dif-
ferences of the applications. In software product line engineering, common
requirements are documented together with all variable requirements. A
separate variability model enables keeping track of the variability of differ-
ent kinds of requirements artefacts. Requirements artefacts for a specific
application can be derived from domain requirements by binding the vari-
ability.

B/W
Camera

Camera
Surveillance

Colour
Camera

activ

alarm

/alarm

/stopAlarm

/disable

/enable

setGroup

inactive

/end

VP
Camera

Surveillance

surveillance
device

camera

infrared
camera

b/w
camera

colour
camera

alarm
device

0..n
1

1..m
1..n

Infrared
Camera

configure
cams

house
owner

security
service

intruder

get
security
status

alarm
Surveillance

Data

Req-15: The colour camera surveillance shall
use a colour camera.
…
Req-34: The colour camera shall have a
minimum resolution of 1 Mega Pixel.
…

Req-39: The colour camera shall have a least
1/3" Colour CCD lens, 6mm wide angle lens.

Req-40: The colour camera shall have at least a
resolution of 380 lines.

Req-45: The b/w camera shall have at least 240
lines resolution

demand security status

alarm

«include»
UC1.1:

Demand security
status

UC1.2:
Alarm

«include»

UC 1:camera
surveillance

camera
surveillance

/setSurveillanceGroup

Colour Camera
Surveillance

V
Infrared

Surveillance

V
B/W Camera
Surveillance

V

security service Name: Demand security status
Primary Actor: security service
Other Actors: house owner
…
Trigger:
security service demand security
status

Pre-Condition: system is active
Post-Conditions: …
…

control
area

Fig. 5-18: Example of interrelating a variant with different requirements artefacts

Variability in
requirements

5.7 Summary 113

Documenting requirements variability in an orthogonal variability model and
relating this model to requirements artefacts facilitates the usage of the
requirements documentation in design, realisation, and testing, as well as the
refinement and realisation of the required variability.

5.7 Summary

Software product line engineering implies documenting the variability of
different kinds of requirements artefacts in a separate variability model. Each
variant defined in the variability model is related to requirements artefacts
that describe the implications of the variant on different requirements con-
cerning the functionality, structure, behaviour, and quality of the system.
The relations between variants and requirements artefacts are represented by
artefact dependencies. Consequently the variability of requirements artefacts
is documented clearly and unambiguously:

Feature models contain variability themselves. Nevertheless, the ortho-
gonal variability model helps to unambiguously document product line
variability.

Use case models allow variability to be documented inside a slot of the
use case template, inside a scenario, or in a use case diagram. In many
cases, trade-off decisions are possible at which place variability should
be documented. The orthogonal variability model relates the different
places at which variability is defined to each other.

Traditional requirements models allow the expression of variability
mostly by selecting the subsets of diagram elements related to a specific
variant. If hierarchical decomposition of the model is possible, variabil-
ity can be modelled at different levels of abstraction.

Documenting variability in textual requirements by means of the
variability model is possible, but may hamper readability.

Finally, the variability model supports the developers in keeping the differ-
ent views of variable requirements artefacts consistent. Likewise, in appli-
cation requirements engineering the variability model is used to create a
consistent set of application requirements artefacts.

Variability
documentation

Common and
variable requirements
artefacts

Orthogonal
variability model

Consistent variability
definition and binding

6
Documenting Variability

in Design Artefacts

In this chapter you will learn:

o The origins of the variability to be considered when defining an architecture.
o How to define variability in different architectural views such as the develop-

ment view, the process view, and the code view.
o How the orthogonal variability model can be applied to document variability

in the different views and to keep those views consistent.

Frank van der Linden

116 6. Documenting Variability in Design Artefacts

6.1 Introduction

Requirements have to be satisfied in applications to fulfil the users’ wishes.
Design is the next step towards applications. During design, it is determined
how the applications are built in a technical sense. In software product line
engineering, the domain architecture (or reference architecture; see Section
6.3) is valid for many applications. Hence, one of the main concerns of the
domain architect is to design for flexibility. The orthogonal variability model
enables the documentation of variability in design artefacts in a clear and
understandable manner thus easing the reuse of these artefacts. The sub-pro-
cesses and artefacts closely related to the documentation of variability in the
reference architecture are highlighted in Fig. 6-1.

Software design consists of two phases: high-level design and low-level (or
detailed) design.18 The main result of high-level design is the architecture
capturing the general design decisions including the main software structure.

18 This is a matter of viewpoint. In fact, design is hierarchical. Each level of design sees itself as high-

level design. It results in a decomposition of the system. For each of the parts, a separate detailed
design is made. In this chapter, we take the viewpoint of the software architect.

Variability in
reference architecture

Fig. 6-1: The reference architecture is the focus of documenting variability in architecture

High-level and
low-level design

6.2 Architectural Artefacts 117

Documenting variability in the architecture is the focus of this chapter.
Software developers do detailed design and implement the different software
components. They have to adhere to the architecture. From the perspective
of the architecture, detailed design is part of the realisation. Chapter 7 is
concerned with the variability issues of detailed design.

The domain design sub-process is responsible for creating common and
variable design artefacts. Domain design gets its main input from domain
requirements engineering. The reference architecture is used as an important
guide during domain realisation and application design.

6.2 Architectural Artefacts

In this section, we briefly present the different kinds of artefacts used in
software architecture. Jazayeri et al. define four main concerns which the
architect has to deal with [Jazayeri et al. 2000] and which lead to the essen-
tial artefacts of architectural design. The first two concerns, namely archi-
tecturally significant requirements and concepts, make up the interface
between requirements engineering and architecture. The former concern
means that architects have to identify those requirements that have an essen-
tial impact on the architecture. The latter concern means that architects have
to create a conceptual architecture prior to building structural models of the
software. The other two concerns, namely structure and texture, are the main
ingredients of the architecture.

The most recognised aspect of the architecture is the structure of a software
system:

Definition 6-1: Architectural Structure

The architectural structure is the decomposition of a software system
into parts and relationships.

In addition, the architecture defines the texture of the produced systems.19

While the architectural structure determines which parts are built separately,
the texture determines the general rules each of the parts has to obey.

Definition 6-2: Architectural Texture

The architectural texture is the collection of common development
rules for realising the system.

19 This term is introduced in [Jazayeri et al. 2000] to give a single name to, and to emphasise the

importance of, the common rules determined by the architecture.

Relation to the
framework

Four architecture
concerns

Architectural
structure

Architectural
texture

118 6. Documenting Variability in Design Artefacts

Examples 6-1 and 6-2 illustrate the architectural structure and architectural
texture for the home automation domain.

Example 6-1: Structure in Home Automation

The structure of the home automation applications depicted in Fig. 6-2
includes four layers (each of which has an internal structure consisting
of subsystems and components; see Fig. 6-3). The layers can be
characterised as follows:
 ‘Basic control’, for common computing platform infrastructure

involving process, file, database, and communication infrastructure.
 ‘Device control and management’, which provides a basic domain-

specific infrastructure, for the control and management of all kinds
of devices. For instance, it controls specific actuators and sensors,
such as door actuators and smoke sensors.

 ‘Home functions’, which provide management of basic domain-
specific functions. They combine the control of several devices,
such as the integrated control of opening and closing of doors.

 ‘Integrated functions’, which combine the home functions into inte-
grated applications. For instance, a ‘vacation function’ involves
lighting, heating, and door and window management.

Within each layer the variability is determined by the variation in the
functionality provided, and by the variation in the functionality pro-
vided by the layer below it. For the basic control layer variability in
the layer below is triggered by hardware variability.

Example 6-2: Texture in Home Automation

The texture of the home automation applications contains:
 The use of layering in the structure, as described in Example 6-1.
 The use of a hierarchy of layers, subsystems, and components as

described in Example 6-1.
 The facade pattern [Gamma et al. 1995] that demands a single

interface at subsystem level.
 The observer pattern, which decouples user interface issues from

the data.
 The presence of an initialisation interface with a prescribed set of

functions at each component.
 The use of high-priority processes for user interface handling and

medium-priority processes for user functions.

6.2 Architectural Artefacts 119

The texture consists of coding rules and general mechanisms, such as styles
[Shaw and Garlan 1996] and design patterns [Gamma et al. 1995] to deal
with the many situations that occur during realisation and coding. The tex-
ture has to be used everywhere in the design of the system. In many cases,
the texture provides standard ways to deal with quality requirements, such as
performance, maintainability, and many others. It prescribes detailed design
issues to simplify the task for the developer by solving common problems
only once and by determining the way the software infrastructure has to be
used. As a consequence, it increases commonality and reusability of all
design and realisation artefacts.

6.2.1 Architecture Views
The architectural structure is usually not documented as a single entity. In
many cases, different views upon the architecture exist, which together
determine the structure.20 The views describe different aspects of the sys-
tems, but there is not a defined relationship between them, leaving some
freedom for realisation. Important views are:

Logical view: This view incorporates the requirements models.

20 Views are defined in [Kruchten 1995; Soni et al. 1995; Obbink et al. 2000] where different names are

used for the same views. We use the terminology introduced in [Kruchten 1995].

LayersLayers

Integrated Functions

Device Control and Management

Home Functions

Basic Control

• Protocols
• Connections
• Database
• OS
• Drivers
• Hardware variability

• Basic sensor and actuator
functionality

• Basic availability
management

• Data management

• Configurations of sensors,
actuators and data related
to single objects

• Combined functions for
achieving complex goals,
e.g. keep room
temperature constant

Fig. 6-2: Layers of a home automation application

Styles and
patterns

Four aspects of
software architecture

120 6. Documenting Variability in Design Artefacts

Development view: This view determines the decomposition of the soft-
ware into components, objects, and their interfaces.

Process view: This view determines the activities during execution.

Code view. This view determines the distribution of the software over
files, directories, and processing units.

Definition 6-3: Logical View

The logical view describes the applications in terms of the problem
domain.

The logical view is typically expressed in terms of requirements artefacts.
The remaining three views are the focus of this chapter.

6.2.1.1 Development View
The development view models the software structure in layers, subsystems,
components, object classes, interfaces, and their different kinds of relation-
ships.

Definition 6-4: Development View

The development view shows the (hierarchical) decomposition of the
system into pieces, each of which is the subject of a separate detailed
design.

Several notations exist for the development view, all describing the struc-
tural entities graphically with boxes, and their relationships with annotated
lines, or actual containment of boxes in each other. For instance, object
classes may be contained in components, which in turn may be part of a
layer or a subsystem. UML 2 [OMG 2003] has several notations for the
development view:

Package diagram describes packages and their relationships. A package
is a grouping of other diagrams, each with its own internal detailed
design.

Component diagram describes components and their relationships.

Class diagram describes classes and their relationships. It is mainly
used for detailed design of the internals of components and interfaces,
and thus belongs to detailed design.

Object diagram describes relationships between objects in a specific
execution. It belongs to detailed design.

Structural
decomposition

Development view
notations

6.2 Architectural Artefacts 121

The component diagram is the most important diagram for the architecture.
It is the main means to decompose the system according to the development
view, incorporating the high-level decomposition of the software system into
components and their relationships. Each component diagram is used to
describe an internal design for a part of a layer or subsystem. Its design is
mainly based upon experience and partially dependent on the set of require-
ments to be fulfilled. In addition, the architect takes into account the general
principles of complexity management, resulting in layered abstractions, and
of the divide-and-conquer strategy. To enable this, the architect needs repre-
sentations for layers and subsystems. The package diagram is not specifi-
cally meant for this. Yet, since it is a means for clustering arbitrary elements,
it is used to cluster components in subsystems and layers. An important
quality characteristic of software engineering (and in particular of software
product line engineering) is to design for flexibility, thereby enabling ease of
adaptation. By putting similar functionality together in the same subsystem
and component, changes are kept local, which is crucial for fast adaptations.

The other two diagrams are less important for architecture. The class
diagram denotes the decomposition of the system into object classes, which
is one level below the component structure in the decomposition hierarchy.
The class diagram gives more details than the component diagram. Such a
low level of detail obscures the architecture by too much complexity. This
results in too little emphasis on the general principles and causes problems in
later adaptations of the architecture. The architect determines only parts of
the class diagrams to ensure compliance with architectural principles. The
remainder is the topic of detailed design. The object diagram is less useful as
it mainly depicts a specific moment in a specific execution of a specific
application. However, it may be used for analysing difficult relationships, or
specifying specific crucial parts of the system.

6.2.1.2 Process View
The process view describes the behaviour of the systems during actual exe-
cution. It models processes, threads, their interactions, and often resource
usage.

Definition 6-5: Process View

The process view shows the decomposition of the running system into
ordered activities and their relationships.

The architect uses the process view to model the processing behaviour of the
system. Choices in this view have an influence upon speed, throughput, and
reaction times. There are several notations for the process view. UML 2
provides the following diagrams for documenting the process view:

Subsystems and
components

Class and object
details

System
behaviour

Process view
notations

122 6. Documenting Variability in Design Artefacts

Interaction overview diagram: This diagram describes relationships
between different process view diagrams.

Timing diagram: This diagram describes sequences of execution phases.

State machine diagram: This diagram decomposes the system into state-
charts [Harel 1987].

Activity diagram: This diagram describes behaviour in terms of actions,
control flows, and data flows in a Petri-net-like manner [Peterson 1981;
Reisig 1985].

Communication diagram: This diagram describes a specific sequence of
interactions in a specific execution of a system focusing on how the
internal structure corresponds with message passing.

Sequence diagram: This diagram is another way to describe a specific
sequence of interactions in a specific execution of a system, yet focus-
ing on the order of messages.

The most important diagrams for the architecture are those that enable
abstraction from the details of the observable behaviour of a system. This
holds for the interaction overview diagram, the timing diagram, and the state
machine diagram. An interaction overview diagram is used to provide an
overview of the control flow between interactions through a dialect of activ-
ity diagrams. The interactions themselves can be detailed later, e.g. during
detailed design. The timing diagram describes the sequence(s) of phases that
hold for a group of objects. For each phase, a different process view diagram
may be determined, involving different activities, interactions, and relation-
ships. Designing it correctly separates the concerns of different execution
phases, which saves a lot of complexity of the behaviour. For instance, start-
up, shut-down, or error-state behaviour may be completely different from the
normal operational mode. The state machine diagram is able to capture the
behaviour of the complete system in more or less detail. As long as the level
of detail is not too low, the state machine diagram is very useful for archi-
tecture. Detailed design uses the state machine diagrams in more detail.

The other three diagrams are less useful for the architect. The activity dia-
gram is typically used to describe the behaviour of the system following one
use case. Thus, it is preferably used in requirements engineering, although in
certain situations the architect may use it to get a first idea of which activ-
ities take place in the system before going into more detail. The communica-
tion diagram and the sequence diagram are used during detailed design as
they both depict mainly a specific part of an execution in a specific imple-
mentation. However, the architect uses them for analysing difficult relation-
ships, or specifying specific crucial parts of the behaviour.

Process diagrams
for architecture

Process detail
diagrams

6.3 The Reference Architecture 123

Alternatives for the process view exist in more formal approaches.21 We do
not consider these approaches, because they presently have a small impact,
in particular due to insufficient scaling towards large systems. This certainly
holds for the added complexity introduced by software product line engin-
eering. However, formal methods play a role in detailed design. Several
formal approaches exist that scale up better, and have proven themselves in
the development of large embedded system product lines.22 These
approaches usually combine the development and the process views in such
a way that the detailed design of the development view mainly involves
processes and threads, i.e. elements of the process view. The combination of
the threads into communicating processes and process scheduling is mainly
dependent on a few predefined mechanisms and can be automated.

6.2.1.3 Code View
The code view maps source code and executable code into files and directo-
ries, and their distribution over executable processing nodes.

Definition 6-6: Code View

The code view shows the decomposition of the executable code into
files and an assignment of these files to processing units.

The mapping of executable code to processing units has to consider the roles
of the different processing units. Example roles are clients, servers, and
database processing. Each role is related to a certain set of executable code.
Certain processing units may have more than one role. UML 2 provides a
deployment diagram for this purpose.

The code view is a part of the architecture and should not be intermixed with
detailed design and realisation, which is the subject of Chapter 7. The code
view determines the interrelations between the software artefacts after
development. Detailed design is part of development and produces the code,
which has to obey the architecture, incorporating the code view.

6.3 The Reference Architecture

All decisions on variability in design have to be communicated and docu-
mented for future use. As an important consequence, it is necessary to have
clear representations for variation points, variants, and mechanisms to realise

21 There are many such formalisms; examples are: CCS [Hoare 1985], CSP [Milner 1980], LOTOS

[Brinksma 1988], Petri nets [Reisig 1985], and process algebra [Bergstra and Klop 1984; Baeten et al.
1990].

22 For instance, COLD [Feijs et al. 1994] and SDL [Belina et al. 1991; Bræk and Haugen 1993].

Formal
approaches

Source code
structure

Code view
notation

Differences from
detailed design

One architecture for
the product line

124 6. Documenting Variability in Design Artefacts

variability. The architecture developed during domain engineering is called
the reference architecture. It is defined as follows:

Definition 6-7: Reference Architecture

The reference architecture is a core architecture that captures the high-
level design for the applications of the software product line.

The reference architecture includes the variation points and variants docu-
mented in the variability model. It provides limits for the architectures of the
separate applications, i.e. the application architectures. It determines which
components are reusable and thus have to be developed during domain reali-
sation.

In software product line engineering, the structure of a collection of applica-
tions has to be captured, and this means that the structure itself should
exhibit variability. In fact, architecture variability is mainly incorporated in
the structure. The texture captures a common part of the product line. Most
structure diagrams are able to express variation points and variants, although
some are more suitable than others. The most important ways of expressing
variability are discussed in this chapter.

In the following sections, we discuss the variability in the development,
process, and code views of architecture. Variability in the logical view has
been discussed in Chapter 5.

6.4 Variability in the Development View

The development view is the most important one to capture commonality
and variability. In particular, a large part of architecture variability is cap-
tured in the component diagram.

6.4.1 Subsystems and Layers
Subsystems and layers are best described in the package diagram, which
enables the architect to group similar components. The package diagram, in
fact used as a subsystem diagram, denotes the high-level decomposition of
the software system into subsystems and their relationships. The structure
described in the package diagram itself is valid for the entire product line.

Variability included
in architecture

Documentation of
variability

High-level
structure

6.4 Variability in the Development View 125

Figure 6-3 illustrates the documentation of variability in a package diagram
that describes the layers and subsystems of a software product line. Basic-
ally, layers as well as subsystems may be variable (i.e. associated with vari-
ants). In a layered architecture, each subsystem is assigned to a layer
matching the abstraction level of the involved functionality. This assignment
is fixed for all applications of the product line. In order to design for flexi-
bility, the architect typically determines subsystems in such a way that the
required variability is encapsulated within subsystems. Consequently, the
variable parts of the package diagram closely correlate with the elements of
the variability model. Typically, the subsystems in the higher layers deal
with external variability. They are only present when the customer needs
them. The variation points realised by the lower level subsystems are caused
either by detailing external variability or by internal variability. Most of the
internal variants differ in the use of available technology and performance
requirements. Usually all these subsystems are present in each application,
with variants dealing with quality issues and technology choices of the spe-
cific application features.

The variability diagram in Fig. 6-3 contains artefact dependencies between
variation points and architectural artefacts. Such a dependency indicates that
the artefact at the target end has different instances. For example, it abstracts

Package DiagramPackage DiagramVariability DiagramVariability Diagram

Integrated
Functions

Device Control and Management

Home Functions

Basic control

Operating
System

Lighting
Management

Heating
Management

Security &
Safety

Management

User
Interface

Basic
Equipment

Control
User TerminalsActuator

Control
Sensor
Control

Authorisation
ControlDatabase

Doors &
Windows

V

Lighting

V
Door & Window

Management

VP

Home
Functions

…

V

Proprietary

V

Commercial

V

VP

Database

Manual

V

Electronic

V

VP

Door Locks

Fig. 6-3: Subsystem diagram for home automation

Variable
subsystems

Variation point
artefact dependency

126 6. Documenting Variability in Design Artefacts

from the fact whether the variants of a variation point imply the variation of
the entire artefact or variation in the internal structure of the artefact. Hence,
the dependency can be used to hide this fact or to defer the decision about it.
This may be due to the abstraction level of the considered model or due to
notational limitations of the used diagram type.

Example 6-3: Subsystems and Layers for Home Automation

The package diagram in Fig. 6-3 shows the subsystems and layers of a
home automation product line. The layers ‘basic control’, ‘device
control and management’, ‘home functions’, and ‘integrated func-
tions’ are present in each application. Variability becomes manifest in
the subsystems. The subsystems in the ‘home functions’ layer deal
with external variability. They are only present when the client
requires them. So, a system without any door and window manage-
ment has no ‘door & window management’ subsystem.
The architect introduces internal variability, e.g. by putting lower level
functionality related to the actuation of door and window locks in the
‘device control and management’ layer. Thus, the internal structure of
the ‘actuator control’ subsystem provides components for the variants
‘manual’ and ‘electronic’ of the variation point ‘door locks’. The
internal structure has to be documented in a component diagram.
The variation point associated with the ‘database’ subsystem of the
‘basic control’ layer declares two variants: ‘proprietary’ and ‘commer-
cial’. These variants differ mainly in quality issues and are decided on
for example with regard to the size of the system.

6.4.2 Components
A subsystem is decomposed into a collection of interacting components.
UML 2 provides the component diagram for describing configurations of
components. Figure 6-4 illustrates the documentation of variability in the
component diagram. Each component may realise a variant and is thus only
present in an application for which the corresponding variant has been
bound. Variability in the internal structure of a component is primarily con-
sidered in detailed design.

Component
variability

6.4 Variability in the Development View 127

Example 6-4: Components for Door and Window Management

Figure 6-4 presents a part of the components of the ‘door & window
management’ subsystem. The subsystem contains common compo-
nents for door and window control such as ‘lock control’. But there
are also special components only for door or window control. The
door lock components are shown in Fig. 6-4.
The variability model describes the external variability of door locks
provided by the subsystem. The variation point ‘door lock‘ offers an
alternative choice with two variants, namely ‘manual’ and ‘elec-
tronic’. The former variant is realised by the ‘manual door lock con-
trol’ component. The latter variant requires a decision for the ‘lock
authentication’ variation point, i.e. one of the variants ‘keypad’ and
‘none’. Each of them is realised by a separate component in the com-
ponent diagram. All three door lock components use the generic door
and window lock functionality available in the ‘lock control’ compo-
nent.

6.4.3 The Role of Interfaces
Components are connected with each other through interfaces. An interface
describes the functionality in a providing component that is required by
another. Since the interface is an abstract description of the internal function-

Component DiagramComponent Diagram Variability DiagramVariability Diagram

Manual Door
Lock Control

Lock Control

Electronic Door
Lock Control
with Keypad

Authentication

Electronic Door
Lock Control

without
Authentication

Door
Lock

VP

Manual

V

Electronic

V

Lock
Authentication

VP

None

V

Keypad

V

requires_v_vp

Fig. 6-4: Example components in the ‘door & window management’ subsystem

Interfaces
support flexibility

128 6. Documenting Variability in Design Artefacts

ality of the providing component, there may be several implementations of
the same functionality. This is an important way to design for flexibility: the
same interface is provided by several different designs of a component. The
different designs typically realise variants of one or more variation points.
Interfaces hide the variability in the design of the providing components
from their clients.23

6.4.4 Configurations
Variability in the component view implies using variable configurations of
components and interfaces. In many cases, configurations of components do
not change arbitrarily, but in coordinated ways. The architect provides
restrictions on configurations that are allowed and those that are not. For
instance, the architect uses lists to denote which components are common
and which are variable or optional. Another important tool for restricting the
number of configurations is the use of a component framework.

Definition 6-8: Component Framework24

A component framework is a structure of components, or object
classes, where plug-in components or object classes may be added at
specified plug-in locations. To fit, each plug-in has to obey rules
defined by the framework.

The domain architect introduces frameworks to ease mass customisation.
Variation points are represented by locations in the framework where plug-in
components may be added. Variants are realised by specific choices of the
plug-in. A component framework is part of the architectural texture. The
texture usually also provides additional restrictions on the plug-in, e.g. by
disallowing connections of the plug-in outside the specified plug-in location.
This additionally eases the choices to be made by the developer of the plug-
in and facilitates the configuration activity. Many frameworks for basic
functionality are available commercially, e.g. J2EE [Alur et al. 2003]. The
domain architect decides on their use. In addition, the architect may design
additional frameworks for product line specific functionality.

Example 6-5: Home Automation Framework

A part of a framework for home automation is depicted in Fig. 6-5.
The main structure of door lock control is shown here. The parts in
solid lines compose the common part of the framework. Optional and

23 Still, the different designs may vary in quality aspects, such as resource usage, which is in fact

observable by the clients. Chapter 7 deals with this issue.
24 This should not be confused with other frameworks introduced in this book. For a more extensive

definition and treatment of component frameworks, see [Szyperski 1997].

Variable component
configurations

Component
framework

6.4 Variability in the Development View 129

variant parts are depicted by dotted lines. The framework determines
the main structure and covers the generic management functions of the
main parts, ‘lock control’, ‘user interaction’, and ‘authentication’,
which have a fixed configuration, as shown in the figure. Plug-in
components are marked by the use of ‘plug-in’ in their names. The
plug-in locations are required interfaces. The plug-in components are
connected to these locations through their own provided interfaces.
At the top right hand side, some plug-in components are depicted that
are in the ‘device control and management’ layer: ‘lock actuator plug-
in’ and ‘open/close sensor plug-in’. They represent variable plug-in
components to control different sensors and actuators. As can be seen
from the solid connection, at least one ‘lock actuator plug-in’ compo-
nent has to be present. However, the presence of an ‘open/close sensor
plug-in’ component is optional, depicted by the dotted interface and
connection.
The variable plug-in components for door lock control connect to an
interface provided by the ‘lock control’ component. At least one of
them has to be present. The ‘electronic door lock plug-in’ has an
optional connection to an interface of the ‘authentication manager’
component. The ‘authentication plug-in’ represents components for
different authentication mechanisms such as keypad authentication.
The plug-in is optional. The ‘authentication manager’, which is part of
the framework, always grants authentication in the case of absence of
the ‘authentication plug-in’. In this way, the framework can be used
for all kinds of situations with more or less complex door control
functionality, and the ‘user control manager’ is not bothered by the
presence or absence of authentication.
Note that authentication variability is present at three places in the
diagram: the presence of an ‘authentication plug-in’ component, the
variable presence of an optional interface between the ‘electronic door
lock-plug-in’ and the ‘authentication manager’ components, and the
variability of the ‘electronic door lock plug-in’ component, which has
variants with and without authentication. Thus the single external
variation point of having authentication leads to many internal vari-
ation points in design, in both the involved components and the con-
figuration itself. The addition to the variability model is shown in the
new variation point on authentication algorithm. The component
framework presented in Fig. 6-5 is considered in more detail in
Chapter 11.

130 6. Documenting Variability in Design Artefacts

The architect assigns plug-in components as variants for certain variation
points and delegates the binding of variability related to the plug-in compo-
nents to the realisation sub-process. Several plug-in variants are built during
realisation. Some of them have variability. The ‘electronic door lock plug-in’
component in Fig. 6-5 has variants with and without authentication. Domain
realisation may build separate plug-in components for these different vari-
ants, or there may be variants capable of dealing with both situations, i.e.
with and without authentication.

A component framework usually determines for each plug-in location a spe-
cial access interface to be provided by the plug-in component. In addition,
the framework itself has a registration interface to give the plug-in compo-
nent access to the framework through the registration of the access interface.
Through registration, the plug-in makes itself known to the framework,
which afterwards is able to access the plug-in. In many cases, the combina-
tion of a required access interface and a provided registration interface
makes up the plug-in location.25 So, two-way communication between the
framework and the plug-in is established without the developer of the
framework (during domain engineering) having to know which plug-in com-

25 More complex configurations of interfaces may be used for a single plug-in location. Alternatively,

sometimes a single interface is enough.

Component FrameworkComponent Framework Variability DiagramVariability Diagram

Open/close
Sensor
Plug-in

Electronic
Door Lock

Plug-in

Manual
Door Lock

Plug-in

User Control
Plug-in

Lock
Actuator
Plug-in

Authenti-
cation
Plug-in

Authenti-
cation

Manager

User Control
Manager

Lock
Control

Door Lock

VP

Manual
V

Electronic
V

Lock
Authentication

VP

requires_v_vp

…
V

Auth.
Algorithm

VP

Fig. 6-5: A simple framework for lock control

Plug-in components
for variants

Plug-in
registration

6.5 Variability in the Process View 131

ponents are available, since these are usually developed later than the
framework itself, e.g. during application engineering. In Fig. 6-5 only the
registration interfaces are depicted. This reduces the complexity of the pic-
ture. The access interfaces are only connected during run-time and not to be
used by other components than the one the plug-in is bound to. Adding them
to the picture may lead to erroneous connections that access the plug-in
components directly, and not via the framework.

6.5 Variability in the Process View

The process view describes the behaviour of the applications during actual
execution. It models processes, threads, their interactions, and often their
resource usage.

Variability in the process view has different manifestations:

Different groupings of threads to processes.

Threads and processes, which may be optional, have multiple instances,
or both.

Different process scheduling mechanisms and process priorities.

Different process communication mechanisms.

Each choice influences the processing behaviour of the applications, and has
an influence on speed, throughput, and reaction time upon events. Within
software product line engineering, variable requirements dealing with per-
formance or other quality issues lead to different choices for the process
view. In addition, internal variability may lead to variability in the process
view, influenced by the hardware or basic infrastructure used.

Many of the diagram types used in the process view do not have a notation
for variability. Most of these diagrams only depict commonality. Apart from
applying the variability model (this has been demonstrated in Chapter 5 for
the state machine diagram) the architect has the option to rely upon indirect
means by using a process table. This assigns processes to priorities and
threads to processes. Threads are often assigned to components and vary
together, i.e. each variant of the component has its own variant of the thread.
If the component is optional, the thread is optional as well. If the component
can have multiple variants in a single application, the threads have multiple
instances as well.

Threads, processes,
resource usage

Impact of
variants

Process
table

132 6. Documenting Variability in Design Artefacts

Example 6-6: Process Table

Figure 6-6 shows an excerpt of the process table for home automation,
related to door lock control. Almost all threads in this excerpt are part
of the ‘door lock process’. They are defined in the ‘door lock plug-in’
components. Not all variants define the same threads. Only the variant
that closes the door automatically (‘active’ variant) defines a thread
for closing the door. Moreover, the ‘authentication manager’ compo-
nent has responsibility for defining the ‘check authentication’ thread,
which has different implementations for different kinds of authentica-
tion. Finally the ‘door lock authentication table’ thread is defined in
the ‘authentication manager’ component only for the ‘fingerprint’
variant as fingerprint authentication has higher computational require-
ments than the other variants. It is part of a separate low-priority pro-
cess, the ‘authentication process’.

6.6 Variability in the Code View

The code view deals with the distribution of source code over files and di-
rectories and of executable code over processing units. Variability occurs in:

the decomposition itself,

Variability DiagramVariability DiagramProcess TableProcess Table

Thread

Initialise
door lock

Door lock
operation
init

Door lock
authentica-
tion table

Close door

Open door

Check
authentica-
tion

Component

Door lock plug-in
all variants

Door lock plug-in
all variants

Authentication
manager finger
print variant

Door lock plug-in
active variants

Door lock plug-in
all variants

Authentication
manager

Process

Door lock
process

Door lock
process

Authentication
process

Door lock
process

Door lock
process

Door lock
process

Priority

3

3

7

3

3

3

Active
V

Passive
V

Lock
Authentication

VP

Keypad
V

VP

Door
Lock Closing

Fingerprint
V

None
V

Fig. 6-6: Example of documenting variability in the process view

Files, directories,
processing units

6.6 Variability in the Code View 133

the number and roles of the processing units, and
the mapping of code to processing units.

The UML 2 deployment diagram does not provide notational elements for
variable deployments. Thus, similarly as for the process view, the architect
may resort to using lists. The drawback of this approach is that the list has to
be updated for each separate application. Example 6-7 illustrates the docu-
mentation of variability in the deployment using the variability model.

Example 6-7: Deployment for Home Automation

A part of the code view of home automation for a specific application
with fingerprint authentication is shown in Fig. 6-7 together with the
corresponding part of the variability model. It shows where the exe-
cutables related to the components of Fig. 6-5 are mapped on the hard-
ware. In addition, it denotes the protocol that is used between the
devices, namely RMI (Remote Method Invocation) between the ‘au-
thentication processor’ and the ‘central processor’. The ‘authentication
processor’ and the connector ‘<<RMI>>’ are only available for finger-
print authentication.

Deployment
diagram

Variability DiagramVariability DiagramDeployment DiagramDeployment Diagram

<<device>>
:Authentication

Processor

Authenti-
cation
Manager

Authenti-
cation
Plug-in

<<RMI>> <<device>>
:Central

Processor

User
Control
Manager

User
Control
Plug-in

Lock
Control

Door
Lock
Plug-in

Lock
Actuator
Plug-in

Open/
close Sensor
Plug-in

<<electric>>

<<device>>
:Door Servo

Motor

Doors
V

Windows
V

VP

Door &
Window Mgmt.

Lock
Authentication

VP

Keypad
V

Fingerprint
V

None
V

Fig. 6-7: Example of documenting variability in the code view

134 6. Documenting Variability in Design Artefacts

6.7 Differences from Single-System Engineering
Notations that are used to document software architecture in single-system
engineering mostly do not provide sufficient means to express variability.
Software product line engineering is concerned with documenting the refer-
ence architecture which is valid for all applications of the product line. Each
application may imply a different set of subsystems and a different configu-
ration of components within these subsystems. Consequently, each applica-
tion may consist of a different set of processes and threads and also show a
different deployment of executable code to processing units. Therefore, in
contrast to single-system engineering, an additional variability model is nec-
essary that clearly documents the available options and their effects on the
different architecture views.

6.8 Summary
The architect has to provide a reference architecture that is flexible enough
to cope with the required variability in the design. The variability model
allows documenting variability in the development view, the process view,
and the code view of the architecture:

Development view: This view deals with the decomposition of a system
into layers, subsystems, and components. Variability in the configura-
tion of layers and subsystems is documented in the UML 2 package dia-
gram. Variability in the internal structure of a subsystem, i.e. in the con-
figuration of components, is documented in the component diagram. In
both cases, variation points and/or variants of the variability model are
associated with variable elements of development view diagrams.

Process view: This view deals (among other things) with the decompo-
sition of system behaviour into processes and threads. Variability in the
configuration of processes and threads can be documented in a process
table by associating the variability model with process table entries.

Code view: This view deals with the decomposition of a system into
files and their assignment to processing units. Variability in the code
view is documented in the UML 2 deployment diagram.

Component frameworks are created and used to restrict the design choices in
a product line and to cope with variability. Plug-in components are essential
constituents of a flexible design. However, all other components may have
variability as well. Subsystems, components, and interfaces at a low level of
abstraction provide internal variability to support the external variability
provided by the higher abstraction levels. At these higher abstraction levels
variability is mainly influenced by requirements variability.

Design artefacts for
different applications

Variability in
architecture views

Component
frameworks

7
Documenting Variability
in Realisation Artefacts

In this chapter you will learn:

o How to document and realise variability defined by the domain design in soft-
ware components.

o About the mapping of product line variability onto component configurations
and component interfaces, as well as the internal structure of components.

Frank van der Linden

136 7. Documenting Variability in Realisation Artefacts

7.1 Introduction

As discussed in Chapter 6, we regard realisation from the viewpoint of the
architect. We focus on variability in detailed design and on the techniques
that enable the composition of the parts that are developed in domain reali-
sation into different applications. The implementation of variability is crucial
for software product line engineering. There are many ways to implement
variability within programming languages and tools that support develop-
ment. For realisation technology, the reader is referred to [Coplien 1998;
Atkinson 2001; Muthig and Patzke 2003; Greenfield et al. 2004]. Realisation
mechanisms are not within the scope of this book.

Fig. 7-1: Domain components are the focus of documenting realisation variability

The sub-processes and artefacts closely related to the documentation of vari-
ability in domain realisation artefacts are highlighted in Fig. 7-1. Domain
design provides the main input for domain realisation in terms of the archi-
tectural structure and the architectural texture. The structure determines the
components and interfaces that have to be designed and implemented.
Furthermore, it documents external as well as internal variability. The tex-
ture provides common guidelines that, among other things, specify common

Variability in detailed
design and code

Components and
interfaces

7.2 Detailed Design Artefacts 137

rules for dealing with variability in component and interface design and
implementation. The domain realisation sub-process is concerned with cre-
ating common and variable realisation artefacts including the reusable
components. Domain testing creates the test artefacts for the components and
performs part of the testing (test activities are distributed over domain and
application testing). The reusable components and interfaces are provided to
the application realisation process, which is responsible for realising a spe-
cific application based on the application architecture. This is done mostly
by assembling a suitable configuration of domain components and partially
by developing application-specific components.

7.2 Detailed Design Artefacts

Detailed design deals with the design of components and interfaces, which
are determined by the architecture. Figure 7-2 gives an overview of these
main elements of detailed design. Components are the main pieces out of
which the applications are built. Interfaces are the externally visible parts of
the components and are used to connect components. The realisation of a
single interface can usually not be assigned to the realisation of a single
component, since many interfaces are provided and required by multiple
components. Therefore, interfaces are separate entities, distinct from compo-
nents; see Fig. 7-2. For the design, interfaces are of equal importance as
components and therefore have to be designed carefully.

Components
and interfaces

Interfaces
Components

Fig. 7-2: Elements of detailed design

138 7. Documenting Variability in Realisation Artefacts

The reference architecture is the most important input for the component and
interface design. The designer of a component or an interface has to know
the place and role of the component or interface in the architecture. If a
component is part of the platform, it is used within many applications. A
failure in such a component has widespread effects and thus has to be pre-
vented by ensuring strict quality requirements.

Interfaces are the means for connecting components. Components provide
functionality to other components via a provided interface. On the other
hand, components use a required interface for accessing functionality pro-
vided by other components. A complete application is configured by
connecting the required interface of each component to exactly one,
matching26 provided interface of another27 component. For each involved
component, all required interfaces, except possibly optional ones, should be
connected.

The interfaces that a component requires or provides have to be designed
before the actual internal design of the component can be done. The architect
usually only determines what interfaces exist, what their role is, and which

26 Matching does not always mean equality; there are cases where a “smaller” required interface may be

connected to a “larger” provided interface, see e.g. [V. Ommering et al. 2000].
27 Although we do not disallow the connection of two interfaces of the same component, this case seldom

occurs in practice.

Lock Control

Sensor
Interface

User Control
Registration
Interface

Lock
Registration
Interface

Actuator
Interface

Electronic
lock control

0..n

Lock control
registration

Lock
sensor1..n

SensorActuator

Lock

Lock
actuator

1
n

User
terminal

1n

Fig. 7-3: Component and interface structure

Architecture is the
basis of realisation

Required and
provided interface

Interface design
precedes component

design

7.3 Component Interface Variability 139

components should provide or require the interface. Each interface provides
several elements, which may either be implemented by the providing compo-
nent or subsequently be required via another interface.

Example 7-1: Interfaces for Lock Control

In Fig. 7-3 a class diagram of a home automation component for lock
control is depicted. It has two provided interfaces, one for ‘user con-
trol registration’ and one for ‘lock registration’. The first one contains
a class ‘User terminal’ to inherit from, and to call methods of, in order
to bind a specific user terminal to it, and to enable the user to interact
with the ‘Lock control’. The second one has two classes, ‘Lock’ and
‘Electronic lock control’, to inherit from and to enable the binding of
several kinds of locks, and calling their methods. The required inter-
faces are those that define the classes ‘Sensor’ and ‘Actuator’ to
inherit from. The actual implementations are the ‘Lock actuator’ and
‘Lock sensor’ classes that inherit from ‘Sensor’ and ‘Actuator’
respectively. The ‘Lock control registration’ class is not part of the
component interface. It is used to connect classes that are registered
via the provided interfaces to the ‘Lock’ class.

The internal structure of a component or an interface consists mainly of
object classes and functions. The designer may use a UML 2 class diagram
to document them. The design of an interface should preferably be self-
contained, i.e. it should not refer to other designs. The design of a compo-
nent incorporates the design of its required interface as a basis to build upon.
The provided interfaces should be abstractions of the component designs.

7.3 Component Interface Variability

Interfaces are important means to realise variability. Different components
that provide the same interface can be bound to others that require them.
This results in a large number of possible configurations of domain compo-
nents in product line applications. A good and stable design of the interfaces
is crucial for allowing flexible configurations. Interfaces may be variable,
but that is usually to be avoided. If an interface is variable the components
providing and requiring the interface have to agree upon the variant to use.
Although this scheme is possible, its advantage of reducing development
effort is usually too low with respect to the effort needed to select the proper
variant consistently.

The most important constraint on an interface is the variability in the differ-
ent components that have to be connected. The substructure of the interface

Internal
structure

Stable
interfaces

Abstraction of
variability

140 7. Documenting Variability in Realisation Artefacts

provides an abstract view of object classes and constants in the providing
component. The following kinds of variability have effects on the design of
an interface:

The use of different algorithms or protocols

Differences in resources provided

Differences in application configuration

Many providing components

7.3.1 Variability in Algorithms and Protocols
The same functionality may be implemented in different ways which all
have to be supported by a single interface. The interface has to provide an
abstract view of this kind of variability. The interface carries functions or
object class methods that execute the algorithm or protocol (Example 7-2).
The argument and result types of these methods have to be chosen in such a
way that each perceivable algorithm can deal with them. This may involve
the introduction of additional classes that incorporate certain argument or
result lists.

Variability DiagramVariability DiagramInterfaceInterface

Authentication
Registration Interface

Authentication Key_database

Database

…
register(…)

authenticate(…)
store_key(…)

retrieve_key(…)

Relational

V

Card

V

Keypad

V

List

V

VP
Auth.

Algorithm

VP
Auth.

Key Store.
re

qu
ire

s_
vp

-v
p

…

Fig. 7-4: Interface for registering authentication objects

Abstraction from
algorithms

7.3 Component Interface Variability 141

Example 7-2: Authentication Registration Interface

Figure 7-4 presents the interface provided by the ‘authentication man-
ager’ component and required by the diverse ‘authentication plug-in’
components. Each plug-in component implements a different authenti-
cation algorithm. The ‘authentication registration interface’ allows the
plug-in components to register at the ‘authentication manager’ compo-
nent (Section 6.4).
The interface carries the class ‘Authentication’ with enough function-
ality for each class implementing an authentication algorithm. For
instance, it carries an ‘authenticate’ method. In each ‘authentication
plug-in’ component (Section 6.4), a sub-class has to be defined that
performs the authentication according to its own algorithm. Moreover
the ‘Authentication’ class contains a function to register objects of the
class at the ‘authentication manager’. This method is defined in the
‘authentication manager’ component itself to be reused by all ‘authen-
tication plug-in’ components. The interface also carries the class
‘Key_database’, which is used by the authentication algorithm and has
to be known by the ‘authentication manager’ for proper functioning.

Example 7-3: Authentication Registration Interface with Resource
Information

In the interface diagram of Fig. 7-5 the interface of Fig. 7-4 is
extended with resource information. If the authentication algorithm
takes a lot of time, it needs a separate asynchronous process to finish.
In the meantime it can perform necessary administration tasks, which
otherwise would have to wait till authentication is finished and which
keep the lock closed for too long. The interface thus makes a differ-
ence between having the additional asynchronous authentication pro-
cess or not. This is manifested in an additional parameter ‘sync’ in the
‘register’ method of the ‘Authentication’ class. If a class is registered
with ‘sync’ being false, the component providing the interface is able
to deal with this situation in the additional process. The biometrical
data, like an iris scan, can be collected, and processing starts before an
actual authentication request is received. The actual request may
arrive later because the doorknob has not been touched yet.

7.3.2 Variability in Resources
Different components deal with the same kind of functionality, but often
provide (and/or use) different amounts of certain resources. Examples of
such resources are memory size, processing time, screen space, bandwidth,
and communication speed. In many cases the component requiring the inter-

Abstraction from
resource variation

142 7. Documenting Variability in Realisation Artefacts

face needs at least some abstract information about the required resource
size. This often is its value with respect to a given scale. The scale may be
more or less abstract, such as the absolute screen size in pixels, or only just a
distinction between large, medium, and small.

The interface should carry functions, or parameters that distinguish between
the actual values of the resource (Example 7-3). This enables run-time
checking, e.g. if the provided resource is large enough. In addition, there
should be (de-)allocation functions to be able to claim and free the resources.

7.3.3 Variability in Application Configuration
In many cases variability is related to the application configuration, includ-
ing differences in hardware and software. Such differences may be, for
instance, different memory sizes or differences in the availability of certain
software packages. Requiring components need an abstract view on the con-
figuration. Consequently, the interface should carry functions, methods, or
parameters that distinguish between the variants (Example 7-4). Differences
in resources can be seen as a special case of differences in configuration.
While resources are related to internal properties of hardware and software,
configuration relates to all kinds of system properties.

Parameters
for variants

Variability DiagramVariability DiagramInterfaceInterface

Authentication
Registration Interface

Authentication Key_database

Database

…
register(…, Bool sync)

authenticate(…)

…
store_key(…)

retrieve_key(…)

Synchr.

V

Card

V

Key pad

V

Asynchr.

V

VP
Auth.

algorithm

VP
Auth.

Synchronisation

Iris

V

re
qu

ire
s_

v-
v

re
qu

ire
s_

v-
v

re
qu

ire
s_

v-
v

Fig. 7-5: Interface with synchronisation information

Abstraction from
configuration variants

7.3 Component Interface Variability 143

7.3.4 Many Components Providing the Interface
There may be many components providing the same interface. For instance,
this occurs for system-wide aspects affecting all or most components, such
as initialisation (Example 7-5), error handling, or software maintenance. The
interface carries only a few object classes that have few methods which are
usually very generic.

Variability DiagramVariability DiagramInterfaceInterface

Lock Registration Interface

Lock

…

register(…, Int total
Gate g)

open(Int n,
Auth_key k,…)

close(Int n,…)

VP
Door &

Window Mgmt.

Doors

V

Yes

V

No

V

VP

Lock
Authentication

User

V

Passive

V

VP
Lock

Closing

excludes_v-v

Gate

…

Bool c-user
Bool c-active

…

Active

V

req
uir

es
_v

-v

Windows

V

requires_vp-v

Fig. 7-6: Lock registration interface

Generic
interfaces

Initialisation Interface

Init

…
init-internal(Int …, Int …, Bool …)
init-connections(Int …, Bool …)
reset-internal(…)
reset-connections(…)
…

…

Fig. 7-7: Initialisation interface

144 7. Documenting Variability in Realisation Artefacts

Example 7-4: Lock Registration Interface

In the interface diagram of Fig. 7-6 a lock registration interface is
shown. It is used to register both door and window locks. In order to
be able to differentiate between them, an additional ‘Gate’ class is
present in the interface. Doors and windows are kinds of gates. In the
future there may even be other kinds of gates as well, which have to
be opened and closed, such as sunshades or water taps. Each gate has
some properties dealing with the way it is closed:
 User closing means that the gate needs a separate user command to

close. This is captured in the ‘c-user’ parameter in the ‘Gate’ class
being equal to “true”.

 Active closing means that after waiting for a short time, a closing
command will be issued. This is captured in the ‘c-active’ parame-
ter in the ‘Gate’ class being equal to “true”.

 Passive closing means that after opening, the subsequent closing
proceeds mechanically, e.g. through the use of springs. This is
captured in both the ‘c-user’ parameter and the ‘c-active’ in the
‘Gate’ class being equal to “false”.

The interface deals with all variability related to different numbers of
gates and their way to close. The requirements are such that doors are
never ‘user closing’ and windows are always ‘user closing’. Each
registering command is able to register more than one gate of a single
kind. The interface deals with variability in the gates to be registered
and controlled by the inclusion of the gate as a parameter. In this way
lock control uses the parameters of the gate itself to know how to
close. Many configurations of all kinds of gates can be controlled. To
select the right gate in the configuration, the ‘open’ method requires
an identifier of the gate to be opened and an authentication key, which
has a default value in cases that do not require authentication. The
‘close’ method needs the identifier of the gate.

Example 7-5: Initialisation Interface

The initialisation interface is shown in the interface diagram of Fig.
7-7. The architectural texture demands that each component provides
the interface. It is used for initialising and resetting components. The
interface has generic functions for initialising or resetting the internal
part of the component, and for initialising or resetting the connections
to other components. For generic parameters, types like Int, Bool, or
Char are used. These types are known by all components. Conse-
quently, all components can use the functions.

7.4 Internal Component Variability 145

7.4 Internal Component Variability

Realisation of components deals with the variability requests of the architect
by using the following mechanisms, often in a mixture:

Providing different variants of a component
Providing variability within the component

Class diagrams are used to document the internal structure of components.
This structure mainly consists of interacting object classes. Some of these
classes are defined in provided and required interfaces. Therefore, classes in
interfaces are usually also part of the class diagram (Example 7-6).

Example 7-6: Variability in the Components

Figure 7-8 shows a class diagram of a lock control component. The
component has several provided and required interfaces. At the top of
the figure, two classes are depicted that are required for the control of
actuators and sensors. Through the required interfaces for ‘Sensor’
and ‘Actuator’, these classes are used for inheritance28 to ‘Lock sen-
sor’ and ‘Lock actuator’ in the lock control component. The provided
interfaces carry classes for inheritance themselves. For instance, the
generic ‘Lock’ class has a sub-class ‘Electronic lock control’ in the
same interface, which is inherited through the ‘lock registration inter-
face’. In addition to these interfaces and their inheritance relation-
ships, some other occurrences of variability can also be found in Fig.
7-8. The optional presence of a door lock sensor is modelled by defin-
ing the multiplicity of the ‘Lock sensor’ class as 0..n. Similarly the
presence of more than one actuator is modelled through the multipli-
city annotation 1..n. Finally, some variability in run-time instances is
shown in this diagram. The ‘Lock sensor’ class has an attribute
‘period’ which describes the polling time in microseconds. This
attribute is adapted at run-time according to the time of day and the
particularities of the use of the door.

Inheritance, multiplicity annotations, and class attributes are the main ways
to describe variability in class diagrams. In particular, inheritance is used to
provide variants for abstract classes available in required interfaces. Part of
the variability in the class diagram is variability that relates to the run-time
instances of the class model. This kind of variability is not related to product
line variability, which determines the differentiation between the different

28 Note that these classes are depicted at the top of the figure, but appear in the lower level subsystems

‘Device control and management’. This is a consequence of a flaw in the inheritance notation. The
interested reader is referred to [Firesmith 1994] for a discussion on this topic.

Realisation
of variability

Documentation of
internal structure

Defining variability in
class diagrams

146 7. Documenting Variability in Realisation Artefacts

applications. Only the latter one is of importance for software product line
engineering. Therefore we use the orthogonal variability model to capture
the variability of the product line.

Care should be taken to determine what variability means during detailed
design. As stated in Chapter 5, the variability in the class diagram can be
used either for defining different run-time instances, for distinguishing be-
tween variants (Example 7-7), or even something in between, i.e. applica-
tions having a smaller range of variability than expressed in the diagram. In
general the variability model should reflect the available range of permissi-
ble variants. In addition, the designer may resort to other means, e.g. expla-
natory text, to distinguish clearly between these cases.

Variability DiagramVariability DiagramLock Control ClassesLock Control Classes

Sensor
Interface

User Control
Registration
Interface

Lock Registration
Interface

Actuator
Interface

Sensor-based

V

VP

Door Mgmt

Electronic
lock control

0..n

Lock control
registration

Lock
sensor1..n

SensorActuator

Lock

Lock
actuator

1

Gate

1

n

User
terminal

1n
Int period

Fig. 7-8: Class diagram of a ‘Lock control plug-in’

So far, we have considered the development view (or the static view) of
detailed design. The process view of detailed design may be documented for
instance in terms of sequence charts or state machines. The documentation
of variability in sequence charts and state machines has been covered in
Chapter 6. However, typically the high level of detail in detailed design
makes the documentation of variability more difficult than in requirements
engineering. The designer usually follows the guidelines of the architect,
assigning threads and processes to objects or object classes. This allocation
adheres to the required variability. The consequence of this procedure is that

Orthogonal
variability definition

Process view follows
development view

7.6 Summary 147

process view variability and development view variability are closely
related.

Example 7-7: Variability in the ‘Lock Control Plug-in’

In Fig. 7-8 the relationship between the ‘Lock’ class and the ‘Lock
sensor’ class shows that there may be zero, one, or many lock sensor
objects available per lock. This specification allows applications in
which exactly one such object is available. However, the diagram may
also be interpreted as “it must be possible to configure the number of
sensors at run-time in each application”. Then, each application
should possess the option of having any number of sensors available,
including none. The exact number is determined at run-time. In this
case the multiplicity in the diagram does not denote product line vari-
ability.

7.5 Differences from Single-System Engineering

The detailed design and the implementation of domain components basically
have to rely on the notations and mechanisms that are also employed in
single-system development. The main difference to normal software engin-
eering is the presence of variability, which has to be incorporated in the
design. The internal structure of a component may differ from application to
application. The component interface has to be generic to support these dif-
ferences. In order to support systematic development and reuse, the variabil-
ity of the product line provided by the components has to be clearly
documented in the variability model.

In addition, the reference architecture is an important constraint, more so
than the architecture of a single system. This is caused by the fact that the
architecture governs the similarity of the design of the parts by means of the
texture. The texture defines rules that guide the realisation and the documen-
tation of component variability.

7.6 Summary

Developers have to create a detailed design for each component specified in
the architecture. In doing so, they document the variability provided by each
component in the variability model. The variability model provides a con-
sistent view of the available component variability and supports the config-
uration of components. Interfaces provide a common view of variable
components and an abstraction from their internal details. They are designed

Generic interfaces,
realised variability

Realisation
guided by texture

Variability in
components

Variability in
interfaces

148 7. Documenting Variability in Realisation Artefacts

in such a way that each (variable) component requiring some interface can
be coupled to each component providing this interface.

The internal structure of each component is documented in the class dia-
gram. As the class diagram does not distinguish between product line vari-
ability and the variability of run-time instances, product line variability of
components has to be documented in terms of variation points and variants
that are linked to the variable elements of the class model.

Variability
documentation

8
Documenting

Variability in Test
Artefacts

In this chapter you will learn:

o How to use the orthogonal variability model to document variability in test
artefacts.

o The differences between test artefacts in single-system engineering and in
software product line engineering.

Klaus Pohl
Ernst Sikora

150 8. Documenting Variability in Test Artefacts

8.1 Introduction

Test artefacts contain the instructions for testers what to test, when to test,
how to test, and how to document the test results. The test results themselves
are test artefacts, too. Test artefacts enable repeatable and traceable tests.
Testing is performed in domain engineering as well as in application engin-
eering and thus test artefacts are created in both processes. A major task of
domain testing is to develop test artefacts that can be reused efficiently in
application testing. This is achieved with a clear and unambiguous documen-
tation of variability in test artefacts. In this chapter, we focus on that docu-
mentation. We provide a brief description of important test artefacts and
show how to employ the orthogonal variability model. The sub-processes
and artefacts closely related to documenting variability in domain tests are
highlighted in Fig. 8-1.

Variability in
test artefacts

Fig. 8-1: Focus of documenting variability in test artefacts

8.2 Test Artefacts 151

8.2 Test Artefacts

The constituents of test documentation known from single-system engineer-
ing are shown in Fig. 8-2. We refer to the test plan, test case, test case scen-
ario, scenario step, and the test summary report as test artefacts (Definition
8-1), whereas the software artefact under test is called item under test or test
item.

Definition 8-1: Test Artefacts

Test artefacts are products of the test process containing plans, specifi-
cations, and test results.

A comprehensive overview of test artefacts can be found, for example, in the
IEEE standard for software test documentation [IEEE 1998]. In the follow-
ing, we briefly characterise the test artefacts from Fig. 8-2:

Test plan: A test is conducted according to a test plan, which determines
the test cases to be performed. The test plan also assigns priorities to the
test cases, allocates the resources available for testing, and specifies the
tools to be used.

Test case: A test case defines the conditions, the input data, and the
expected output data for a test. Each test case has a defined test goal and
includes one or multiple test case scenarios, which describe different
ways of achieving the goal. A test case also defines the required test

Test Plan Test Case

Test Artefact

Test Summary
Report

Test Case Scenario

Test Case Scenario
Step

Fig. 8-2: Software test artefacts, based on [IEEE 1998]

Main constituents of
test documentation

Characteristics of the
test artefacts

Resource
allocation

Logical and
detailed test cases

152 8. Documenting Variability in Test Artefacts

environment, information about how to execute the test, and the fail–
pass criteria, i.e. the conditions that must be true for the test item to pass
the test. There are two levels of abstraction at which a test case may be
defined. Logical test cases describe the data, conditions, and actions in
principle, yet without referring to details such as the particular data
values to be entered within a scenario step (however, the data range
may be specified). Detailed test cases provide all the details necessary
to perform the test, leaving no room for interpretation.

Test case scenario: A test case scenario describes a specific sequence of
actions. The execution of this scenarios results in achieving the test
goal. Each action is defined as a scenario step.

Test case scenario step: A test case scenario step includes instructions
for the tester to perform a specific action and, optionally, the expected
result for the test step.

Test summary report: A test summary report provides an overview of
the results of a specific test execution.

8.3 Variability in Test Artefacts

In software product line engineering, the test artefacts introduced in Section
8.2 have to include variability or at least refer to it.

8.3.1 Test Plan
The test plan is required for domain engineering as well as for application
engineering. The test plan for domain engineering must unambiguously de-
fine the test activities to be performed in domain engineering and therefore it
does not contain variability. Nonetheless, a generic test plan for future appli-
cation test processes may be prepared. In the following, we characterise the
impact of software product line engineering on the generic test plan:

To determine an appropriate allocation of resources, resource consump-
tion must be estimated based on the variants and the common and vari-
able requirements. At least a rough estimation of resource consumption
for each common or variable requirement is necessary. Dependencies
between variants may increase complexity and the required amount of
resources.

The test plan must specify which common and variable test cases are to
be performed. To perform variable test cases, the test plan must specify
which variants to bind.

Sequence
of actions

Instructions
for tester

Results of
test execution

Generic and
specific test plans

Effects of
variability

Resource
consumption

Selection of
variants

8.3 Variability in Test Artefacts 153

The priority of a reusable test case is typically different in domain and
application engineering. If tests are performed in domain engineering,
the corresponding test cases have high priorities in domain engineering
but low priorities in application engineering. The assignment of priori-
ties can also depend on the selected variants, e.g. to indicate that a test
case is of a high priority for a particular variant, but a low priority for
other variants.

The tool support defined in the test plan must deal with the question of
how to model variability in test artefacts and how to bind variability in
application testing. If the available tools do not provide adequate vari-
ability support, custom tags, textual notes, or other available constructs
for instance may be used to denote variable elements.

The test plan is specified as a natural language document. Therefore, for the
attributes of the test plan, we encourage the use of the same modelling tech-
niques as for the natural language requirements (Section 5.3). Figure 8-3
presents an example of a generic test plan, which is related to a variability
model. By binding variants in the variability model the related parts of the
generic test plan are selected for a particular application.

8.3.2 Test Case
Common and variable test cases are the most important test artefacts. The
constituents of the test cases are affected by variability in the following
ways:

The test data to be used may be different for each selected set of vari-
ants. The test documentation must include the different test data and its
relation to variants in the orthogonal variability model.

Priorities

Tool
support

Natural language
documentation

Variability DiagramVariability Diagram

[] Test cases for installed b/w cameras
require 0.5 days (low priority)

Test Plan

Resource calculation and test case
prioritisation

In either case, the test cases for the video
storage system require 0.25 days (low
priority if only one camera type is
chosen, high priority if both are chosen).

Camera
Type

VP

Black and
White

V

Colour

V[] Test cases for installed colour cameras
require 0.75 days (high priority)

Fig. 8-3: Example of orthogonal variability modelling in a generic test plan

Effects of
variability

Test
data

154 8. Documenting Variability in Test Artefacts

Environmental needs impose restrictions on permissible hardware and
software configurations in which the item under test is executed. Differ-
ent variants of the test item may have different environmental needs.
The test documentation must specify the different needs and relate them
to the corresponding variants in the orthogonal variability model.

The fail–pass criteria define in which cases the test item fails or passes
the test. The test documentation must specify which fail–pass criteria
have to be applied for a particular variant, for instance by defining
which deviations from the test case scenarios of the considered variant
are tolerable.

The specification of test cases is contained in structured natural language
documents and is therefore similar to natural language requirements and test
plans.

8.3.3 Test Case Scenario
A test case scenario contains the expected flow of actions that should emerge
during test execution. It puts the included test case scenario steps in the right
order. Product line variability leads to the following three types of scenarios:

A scenario is common to all intended applications.

A scenario is specific for one variant.

A scenario is adaptable to two or more variants.

Example 8-1: Adaptable Test Case Scenario

The home security system has three different variants for the elec-
tronic door lock. The test case scenario shown in Fig. 8-4 contains
common steps as well as variable steps for the particular variants. The
step ‘enter tester data as valid’ ensures that a precondition is met, i.e.
the tester is known to the system and authorised to unlock the door.
The steps ‘lay finger on scanner’, ‘enter PIN in keypad’, and ‘use
magnetic card’ describe the individual ways for each variant to
authenticate to the system. The ‘grant access’ step includes the verifi-
cation if the system identifies the tester correctly and permits entry.
The way the verification is performed depends on the particular vari-
ant. It may, for example, involve checking the internal state of the fin-
gerprint authentication component. The final step ‘open door’ is a
common step as either variant allows the tester to open the door. Due
to the common start-up and finalisation steps, this scenario falls within
the category “adaptable scenario for two or more variants”.

Test
environment

Fail–pass
criteria

Structured
natural language

Three types of test
case scenarios

8.3 Variability in Test Artefacts 155

The specification of test case scenarios is similar to scenarios used in
requirements engineering (Section 5.4) and, thus, the notations are the same.
However, the information in a test case scenario is more detailed than the
information in a use case scenario.

8.3.4 Test Case Scenario Step
The scenario steps are the constituents of a domain test case scenario. They
are affected by variability in the following ways:

The input specification may be different for each variant as the selected
variant can have an influence on the input data of the test item. The test
documentation must include the different input specifications and their
relation to variants in the orthogonal variability model.

The expected output of a scenario step depends on the chosen variants.
The test documentation has to include the different output specifications
and their relations to the variants in the orthogonal variability model.

Execution information gives individual guidance on how to perform the
test case steps. The execution information details the story line down to
actions like pushing a specific button, clicking the right mouse button,
or browsing to a specific line in a log file. As the actions may depend on
the selected variants, so does the execution information.

Test Case ScenarioTest Case Scenario

: Tester door lock

enter tester data as valid

lay finger on scanner

grant access

enter PIN in keypad

grant access

use magnetic card

grant access

open door

Variability ModelVariability Model

Door
Lock

VP

Fingerprint
Scanner

V

Keypad

V

Magnetic
Card

V

Fig. 8-4: Example of an adaptable test case scenario for three variants

Scenario
notations

Effects of
variability

Input

Output

Execution
information

156 8. Documenting Variability in Test Artefacts

Test case scenario steps and the variability therein may be specified with
natural language or within sequence diagrams. We provide an example of
modelling the variability of a test case scenario step in a structured textual
document in Fig. 8-5 and in a sequence diagram representation in Fig. 8-6.

8.3.5 Test Summary Report
The test summary report refers to the tested system, the related test plan, and
the executed test cases. It documents the results of the execution of each test
case and provides the overall summary of a test execution, which may

Variability DiagramVariability Diagram

Door
Lock

VP

Fingerprint
Scanner

V

Keypad

V

Magnetic
Card

V

Defined fingerprint points, fingerprint database

Input data

Entered number in keypad, database with numbers

Magnetic card number, database with card numbers

Output data

Access granted

Test Case Scenario Step “Grant Access”

Fig. 8-5: Example of a test case scenario step in natural language

Natural language,
sequence diagrams

Test Case Scenario Step “Access Door Lock”Test Case Scenario Step “Access Door Lock”

: Tester door lock

lay finger on scanner

Variability ModelVariability Model

Door
Lock

VP

Fingerprint
Scanner

V

Keypad

V

Magnetic
Card

V

Execution
Information

Output
Specification

Input
Specification

transmitted
fingerprint
information

fingerprint
specification

Fig. 8-6: Example of a test case scenario step in a sequence diagram

Effects of
variability

8.5 Summary 157

include, for instance, a classification of the detected defects. Variability
affects the test summary report in the following ways:

The description of the tested system also documents the incorporated
variants.

Each test case is described with the corresponding variants used in it.

The classification of defects distinguishes between defects in domain
artefacts and defects in application artefacts.

The test summary report has to refer to variants but does not contain vari-
ability itself. Consequently the test summary report can be documented in
the same way as in single-system engineering but has to include some add-
itional information.

8.4 Differences from Single-System Engineering

In single-system engineering developers create test artefacts for a specific
application and the artefacts are valid for this application only. In software
product line engineering, test activities are distributed between the domain
and the individual applications. As the components under test as well as the
test references used (e.g. requirements) contain variability, the test artefacts
also must consist of common and variable parts to be reusable. The test
documentation is responsible for determining which of the variable parts to
use for which configuration.

8.5 Summary

The variability contained in the specification of test artefacts leads to vari-
ability in the test artefacts. In particular, variability affects test cases, test
case scenarios, test case scenario steps, as well as the test summary report.
Moreover, to deal with software product line testing efficiently, domain test
engineers define a generic test plan. The test plan is related to the available
variants and is reused to derive test plans for specific applications. Using the
orthogonal variability model, domain test engineers can document clearly
which variants relate to which test artefacts.

Additional
information

Test artefacts
for different
configurations

Variability in
test artefacts

Part III

Domain
Engineering

Part III: Overview

In domain engineering the commonality and the variability for a set of envisioned
product line applications are identified, documented, and produced. The variability
is explicitly documented in the orthogonal variability model in order to facilitate the
reuse of product line assets during application engineering. In this part you will
learn how the sub-processes highlighted in the figure below:

Construct reusable domain artefacts.

Define the desired commonality and variability for the succeeding sub-process.

Detail and refine commonality and variability established in the preceding sub-
process.

Provide feedback about the feasibility of realising variability to the preceding
sub-process.

Thereby we establish a seamless integration of variability throughout all domain
engineering artefacts.

Fig. III-1: Chapter overview of Part III

9
Product

Management

In this chapter you will learn:

o The economical background of product management.
o The principles of designing a product portfolio and managing it over the

lifetime of the software product line.
o The relation between product management and product line scoping.
o The challenges for product management in software product line engineering.

Elisabeth Niehaus
Klaus Pohl
Günter Böckle

164 9. Product Management

9.1 Introduction

The goal of product management is to make a major contribution to entre-
preneurial success by integrating the development, production, and market-
ing of products that meet customer needs.29 Product management is respon-
sible for enforcing entrepreneurial goals throughout the software engineering
process. Therefore it has an influence on requirements engineering, design,
realisation, and testing. The sub-processes and artefacts closely related to
product management are highlighted in Fig. 9-1.

The major result of product management with respect to the software prod-
uct line framework is the product roadmap. Note that we did not include the
product roadmap in the framework picture as it is no development artefact in
the common sense (Section 2.5.1). The product roadmap outlines the product
line as far as it is foreseeable at a given point in time. It defines the major
common and variable features of all applications of the product line as well

29 The definition of the term entrepreneurial success is not quite simple as it depends on the goals of the

company. Besides measurable quantities like profit, earning power, shareholder value or product
profitability, this term also covers qualitative factors such as the motivation of personnel.

Goals of product
management

Fig. 9-1: Sub-processes related to product management

Main
results

9.1 Introduction 165

as a schedule for delivering specific applications to customers or for bringing
them to market. The features defined in the product roadmap directly affect
domain and application requirements engineering.

Domain and application requirements engineering have to adhere to the fea-
tures specified in the roadmap. While domain requirements engineering pro-
vides reusable requirements artefacts, application requirements engineering
creates the requirements artefacts for specific applications, which are envi-
saged in the product roadmap. The following subsections elaborate on the
basic information flows between product management and its related sub-
processes as shown in Fig. 9-2.

9.1.1 Interrelation with Domain Requirements Engineering
The product management sub-process specifies a product roadmap, which
outlines the scope for domain requirements engineering (first bullet of in
Fig. 9-2). The roadmap implements the company’s strategy for providing
customers with what they need at the appropriate point in time. The schedule
for bringing out applications is the result of strategic reasoning and effort
estimation performed jointly by product managers and developers. In add-
ition to the roadmap, product management provides a list of existing
artefacts (second bullet of in Fig. 9-2) which could serve as a basis for
deriving domain requirements. For example, product management could
provide a set of previously developed products or applications that are rele-
vant for the definition of requirements for the product line. These artefacts
may be used as a basis for the development of domain artefacts.

Domain requirements engineering is responsible for working out the
requirements specification, which describes the problem that must be solved
by the software architects, designers, and programmers. The insights gained

Interrelations with
other sub-processes

Domain
Requirements
Engineering

Product
Management

Application
Requirements
Engineering

Product roadmap
List of existing artefacts

Application
features

3
Suggestions of additional /
altered features

Suggestions for additional /
altered features

4

2

1

Fig. 9-2: Information flows between product management and other sub-processes

Product roadmap,
existing products

Feedback from
domain requirements
engineering

166 9. Product Management

in domain requirements engineering with regard to the major features of the
product line, especially its externally visible variability, are communicated
back to product management as suggestions for additional and altered fea-
tures (in Fig. 9-2).

During the life cycle of the product line, product management has to react to
various developments on the market: the change in customer needs, the
appearance of new technologies, competitors coming up with new features,
and shifts in demand and prices. These developments necessitate adaptations
of the product roadmap, such as the introduction of new features or the
elimination of outdated applications from the product portfolio. Hence the
interaction between product management and domain requirements engin-
eering is an ongoing task.

9.1.2 Interrelation with Application Requirements Engineering
Product management specifies which applications should be derived in
application requirements engineering (in Fig. 9-2) by prescribing the
application features, i.e. which application should possess which of the
common and variable features. In a steady state of the product line’s lifetime
many of these features are already accounted for by the requirements arte-
facts produced in domain requirements engineering. Application engineering
exploits the available variability of domain requirements to derive applica-
tion requirements artefacts according to the features prescribed by product
management.

In certain situations (e.g. customer-specific application development, pilot
applications, etc.) the features determined by product management have to
be realised by application engineering. Later, successful developments may
be propagated to domain engineering.

Like domain requirements engineering, application requirements engineering
provides feedback to product management in terms of suggestions for add-
itional or altered features (in Fig. 9-2), which result from new insights
gained in the requirements engineering process.

9.2 Terminology

The definition of the term product relates to goods or services offered in the
market (Definition 9-1). The goods considered in software product line
engineering are applications. The term application denotes both software and
software-intensive systems (Section 1.4). Products may also be services or
solutions offered to the customer. Companies offer a large variety of services
such as the development and maintenance of customer-specific software, or
the assembly of a system from configurable components. Complex products

Adaptation of
product roadmap

Platform
features

Application-
specific features

Feedback from
application engineers

Different kinds of
products

9.3 Traditional Product Management Activities 167

consisting of a number of goods and services such as a turnkey-ready indus-
trial plant are called solutions. The kind of products (goods, services, or
solutions) offered is interrelated with the business type of the company.

Definition 9-1: Product

Products are goods or services offered in the market, which are suit-
able by their functions and characteristics to satisfy concrete customer
needs.

[Sabisch 1996]

In Definition 9-2, we provide a definition of product management used in
economics. As this definition is quite general, we provide a more specific
definition of product management as a sub-process of software product line
engineering in Definition 9-3.

Definition 9-2: Product Management (General Definition)

Planning, organising, executing, and controlling of all tasks, which
aim at a successful conception, production, and marketing of the
products offered by a company.

Definition 9-3: Product Management (In the Software Product Line
Framework)

Product management is the sub-process of domain engineering for
controlling the development, production, and marketing of the soft-
ware product line and its applications.

Based on the observation of the market and the organisation itself, product
management defines a product portfolio with a roadmap and the major com-
mon and variable features of the planned products of the product line.

9.3 Traditional Product Management Activities

Basically, product management encompasses the following activities
[Sabisch 1996]:

Market and product strategy definition: This activity implies the con-
cretisation of company objectives and strategies defined by corporate
management.

Product definition: This activity includes developing, rating, and
choosing new ideas for products. Product ideas that have been selected

Product
management

Product
roadmap

Concretisation of
company objectives

Development of
product ideas

168 9. Product Management

for realisation are concretised by defining the major features of the
envisioned product.

Product support: This activity deals with conserving and enhancing the
potentials of products that have already been introduced in the market.

Market introduction: This activity implies identifying suitable distribu-
tion channels and supplying them with new products as well as
announcing the new products to potential customers.

Market observation: This activity is concerned with monitoring and
analysing customer groups, current or potential competitors, trends of
prices, buying patterns, usage patterns, and technology, as well as bar-
riers to market entry (e.g. legal restriction of permission or high initial
investments) or market exit.

Product controlling: This activity is concerned with monitoring and
guiding the product management process, e.g. by observing the sales
volume obtained for each product.

9.4 Portfolio Management

An essential task of product management is the management of a company’s
product portfolio. In this section we focus on the strategic aspects of port-
folio management and elaborate on the design of new products as well as on
the management of existing products in the subsequent sections. The term
product portfolio is defined as follows:

Definition 9-4: Product Portfolio

The set of product types30 that are offered by a company is called the
product portfolio of this company.

To decide which amount of resources is allocated to which project a port-
folio management process is necessary (Definition 9-5).

Definition 9-5: Portfolio Management

Portfolio management is a dynamic decision process, whereby a busi-
ness’s list of active new product (and development) projects is con-
stantly updated and revised.

[Cooper 2001]

30 Hence, the product portfolio typically contains classes of products, not all the individual products of a

company.

Conservation of
potentials

Identification of
distribution channels

Analysis of customers
and competitors

Process
guidance

Product
portfolio

Management
process

9.4 Portfolio Management 169

In the portfolio management process, new projects are evaluated, selected,
and prioritised, while existing projects may be accelerated, cancelled, or de-
prioritised. The value of portfolio management techniques has been demon-
strated by a study conducted by PRTM Management Consultants [PRTM
2004]. A survey among 120 companies, including for example Honeywell
and IBM, revealed: “Companies with advanced product portfolio manage-
ment capabilities have a 10% higher profitability than the industry average”
and “companies with mature portfolio management practices grow over 50%
faster than those with only project management expertise”.

9.4.1 IT Business Types
The kinds of products (goods, services, or solutions) offered by different IT
companies show a large diversity. Within the IT industry, there are four
main business types, which can be determined based on two main discrimin-
ating aspects:

The amount of time that customers need to make a purchase decision.

The binding31 of the customer by the purchase decision.

Figure 9-3 presents the two discriminating aspects and the resulting business
types.

The four business types depicted in Fig. 9-3 can be characterised as follows:

Product business: A prefabricated product or service is offered to the
market. The customer can remain anonymous. The purchasing decision

31 The customer may be bound to the vendor, to a product type or to a technology.

Benefits of portfolio
management

Differentiating factors
of business types

Solution
Business

Product
Business

System
Business

Service Component
BusinessHigh

Low

Customer
Binding

Low High Length of Search
Process

Fig. 9-3: Main business types in IT industry

Prefabricated
mass product

170 9. Product Management

is typically quick and not connected to other purchasing decisions. The
development and sale of standard software like MS Office is an ex-
ample of product business.

Solution business: A specific product or service is offered to an individ-
ual customer. A service is performed on site or a product is installed on
site. The purchasing decision is not connected to other purchasing deci-
sions. The development and sale of a stand-alone, customer-specific
solutions such as the software for a power plant or a postal distribution
system are examples of solution business.

System business: A prefabricated set of unspecific, related products and
services is offered to the market. The purchase decision for one product
is connected to purchase decisions of other products. The development
and sale of a software-system consisting of an operating system and
several integrated software applications is an example of system busi-
ness.

Service component business: A prefabricated but individualised product
or service is offered to an individual customer. The purchase decision is
connected with other purchase decisions of the same customer. An
example is the development and sale of additional modules providing
extra functionality for software already in use.

The focus of this chapter is on product business and system business. As the
customer can remain anonymous in these business types, product manage-
ment is responsible for ensuring a match between customer requirements and
product features. However, product management is also relevant for the
solution and the service component business, yet it is shaped towards dealing
with individual customers in these business types.

9.4.2 Product Life Cycle
The product life cycle describes an idealised progression of the profit and
sales curves of a product. According to this life cycle, each product pro-
gresses through a sequence of stages: introduction, growth, maturity, satura-
tion, and degeneration. Sales and profit can be described as a function of the
life cycle stages as sketched in Fig. 9-4.

The different life cycle stages are characterised as follows:

Introduction: The product is rather unknown to potential customers.
Hence the sales volume is low. High expenditures, e.g. for setting up
distribution channels and increasing the popularity of the product, result
in a negative profit.

Specific product
or service

Set of prefabricated
mass products

Individualised
product

Business types
in this chapter

Idealised sales and
profit curves

Product life
cycle stages

9.4 Portfolio Management 171

Growth: As the product becomes better known on the market, sales and
profit increase quickly. Usually some competitors enter the market at
this stage.

Maturity: The rapid increase of sales diminishes. Prices have to be cut
to win additional market share. Consequently, the profit declines
slowly.

Saturation: The sales volume is at its maximum. This stage is often
characterised by hard competition for market share. The results are even
further declining profits.

Degeneration: Increasingly the product is substituted by new products.
Demand and sales decrease further. Therefore profit also continues to
decrease. In order to avoid losses the product must be taken off the
market, or a product relaunch has to be initiated.

One problem of the product life cycle model is that it does not allow the
prediction of the length of the individual stages [Sabisch 1996]. In addition,
the profit and sales development of real products often differ substantially
from the ideal curve. Nevertheless, the product life cycle model provides
valuable support for the strategic decisions concerning a company’s product
portfolio.

Product management has to develop strategies to overcome the fundamental
difficulties inherent in each stage of the product life cycle. An essential goal

Sales

Profit

Introduction Growth Maturity Saturation Degeneration
Sales,
Profit

Time
0

Fig. 9-4: Product life cycle diagram

Criticism of the
product life cycle

Impact on product
management

172 9. Product Management

of product management is to reach the profitable life cycle stages and to
avoid premature degeneration. The next section elaborates on this issue.

A similar model as for the life cycle of a product also exists for technologies.
Each technology progresses through a sequence of stages from future tech-
nology, through pacemaker technology, key technology, and basic technol-
ogy, to replaced technology [Pepels 2003; Kleinaltenkamp and Plinke 1999].
The technology life cycle describes the competitive potential of a technology
as an S-shaped function of the life cycle stages. The technology and the
product life cycles are closely related as technologies are incorporated into
products.

9.4.3 Product Portfolio Analysis
Portfolio analysis allows a systematic evaluation of the product portfolio.
During the analysis, each product (or product type) is rated according to two
variables and thereby its location in a two-dimensional matrix is determined.
The goal of portfolio analysis is to identify weaknesses in the product port-
folio, to define improvement strategies, and above all to support decisions
about resource allocation to the projects of a company.

A balanced product portfolio should contain a conducive mix of products
across different life cycle stages. Products in the growth or maturity stage are
necessary since these products yield high profits yet still demand investment
until they reach the saturation stage. Products in the saturation stage yield
profits that can be reinvested in products that are in the introduction or
growth stage. Products in the introduction stage ensure future sales and
profit. The market-growth/market-share portfolio of the Boston Consulting
Group (BCG) assigns the products or product groups on the basis of market
growth and market share to four main categories, each of which represents a
certain stage in the product life cycle. The BCG portfolio is depicted in
Fig. 9-5.

Technology
life cycle

Resource allocation
to projects

Balance across
life cycle stages

BCG matrix

Market Share

HighLow

Cash CowsPoor DogsLow

StarsQuestion MarksHigh +

-

M
ar

ke
t G

ro
w

th

Fig. 9-5: Product portfolio matrix of the Boston Consulting Group with a positive and a
negative evolution path [Welge and Al-Laham 1999]

9.4 Portfolio Management 173

For each product, standard strategies can be derived due to the position of
the product in the matrix:

Question marks: These products have a high market growth and a low
market share. Products in the introduction or early growth stage are
assigned to this position in the product portfolio matrix. The standard
strategy is to invest in these products in order to reach a high market
share in the growing market so that the former question mark product
will move to the stars quadrant. As resources are scarce it may not be
possible to invest in all question marks. In this case it has to be analysed
which products have the highest potential for evolving into stars.
However, despite all efforts, question marks may not reach the stars
quadrant but end up as poor dogs.

Stars: Stars are characterised by a high market growth and a high mar-
ket share. They are usually in the late growth or maturity stage. To pro-
tect the high market share in a growing market the increasing sales
volume has to be reinvested in these products.

Cash cows: Cash cows are products with a high market share but a low
market growth. These circumstances usually apply for the saturation
stage, in which the sales volume is at its maximum. As the market
growth is low and is not expected to rise again, the standard strategy for
cash cow products is to reduce investments to the degree that is neces-
sary to keep these products in the cash cow quadrant as long as possible.
Hence, cash cows are the products that yield profits for the company.

Poor dogs: Products with a low market growth and a low market share
are called poor dogs. Products in the late saturation or degeneration
stage are usually located in this quadrant, for which product elimination
is recommended.

The BCG method assumes that market growth and market share are the main
criteria for a high success potential. This is often criticised, since a market
with a high growth rate can be unattractive because of intensive competition
or high market power of the customers. On the other hand, a small market
share is not necessarily connected with little success potential. In addition,
the factors market share and market growth always refer to a concrete mar-
ket, whose definition is, however, subjective. Hence, although the standard
strategies of the BCG method provide useful guidance, they should be
applied with deliberation. For further details see for example [Welge and Al-
Laham 1999].

Standard
strategies

Criticism of the
BCG matrix

174 9. Product Management

9.4.4 Product Interdependences
Formerly, product diversification was common in product portfolios of large
companies. Product diversification became popular since the mid-1960s by
the application of the BCG portfolio and was often realised by acquisition.
The goal was to spread business risk by being present in several markets.
Thus large conglomerates emerged. Yet, long-term studies revealed that
these conglomerates are rarely successful. Profound knowledge of the
acquired business units and the respective markets is crucial for effective
management, since knowledge from one branch of industry cannot be impli-
citly applied to other branches. Hence, false investments are easily made
[Plinke 2002].

Managers design the product portfolio of a company or business unit in such
a way that managing the products jointly in a portfolio yields synergistic
effects. Core competencies provide a potential area for gaining synergistic
effects through a joint product management [Welge and Al-Laham 1999].

Consequently, the product types in the product portfolio of a company or
business unit are typically related. There are several kinds of interdepend-
ences by which the products in a product portfolio may be related:

Acquisition interdependence: The products are placed together when
they are sold or are part of a common sales promotion.

Usage interdependence: The products are used complementarily. They
provide a solution for a certain problem field.

Demand interdependence: Customers buy these products during the
same purchase process.

Selection interdependence: The products can replace each other. They
offer alternative buying solutions for the customer.

Engineering interdependence: The products originate from the same
engineering process.

The effects caused by the different interdependences have to be considered
especially when new products are added to the product portfolio or removed
from it:

When a new product is added, the product manager has to check, for
example, whether there is usage interdependence with other products.
These products should be added to the portfolio as well.

When a product is removed from the portfolio and there is still some
demand, the product manager must ensure that alternative solutions
exist (i.e. products related by selection interdependence to the deleted
product).

Diversified
portfolios

Core
competencies

Product
interdependences

Adding and
deleting products

9.4 Portfolio Management 175

Interdependences can also be proactively designed into new products. For
example, complementary features between different products cause a usage
interdependence and induce customers to buy a combination of products
instead of a single product.

9.4.5 Product Variants
Product management literature refers to different solutions for the same
application problem as product variants. Product variants are typically
related by selection interdependence. Particularly in stagnating and shrinking
markets, a high increase of product variants can be observed. This happens
for different reasons:

Retaining a high market share necessitates the adaptation of products to
heterogeneous customer requirements.

When internationalisation is sought to react to stagnating domestic
demand, customisation of products is indispensable, since often differ-
ent likings, technical standards, or legal restrictions exist.

In addition, there is a general trend towards increasing product individual-
isation and thus towards a higher amount of variants. To decide which
variants are to be offered, the costs and benefits of the variants have to be
determined. The costs of flexibility (in the view of product management)
originating from generating variants are considerable. Thus reasonable
standardisation (in the sense of increased commonality) is imperative for
obtaining and conserving competitive advantages [Kleinaltenkamp and
Plinke 1999]. Software product line engineering is a method of systematic-
ally developing variants in a standardised manner.

9.4.5.1 Costs of Flexibility
When quantifying the benefits of variants, it is crucial to know which prod-
uct properties are important for the customer. Having a high number of
variants provides the opportunity to address many customer groups. Further-
more, there are some product types for which the customer-perceived value
is increased by the sheer variation (e.g. in the food industry). On the other
hand, a high quantity of variants may confuse customers. For determining
the cost effects of variants, all company sectors have to be examined. The
following list shows examples of costs caused by a high quantity of variants
for the different departments of a company:

Research and development: The development of customised variants of
existing products displaces the development of new products.

Purchasing: The task of the purchasing department is difficult. Instead
of buying high quantities of a small number of input material types,

Complementary
features

Motivations for
product variants

Standardisation

Impact on
the company

176 9. Product Management

small quantities of a high number of input material types are required.
As a result, purchase conditions are bad.

Production: The storage costs and the risk of shortages are high.
Production techniques and configuration management are complicated.

Marketing and sales: The complexity of marketing and sales activities
is high. The company is faced with cannibalistic effects,32 a high quan-
tity of product descriptions, and extensive price boards.

Customer service: Service staff have to be trained for a high quantity of
variants and hence service performance is likely to be low.

These cost effects may occur with a delay and a non-linear progression.
Reducing the number of variants again may not reduce costs to the same
extent. So-called sunk costs, such as the acquisition costs for a flexible pro-
duction facility, still persist after the number of variants has been reduced. In
spite of the cost increase caused by variants, traditional cost accounting
unfairly privileges variants [Roever 1994]. In traditional cost accounting,
overhead costs are apportioned to produced units by amount or weight of the
units. Having a high number of variants causes a disproportional increase of
overhead costs in many departments (e.g. marketing etc. as explained
above). As cost accounting distributes overhead costs proportionally, this
leads to a distortion of real cost causation that privileges variants with a
small number of produced units.

9.4.5.2 Reduction of Costs Caused by Variants
The necessity to offer customised products is in conflict with the necessity of
economical production. Herrmann and Seilheimer propose the following
strategies to cope with this problem [Herrmann and Seilheimer 2000]:

Upgrading products by standard integration of formerly supplementary
features: Reducing complexity, which is caused by supplementary fea-
tures, decreases production costs. The achieved cost reduction of inte-
grating supplementary features into the platform might be high enough
to offer them without an increase of prices.

Modular structure: A modular structure allows for a high diversity of
variants under the condition of a low increase of complexity (e.g. soft-
ware with a base module and additional modules). If customer benefit is
affected by variation, modularisation should be handled with caution.
Variants with a high degree of modularisation tend to appear too similar
to customers. In the software industry where customer benefit by vari-
ation used to be rare, modular structures are very common.

32 One product displaces another product of the same company in the market.

Cost
causation

Economical
production

9.5 Extension of the Product Portfolio 177

Platforms: The usage of platforms and non-variable parts lowers the
diversity of parts and the production complexity. Each product includes
the functions of the platform plus the functions of its variable compo-
nents. The suitability of a platform concept is determined by the under-
lying product structure.

For product line engineering, we use platforms to produce variants based on
planned reuse, but also managed variability to improve the suitability of the
platform for mass customisation at reasonable cost. We deal with these
aspects throughout the book.

9.5 Extension of the Product Portfolio

Adding new products to the product portfolio allows the company to close
strategic gaps within the product portfolio. Such gaps emerge if all or most
existing products are in the saturation or degeneration stage of the product
life cycle [Brockhoff 1999]. To extend the product portfolio, product man-
agers can embark on a product innovation strategy or a product imitation
strategy. Both strategies yield a set of product ideas, which has to be
assessed and from which one or a few ideas are selected for realisation.

A product can be described by its functional and qualitative features. Product
development has to ensure that customer needs are realised by the product
features. There are different criteria for selecting an appropriate bundle of
features. In this section, we focus on customer satisfaction, which is the main
criterion of the classification scheme by Kano [Kano 1984]. In addition, we
briefly deal with quality function deployment (QFD) and target costing,
which incorporate other criteria such as product differentiation and costs.

9.5.1 Product Innovation
A company that follows a product innovation strategy may for example want
to appear as a pioneer in the market and establish a new brand. A major
challenge for product innovation is to identify the correct innovation fields
faster than competitors and to accommodate customer needs better and in a
more economical way. Within the technical domain, the relevance of product
innovation is enforced by the following developments:

The decreasing length of product life cycles.

The decreasing length of technology life cycles.

The increasing payoff time.

Platform and
managed variability

Product
ideas

Product
definition

Challenges of the
innovation strategy

178 9. Product Management

The increasing occurrence of price erosion originating from the market
to keep older product generations attractive compared to younger gen-
erations.

The increasing importance of the utilisation frequency for market suc-
cess (e.g. mobile phones).

The central topic with regard to product innovation is the generation of new
product ideas and concepts. The company can either follow a passive identi-
fication strategy or perform an active search.

9.5.1.1 Passive Identification
Passive identification is based on the assumption that even without carrying
out a systematic, goal-oriented search, sufficient product ideas are available
from the company itself or its environment. The company just has to support
the submission and collection of product ideas by suitable information and
communication systems. On the one hand this procedure is relatively inex-
pensive. On the other hand, the amount and the degree of recentness of the
obtained product ideas are rather limited. Thus, this procedure is only rec-
ommendable for slight strategic gaps in the product portfolio.

9.5.1.2 Active Search
The active search for new product ideas my be driven either by technology
push or by demand pull [Pepels 2003]:

Technology push: Refers to the active search for application and
commercialisation possibilities of available technological knowledge.

Demand pull: Describes the identification of a demand potential for a
problem solution that has not yet been realised. Proper technologies are
searched for in order to meet the identified demand potential.

Demand pull yields successful product ideas more frequently, whereas prod-
uct ideas initiated by technology push bear a higher degree of recentness.
However, the distinction between technology push and demand pull is
sometimes criticised as it is difficult to distinguish for a new product idea
whether it originates from technology push or demand pull [Brockhoff
1999].

Observations indicate that an unrestricted search for new ideas is rarely
effective [Brockhoff 1999]. The following topics may be used for an initial
restriction of the search area:

Unexpected successes and failures

Demographic trends

Shifts of opinion and attitude

Active and passive
generation of ideas

Inexpensive, but
limited effectiveness

Technology push
and demand pull

Success of
demand pull

Restriction of
the search area

9.5 Extension of the Product Portfolio 179

Changes of market and branch structure

Dialogues at trade fares

Evaluation of field service reports

Encouragement of employee inventions

Cooperation with a lead user

For further reading on product innovation, see e.g. [Cooper 2001].

9.5.2 Product Imitation
The term product imitation refers to the development of products that are
similar to already existing products (with respect to possible uses). The imi-
tation is usually stimulated by a successful product innovation of another
company. Overcoming market entrance barriers such as patents, customer
habits, obstructed distribution channels, and dominant competitors is the
prerequisite of a successful product imitation. Moreover, the incentives of
development departments often aim at the creation of product innovations.
Especially in technically sophisticated sectors, it is therefore difficult to
embark on an imitation strategy and not to drift into a (more risky) innova-
tion of existing product ideas [Schewe 2000]. Companies that embark on an
imitation strategy must possess the following capabilities:

Analysis: Successful product innovations have to be identified and the
concerned market entrance barriers have to be assessed. The products of
competitors have to be analysed thoroughly. Their special strengths and
weaknesses have to be understood [Cooper 2001].

Technology: In order to achieve a maintainable time to market and a
high product quality at the same time, a high technological potential is
required. The imitation is in competition with the products of the tech-
nologically more experienced innovator.

Marketing: Customers and distribution channels have to be persuaded to
switch to the new product.

Production: Since the imitator enters the market in one of the later
stages of the product life cycle, there is less time for expanding the
company’s production capacities according to the rapidly increasing
demand.

9.5.3 Assessment of Product Ideas
Once product ideas have been identified (e.g. by innovation or imitation),
product management has to assess the ideas and come to a decision about
which products will be actually developed. This strategic decision requires at

Challenges of the
imitation strategy

Required key
capabilities

Preliminary stage of
product definition

180 9. Product Management

least some knowledge about the intended features of the products. Hence, it
is a preliminary stage of product definition (the product definition activity is
outlined in Section 9.3). However, product definition employs more sophisti-
cated techniques and is performed to elaborate the product ideas that have
been chosen for development. Examples of such techniques are discussed in
the subsequent subsections. The assessment of product ideas can be accom-
plished by the following steps:

1. Coarse screening: All product ideas are initially tested for whether they
fulfil certain knock-out criteria. The knock-out criteria are usually
available in the form of yes or no questions that filter out a bigger part
of the product ideas.

2. Fine screening: The objective of the fine screening is to evaluate to
what extent the resources that are required for the realisation of the
product idea are existent in the company. Scoring models are predomin-
antly used for this purpose. Table 9-1 shows an example of such a
scoring model. In this scoring model, each product idea is rated with the
same set of resource-potential criteria (first column on the left side).
The resource potential is rated with zero points if it is not usable or
highly insufficient for the realisation of the product idea, whereas ten
points mean that it is usable and completely sufficient. The multiplica-
tion of each rating with its relative weight and summation yield the final
score. One point of criticism is that scoring models are a methodically
naïve approach. Hence, the results of scoring models should not be used
blindly. They are rather reference points among other information.
Their advantage is the enforcement of a systematic procedure.

3. Concept trial: The product concept is explained verbally, in writing,
with images, or by a prototype to potential customers in order to exam-
ine whether the product concept is understandable and plausible. The
goal of this step is to determine how important the product features are
to potential customers.

4. Profitability analysis: Product ideas that have passed the concept trial
undergo a profitability analysis. In this context the initial purchases and
repurchases are based on the forecast of the sales volumes as well as the
costs for the individual stages of the product life cycle. The final deci-
sion on the realisation of the product idea is made by means of decision
models (e.g. investing model) [Erichson 2000].

Initial
assessment

Detailed
assessment

Product
concept

Predicted cost
 and sales volumes

9.5 Extension of the Product Portfolio 181

9.5.4 Product Definition with the Kano Scheme
The Kano method [Kano 1984; Kano et al. 1996; Sauerwein 2000] allows
choosing a set of product features that yield high customer satisfaction. The
key element of this method is the classification scheme for customer require-
ments illustrated in Fig. 9-6. The four categories of the Kano classification
scheme are characterised as follows:

Basic requirements: Absence of these requirements leads to high custo-
mer dissatisfaction, whereas their presence or further enhancement does
not contribute to customer satisfaction. For example, in the home auto-
mation domain, high reliability is a basic requirement. If the home
automation system fails several times a day, this causes strong customer
dissatisfaction.

Satisfiers: Customer satisfaction is proportional to the degree of imple-
mentation of these requirements. In the home automation domain,
lighting, door, and window control are examples of satisfiers.

Table 9-1: Example of a scoring model used in fine screening

7.151Total
0.3X0.05Sales Force

0.5X0.1Staff
Qualification

1.05X0.15R&D
Know-How

1.2X0.15Production
Process

0.9X0.1Production
Capacities

1.4X0.2Marketing
Know-How

1.6X0.2Financial
Resources

0.2X0.05Company
Image

109876543210

Criteria
Value
(A*B)

Application for Product Idea (B)Relative
Weight (A)

Resource
Potential

Requirements
categories

High dissatisfaction
if absent

Proportional increase
of satisfaction

182 9. Product Management

Feature is fully
implemented

Feature is
completely absent

Basic
RequirementsSatisfiers

Delighters

Indifferent
Requirements

High
Satisfaction

Low
Satisfaction

Fig. 9-6: Classification of requirements according to Kano

Delighters: Customer satisfaction levels off if these requirements are
not realised. But if implemented, delighters have a strong, positive
effect on customer satisfaction. This category mainly includes require-
ments whose implementations were neither expected nor claimed by
customers, possibly because they thought them to be technically impos-
sible. Customers are often willing to pay high prices for the implemen-
tation of delighters. In the home automation domain, audio and video
control are examples of delighters.

Indifferent requirements: The implementation or absence of these
requirements has no effect on customer satisfaction. The database to be
used in a home automation system is an example of an indifferent
requirement as long as the database does not affect other requirements.

The definition of a product using the classification scheme consists of the
following five steps:

1. Identify the customer requirements
2. Construct a questionnaire
3. Perform a survey
4. Analyse and interpret the collected data
5. Select the product features

Strong
positive effect

No effect on
satisfaction

Five-step
procedure

9.5 Extension of the Product Portfolio 183

The following subsections explain each of the five steps in more detail.

9.5.4.1 Identifying Requirements
First, those features that are crucial for product success have to be deter-
mined. Customer requirements may be elicited for example by qualitative
interviews that cover the following four topics:

What does the interviewee associate with the processes of buying and
using this product?
Which problems, difficulties, annoyances, and complaints exist in the
context of the buying process and the usage?
Which criteria does the customer take into consideration when choosing
the product?
What would the customer like to change? Which new product features
could fulfil customer expectations even better?

According to empirical studies, 90 to 95% of the relevant customer require-
ments can be identified with approximately 20 to 30 interviews ([Griffin and
Hauser 1993], quoted in [Herrmann 1998]). The elicited customer require-
ments correspond to one or more product features that can also be identified
by this procedure. For further details, see for example [Condon 2002].

9.5.4.2 Constructing the Questionnaire
Having identified the relevant requirements to be rated in the survey, market
researchers construct a questionnaire consisting of a functional and a dys-
functional question for each requirement.

Example 9-1: Functional and Dysfunctional Questions in the Home
Automation Domain

For the feature “roller shade control” the functional and the dysfunc-
tional questions can be formulated as follows:

Functional question: Suppose that your home automation system
could open and close roller shades automatically, what would you
think about that?
Dysfunctional question: Suppose that your home automation sys-
tem would not be able to open and close roller shades automatic-
ally, what would you think about that?

The interviewee has five possible answers for each functional and dysfunc-
tional question (like, expected, don’t care, can live with it, and dislike).
Answering both questions yields a location in Table 9-2.

Interview
topics

Empirical
results

Functional and
dysfunctional
questions

Five possible
answers

184 9. Product Management

The numbers in the table are used for interpreting the data. They refer to the
following categories:

1. Basic requirements
2. Satisfiers
3. Delighters
4. Indifferent requirements
5. Undesired requirements

No requirement should fall into the “?”-category (Table 9-2). Otherwise it
must be checked whether the customer misunderstood one of the questions.
One problem with the classification scheme is that the classification is not
stable. If requirements for a product are defined which is going to be
launched a couple of years later, forecasting the proper category-assignment
is difficult.

9.5.4.3 Arranging the Survey
For data collection, written as well as oral interviews are possible. The
standardised oral interview is recommended due to its high rate of return and
the possibility to intervene in the case of comprehension problems.

Table 9-2: First table for data interpretation

?5555
Dislike

14445
Can live with
it

14445Don‘t care

14445
Expected

2333?
Like

DislikeCan live
with it

Don‘t careExpectedLike

Dysfunctional Question

Fu
nc

tio
na

l
Q

ue
st

io
n

Relation to the
categories

Classification
not stable

Oral
interviews

9.5 Extension of the Product Portfolio 185

9.5.4.4 Analysing and Interpreting the Data
The collected data is analysed by determining the distribution of customer
ratings over requirements classes for each requirement. The result of this
analysis is a table like the one presented in Table 9-3.

A strong statistical spread of category assignments for one requirement is an
indication that the interviewed customer group is not homogeneous. Techni-
cally versed users may for example rate requirements as basic, which are,
however, satisfiers for technical laypersons. It may be sensible to offer prod-
uct variants in order to address multiple customer groups.

If even after market segmentation, requirements cannot be assigned to the
above-mentioned categories unambiguously, the following rule is applied
regarding the categories introduced above: 1>2>3>4.33 If more than one
category is eligible, a worst-case assumption is made with respect to the
effect of the requirement being absent. For example, if the ratings are spread
between basic requirement (category 1) and delighter (category 3) the
requirement is assigned to the former category as the absence of a basic
requirement would have strong negative effect.

9.5.4.5 Selecting Product Features
Often it is not possible to satisfy all requirements in a single product. This
may be due to technical restrictions, or it may aim at keeping development
costs and time to market low. Thus a decision has to be made on which
requirements should be realised by product features. To avoid low customer

33 A>B means: if the collected answers are distributed between categories A and B the requirement is

assigned to category A.

Distribution of
customer ratings

Table 9-3: Second table for data interpretation (adapted from [Herrmann 1998])

………………………

31001.50.78.166.819.63.3Audio &
Video

21001.01.413.68.447.128.5
Roller Shade

Control

11001.51.48.5631.351.3
Heating
Control

?54321

Category
Total
in %

Frequency of Occurrence of the
Individual Requirements Classes

C
us

to
m

er
R

eq
ui

re
m

en
ts

Interpretation of
analysis results

Assignment
rules

Basic requirements,
satisfiers, delighters

186 9. Product Management

satisfaction, all basic requirements and, after that, all satisfiers should be
implemented at least at a medium level. By additionally including two or
three delighters, high-performance products can be developed [Herrmann
1998].

9.5.5 Quality Function Deployment (QFD)
The QFD method of [Akao 1990] consists of four stages. During these stages
customer requirements are elicited and refined to the level of directions for
the development or production process. A speciality of the QFD method is
the consideration of competitive products. By analysing customer require-
ments and competitive products, unique selling points for product differenti-
ation can be determined (sales focus). Furthermore, problem areas with a
negative effect on the product or company image can be detected (service
focus). For further details, see for example [Schröder and Zenz 1996].

9.5.6 Target Costing
When deciding which requirements have to be implemented the costs arising
have to be considered. The method of target costing allows product compo-
nent costs only at the level at which the components contribute to customer
benefit. For further reading, see for example [Herrmann 1998].

9.6 Management of Existing Products

In this section, we consider the conservation and expansion of the potentials
of existing products as well as the elimination of products from the product
portfolio.

9.6.1 Conservation and Expansion of Potentials
The goal of conserving and expanding product potentials is to keep the
product attractive in comparison to competing products and substitutes.
Hence, in a first step, the potentials for improving the considered product
have to be identified. Clues for improvement may be gained by observing
changes regarding usage, customers, competitors, technology, and general
conditions (e.g. social, legal). The following measures are examples of pos-
sibilities to conserve or extend existing product potentials [Huber and
Kopsch 2000; Tomczak et al. 2000]:

Increase of the internal efficiency: This increase is achieved by optimis-
ing the development processes, fixing bugs that have been discovered
after market introduction, reducing costs, and enhancing quality.

Sales focus,
service focus

Cost and
benefit

Expansion and
elimination

Identifying
potentials

9.6 Management of Existing Products 187

Marginal modifications: This measure aims at a slight improvement of
the perceived value of existing products like rejuvenation of the product
logo. The modification is made in order to extend the product life cycle.

Revitalisation: Products at a later stage of the product life cycle are
slightly modified and offered to the same customer group with the goal
to reinitiate the product life cycle. The resource needs of a successful
revitalisation are easily underestimated. The reasons why the present
products are in the degeneration stage have to be identified and the new
product concept has to be communicated to potential customers.

Bundling: Several products are sold together. Benefits expected from
bundling are lower costs (e.g. due to a simplification of the range of
products), sales increase (e.g. due to decision anomalies of the customer
regarding complex product offers), a better solution of customer prob-
lems achieved by a slight adjustment of the products, and the construc-
tion of market entrance barriers (e.g. the bundling of operating system
software with computers).

9.6.2 Product Elimination
In general, products can only be marketed economically during a certain
time period and have to be phased out subsequently. Since the future devel-
opment of market and development conditions cannot be precisely forecast,
this is a complex decision. In some cases, there is also an emotional relation-
ship with formerly successful products, especially with those that the com-
pany was founded on. Companies tend to offer a multitude of new products
without phasing out old ones. Thus products involving loss are carried along
and are only phased out during a crisis. In order to counter this bias, pro-
cesses should be implemented to assure a regular, structured decision about
the elimination or continuation of the offered products. In addition to a lack
of profitability, legal restraints (e.g. in the sectors of health or environmental
protection) may necessitate the elimination of products. Another reason why
products are eliminated is the wish to focus the product programme on cer-
tain core sectors to avoid growing complexity. For product line engineering,
product elimination has to consider the platform. Whenever a product is
eliminated it has to be determined if platform assets that are part of this
product can be removed from the platform. This reduces platform complex-
ity and the effort for a managed platform evolution. For platform assets,
maintenance contracts play a significant role for their evolution and potential
removal from the platform – an asset for which maintenance has to be pro-
vided must not be removed from the platform, or other assets must be deter-
mined to replace the former one so that the maintenance offer can be
continued.

Reasons for phasing
out products

188 9. Product Management

Products can be eliminated immediately by sale or closure and scrapping of
the related facilities. In some cases longer phasing-out processes are neces-
sary because of existing contracts, the necessity to stock spare parts, or
dependencies with other products of the company [Brockhoff 1999;
Herrmann 1998].

9.7 Scoping

Product management activities for product lines are sometimes called
product line scoping. Kruchten describes the formulation of the scope of a
project in the inception phase as “capturing the context and the most impor-
tant requirements and constraints so that you can derive acceptance criteria
for the end product” [Kruchten 2000]. This is similar to the descriptions of
product line scoping, for instance, in [Clements and Northrop 2001]. An
example of a method that supports product line scoping is PuLSE-Eco
[DeBaud and Schmid 1999; Schmid 2002].

The main goal of scoping methods is to identify the products that will belong
to the product line as well as to define their major features. According to
[Bosch 2000b] there are at least three different forms of scoping:

Product portfolio scoping

Domain scoping

Asset scoping

Product portfolio scoping aims at defining the products that should be devel-
oped as well as their key features. Domain scoping aims at defining the
boundaries of a domain and closely corresponds to the classical project
scoping. Asset scoping aims at identifying particular components to be
developed for reuse.

Commonality and variability analysis is a basic part of product line scoping
that has been described in many places, e.g. in [Ardis and Weiss 1997] and
[Coplien et al. 1998] where it is traced back to Dijkstra [Dijkstra 1972] and
Parnas [Parnas 1976], to domain engineering in IBM’s 360 mainframe
series, and to even earlier sources from general engineering. Slightly differ-
ent definitions of the terms commonality and variability can be found in the
product line scoping literature (see Section 4.3 for our definition common-
ality and variability). Weiss defines commonality as “a list of assumptions
that are true for all family members” [Weiss 1998], which is also compliant
with our usage of the word. Weiss describes variability through “variabilities
define how family members may vary” and “variabilities define the scope of
the family by predicting what decisions about family members are likely to
change over the lifetime of the family”. Whereas this implies only feature

Phasing-out
process

Scope of a software
product line

Three kinds
of scoping

Commonality
and variability

9.8 Differences from Single-System Engineering 189

variability, we consider variability in all kinds of artefacts in this book.
Coplien et al. define commonality as “an assumption held uniformly across a
given set of objects” and variability as “the variations among those products”
[Coplien et al. 1998], where “those” refers to the products of the product
line.

The product line scoping literature focuses on product definition and on cer-
tain aspects of product portfolio management. Other major activities of
product management such as market and product strategy definition, product
definition, product support, market introduction, market observation, and
product controlling (Section 9.3) are mostly neglected in the scoping
literature.34

9.8 Differences from Single-System Engineering

In software product line engineering, the fundamentals of product manage-
ment described in this chapter also apply. Yet, as multiple applications are
derived from the same platform, the applications are interrelated by engin-
eering interdependence (see Section 9.4.4 for a description of product inter-
dependences). The generation of variants is a major strength of product line
engineering (Section 9.4.5 describes the economic impact of product vari-
ants). Hence, a company applying product line engineering can manage the
additional complexity more easily and thus reap the benefits of product vari-
ants.

In portfolio analysis, the product line might be regarded as a single product
type in the product portfolio but is typically divided into multiple product
types as illustrated in Example 9-2.

Example 9-2: Product Portfolio for a Home Automation Product Line

The home automation product line comprises different product types,
which can be used in combination:
 Home security system
 Lighting control system
 Remote access extensions
 Wireless control extensions
 etc.

34 Clements and Northrop mention that the “market analysis” practices drive the definition of the scope of

a software product line but do not provide details [Clements and Northrop 2001].

Focus on product
definition and
portfolio management

Product
variants

Portfolio
analysis

190 9. Product Management

9.8.1 Strategic Role of the Platform
Product management has to consider the life cycle of the platform as well as
the life cycles of individual applications. The life cycle of the platform is
longer than the life cycles of individual applications. The development and
market introduction of the platform require a large amount of resources.
Consequently the platform has a considerable strategic relevance for the
company.

Preparation for future products: Before new product types can be inte-
grated into the product portfolio, product managers have to make sure
that the new product can be efficiently developed within the product
line. In order not to restrict future product ideas too much, the platform
must be flexible enough to accomplish the demands of future applica-
tions.

Expansion: The expansion of product potentials can be performed in an
economical manner for all products by implementing new features in
the platform. To minimise risk, new features can first be realised in a
lead product and then made available in the platform.

Elimination: The elimination of a product line is a major step, which is
mostly done with the intention to substitute a product line by another
product line. Having to eliminate a product line too early (e.g. due to
insufficient demand) must be prevented by carrying out soundings of
market needs, e.g. by pilot applications.

Platforms as products: Platforms may even become products them-
selves. In this case customers are enabled to derive applications from
the platform and offer them to the market or use them as an integral part
of their own products.

9.8.2 Product Definition
In product definition, product managers are concerned with the definition of
the major common and variable features of the product line, i.e. the features
of multiple applications. Variability has to be taken into account in each step
of product definition. For the application of the Kano classification, this
means for example:

The designers of the questionnaire used for customer interviews should
put a strong emphasis on identifying variability in customer needs.

A high statistical spread in customer ratings for a certain customer
requirement indicates the necessity to introduce variability in product
features.

Platform and
application life cycles

Flexibility of
the platform

New
features

Avoiding early
elimination

Platform offered
in the market

Identification of
variability

9.9 Summary 191

The basic requirements should be implemented as common domain
artefacts since basic requirements have to be met by each application.

Delighters need not be part of the domain artefacts, e.g. if they are
based on a fast-changing technology.

We provide more details of applying the Kano classification scheme in soft-
ware product line engineering in Chapter 10.

9.8.3 Output
Product management has to provide a product roadmap that is used by
domain engineering to create a requirements specification for the product
line. The product roadmap contains the features identified by the product
definition activity and a schedule for market introduction. The features in the
roadmap comprise common as well as variable features. The product road-
map is a plan for the future development of the product portfolio. Hence, it is
the result of strategic planning.

Domain engineers need the roadmap to build reusable domain artefacts.
Application engineers need the roadmap to select the appropriate domain
artefacts, configure specific applications, and develop application-specific
artefacts.

In addition to the roadmap, product management provides a list of previous
products of the organisation that may be reused for the product line. This list
contains also partial products, components, and other assets. The decisions
about what earlier assets may be reused for the domain artefacts of the soft-
ware product line and what features should be realised by the product line
are mostly made either by product managers or by a group that encompasses
product managers, platform managers, and architects.

9.9 Summary

The goal of product management is to make a major contribution to entre-
preneurial success by integrating the development, production, and market-
ing of products that meet customer needs. Based on the global and very
abstract company goals, strategic decisions have to be made.

The portfolio management technique enables well-founded decision making
about the existing and planned products of a company or business unit. In
their decisions, product managers have to consider thoroughly the various
interdependences between products, such as the usage interdependence
which exists between complementary products. Many companies are faced
with stagnating or even shrinking markets. In order to win market share,
companies have to accommodate individual customer wishes by product

Roadmap

Domain and
application
engineering

Reuse of
existing assets

Enforcement of
company goals

Portfolio
management

192 9. Product Management

variants. Yet, variants make up a major challenge for various divisions of the
company, such as research and development or marketing.

A product can be defined as a bundle of features. The Kano method enables
the optimisation of the choice of features with respect to customer satisfac-
tion. It classifies customer requirements into basic requirements, satisfiers,
delighters, and indifferent requirements. In software product line engineering
the Kano classification can help in identifying common and variable fea-
tures.

In software product line engineering, product management activities, in par-
ticular, product definition and certain aspects of portfolio management, are
subsumed under the term product line scoping. Commonality and variability
analysis is a fundamental technique used in product line scoping.

Kano
classification

Scoping

10
Domain

Requirements
Engineering

In this chapter you will learn:

o The challenges of domain requirements engineering.
o About the interrelations between the domain requirements engineering sub-

process and the product management, domain design, and application
requirements engineering sub-processes.

o How to identify common and variable product line requirements.
o How to document the identified commonalities and the variability in the

various requirements artefacts using the orthogonal variability model.
In addition, a comprehensive example illustrates the definition of variability in
requirements artefacts for a software product line.

Stan Bühne
Klaus Pohl

194 10. Domain Requirements Engineering

10.1 Introduction

The main goals of domain requirements engineering are the development of
common and variable domain requirements and their precise documentation.
Domain requirements engineering is a continuous process of proactively
defining the requirements for all foreseeable applications to be developed in
the software product line. A particular issue for domain requirements engin-
eering is to identify and explicitly document the external variability. The
sub-processes and artefacts closely related to the domain requirements
engineering sub-process are highlighted in Fig. 10-1.

Domain requirements engineering has to adhere to the specification of the
product line’s major features provided by product management. Based on
these features, it creates detailed common and variable requirements suffi-
cient to guide domain design (and thereby also realisation as well as testing).
In addition, domain requirements engineering provides the input for the
application requirements engineering sub-process, which is concerned with
creating application-specific requirements artefacts.

Goals of domain
requirements
engineering

Fig. 10-1: Sub-processes and artefacts related to domain requirements engineering

Related
sub-processes

10.1 Introduction 195

In the remainder of this section, we elaborate on the interrelations between
the sub-processes highlighted in Fig. 10-1. The basic information flows
between these sub-processes are depicted in Fig. 10-2.

10.1.1 Interrelation with Product Management
The key input for the domain requirements engineering process is the prod-
uct roadmap from product management (first bullet in Fig. 10-2). This
roadmap includes an initial set of intended products for the product line as
well as their intended commonalities and variability. It further defines the
product line with respect to the envisaged applications and a schedule for
bringing out marketable products. In addition, product management identi-
fies existing artefacts that have been developed in previous projects and
which should be considered when defining the domain requirements (second
bullet of in Fig. 10-2).

The domain requirements engineering sub-process provides suggestions on
additional and altered features as well as feature refinements (in Fig.
10-2) to product management, based on the analysis of existing products,
stakeholder needs, laws, constraints, and other requirement sources.

10.1.2 Interrelation with Domain Design
The output of domain requirements engineering provided to domain design
encompasses all defined domain requirements including commonality and
variability as well as the definition of the product line variability in the
orthogonal variability model (in Fig. 10-2). The variability model defines
at least the external variability but may also specify part of the internal vari-
ability of the product line.

Domain
Design

Domain
Requirements
Engineering

Product
Management

Application
Requirements
Engineering

Product roadmap
List of existing artefacts

Variability model
Common and variable
requirements artefacts

5 Requests for additional / altered
requirements
Requirements artefacts to be
included in the domain artefacts

same as (3)

Requests for detailed and
for revised requirements

Suggestions for additional /
altered features

3

6

42

1

Fig. 10-2: Information flows between domain requirements engineering and other sub-
processes

Artefact
flows

Product roadmap,
existing products

Additional/altered
features

Requirements and
variability

196 10. Domain Requirements Engineering

The interrelation between domain requirements engineering and domain
design can be characterised by the twin peaks model of [Nuseibeh 2001]
presented in Fig. 10-3. The figure expresses the interrelation by a spiral
alternating between requirements (problem view) and architecture (solution
view) that at the same time progresses from coarse to detailed. While the
reference architecture increasingly takes shape, the need for more detailed
requirements arises as well. In addition, existing requirements may for
example turn out as too ambitious from the viewpoint of domain design,
which leads to change requests (in Fig. 10-2).

10.1.3 Interrelation with Application Requirements Engineering
Domain requirements engineering provides the predefined common and
variable requirements artefacts as well as the orthogonal variability model to
application requirements engineering (in Fig. 10-2). Consequently the
orthogonal variability model supports the communication of the product line
variability and thus the reuse of domain requirements artefacts. We elaborate
on the reuse of domain requirements artefacts in Chapter 15.

Application requirements engineering provides feedback to domain require-
ments engineering in terms of requests for additional and altered require-
ments (first bullet of in Fig. 10-2) as well as application requirements
artefacts which may be incorporated in the domain artefacts (second bullet of

 in Fig. 10-2). This feedback may lead to an adaptation of the domain arte-
facts and thus to an evolution of the software product line. The decision on
whether the feedback from application engineering is incorporated in the
domain artefacts is made by product managers and other stakeholders who
decide on the evolution of the product line. However, the feedback can also
lead to an application-specific adaptation of the product line’s capabilities,
i.e. it can lead to an application-specific change. The integration of applica-

Highly interactive
process

Requirements Architecture

Realisation
Dependence

Independent Dependent

Coarse

Detailed

Level of
Detail

Problem
View

Solution
View

Fig. 10-3: The twin peaks model describes the interrelation of requirements and architecture
(adapted from [Nuseibeh 2001])

Reusable
requirements

Future domain
requirements

10.2 Traditional Requirements Engineering Activities 197

tion-specific artefacts in the domain artefacts means that domain require-
ments engineers, domain architects, etc., must reengineer the application
artefacts and prepare them for reuse.

10.2 Traditional Requirements Engineering Activities

Before we elaborate on the details of requirements engineering for software
product lines, we give a brief overview of the major requirements engineer-
ing activities in single-system engineering [Pohl 1996; Pohl 1997].

Elicitation: The goal of requirements elicitation is to understand the
users’ needs and constraints for the system. The elicitation process un-
covers needs, requirements, and constraints from different sources, such
as stakeholders (e.g. customers or domain experts), user documentation,
legislation, and standards. Elicitation also involves the development of
new and innovative requirements for the intended product (see e.g.
[Carroll 1995; Gougen and Linde 1993; Hay and v. Halle 2002; Pohl
1997; Weinberg 1988]).

Documentation: The goal of the requirements documentation activity is
the well-structured recording of the elicited requirements with all neces-
sary information. The final requirements specification is the foundation
for later development phases or changes in the product [Alexander and
Stevens 2003; Kovitz 1999]. To address different stakeholders such as
customers and designers, it is often necessary to document requirements
using different representation formats (see e.g. [Pohl 1994]).

Negotiation: The goal of requirements negotiation is to achieve a suffi-
cient consensus among different stakeholders with respect to elicited
and/or documented requirements. The requirements specification is
more stable during further development phases, if sufficient agreement
is obtained. Without an agreement on the requirements, the project is
likely to fail, for instance by running out of time (see e.g. [Wiegers
1999]).

Validation and verification: The goal of requirements validation/veri-
fication is to prove that the system requirements are clear, complete,
correct, and understandable. Validation ensures that the right require-
ments are documented. Verification ensures that the documented re-
quirements are correctly defined (see e.g. [Thayer and Dorfman 1997;
Sommerville and Sawyer 1997]).

Management: The goal of requirements management is to maintain the
requirements continuously throughout the development and system life
cycle and thus to ensure that a consistent and up-to-date requirements

User needs, require-
ments, constraints

Requirements
specification

Agreement about
requirements

Quality
assurance

Continuous
maintenance

198 10. Domain Requirements Engineering

specification is available at all times. This is supported by recording
trace information between requirements, from requirements to their
sources, and from requirements to their realisation. It is the responsibil-
ity of requirements management to enforce adherence to the defined
requirements engineering process. An up-to-date requirements specifi-
cation is a prerequisite for later releases, failure fixes, and requirements
reuse (see e.g. [Thayer and Dorfman 1997; Hull et al. 2002]).

The goals of the requirements engineering process can be characterised
based on the three dimensions of requirements engineering [Pohl 1994]:

Specification: This dimension characterises the achieved level of under-
standing about the requirements for the system under consideration.
Initially, the understanding is usually weak. The goal is to achieve as
complete an understanding as possible of the system requirements.

Representation: This dimension deals with different kinds of representa-
tions used to document requirements. At the beginning of the require-
ments engineering process, typically informal representations such as
sketches or natural language statements are used. The goal is to arrive at
a precise requirements specification documented using as formal a
requirements modelling language as possible.

Agreement: This dimension deals with the reconciliation of conflicting
opinions. Typically, at the beginning of the requirements engineering
process, the individual stakeholders (managers, users, domain experts,
etc.) have their own view of the goals and requirements of the system.
The agreement dimension characterises the gradual integration of the
different views by uncovering and negotiating conflicts. The goal is to
arrive at a sufficient agreement on the requirements for the system.

10.3 Challenges of Domain Requirements Engineering

Domain requirements engineering has to take into account the variability of
the product line. This implies additional tasks for the requirements engineer.
In this section we present the tasks that are unique to requirements engineer-
ing in software product lines.

10.3.1 Specific Activities
The explicit documentation of the proper common and variable requirements
is essential for enabling the planned reuse of requirements in application
engineering. The required variability has to be documented in the orthogonal
variability model in order enable its communication to other sub-processes,

Understanding of
system requirements

Representation of
requirements

Agreement about
requirements

Precise definition of
variability

10.4 Overview of Major Steps 199

such as domain design or domain testing. In this chapter, we elaborate on the
three following activities:

Commonality analysis: The goal of commonality analysis is to identify
which requirements are common to all applications of the software
product line (Section 10.6).

Variability analysis: The goal of variability analysis is to identify which
requirements differ among the applications, and to determine the differ-
ences precisely (Section 10.7).

Variability modelling: This activity is concerned with modelling vari-
ation points, variants, and their relationships. It is closely related to
modelling variable requirements (Section 10.8).

The three activities are closely related to each other. This holds in particular
for the commonality and variability analysis (for additional reading on
commonality and variability analysis, see e.g. [Weiss and Lai 1999]).

10.3.2 Variability in Different Views
In addition to the identification and modelling of variability, domain
requirements engineering has to establish consistency across the different
requirements artefacts and their documentations. The incorporation of differ-
ent views facilitates the communication of the commonality and variability
of the product line to different stakeholders. Examples of requirements arte-
facts are goals, features, scenarios, use cases, data models, behavioural
models, functional models, and textual requirements (see Chapter 5 for a
more detailed elaboration on the different requirements artefacts).

10.4 Overview of Major Steps

The requirements artefacts developed in domain requirements engineering
encompass common and variable parts. The representation formats typically
used for documenting common as well as variable requirements are
explained in Chapter 5. In the following, we briefly characterise the basic
steps for defining common and variable requirements.

10.4.1 Defining Common Requirements
Before any requirements can be defined as a commonality of the product
line, a commonality analysis has to be performed in order to determine
which requirements are actually common to all applications; see Section
10.6. Defining common requirements consists of two basic steps:

Common
requirements

Variable
requirements

Variation points
and variants

Commonality and
variability analysis

Consistent
requirements
artefacts

Commonality
analysis first

200 10. Domain Requirements Engineering

1. Identify a set of common requirements.
2. Document the common requirements in detail in a representation format

(features, use cases, etc.) that is suitable for the considered view.

The steps are performed iteratively in the course of detailing and revising the
domain requirements. Moreover, common and variable requirements are
closely related and are therefore typically modelled together within the same
artefacts.

There are at least two other important issues that have to be considered in
defining common requirements:

Common requirements are the basis for all product line applications.
The work of different stakeholders depends on the quality of these
requirements. Typically, much effort has to be put into keeping the
requirements artefacts up to date, consistent across different views
(Section 10.3.2), and to ensure a high quality (e.g. comprehensibility).
Reviews help to ensure a high quality for common requirements.

Common requirements may change to variable requirements. For
example, the evolution of the product line can cause a common
requirement to become variable as a consequence of introducing new
variability. Documenting the rationales and assumptions on why a
requirement is common helps to understand why a requirement is com-
mon and thus avoid unnecessary changes of common requirements into
variable requirements. It thus prevents ending up with a fully variable,
yet overly complex requirements specification.

10.4.2 Defining Variable Requirements
Variable requirements are identified during variability analysis. Defining
variable requirements involves modelling the variability of the product line
in the variability model and documenting variable requirements in a suitable
notation. Figure 10-4 illustrates the basic steps for modelling variable
requirements. The four steps are:

1. Identify an initial set of variable requirements.
2. Develop the orthogonal variability model.
3. Document the requirements in detail in a suitable notation.
4. Relate each variable elements of the developed requirements artefact

(e.g. use cases, scenarios, or classes) to the corresponding variants in
the orthogonal variability model.

Steps 3 and 4 are repeated until all required views have been considered.

Basic
steps

Iteration of
the steps

High
quality

Change of
commonality and

variability over time

Modelling
variability

Basic
steps

10.6 Commonality Analysis 201

10.5 Requirements Sources

Domain requirements engineering incorporates different requirements
sources such as stakeholders, existing products, failure reports, or competi-
tors’ products to define the common and variable requirements for the prod-
uct line. These sources are used to detail the features defined by product
management.

To identify the domain requirements and their variability, domain require-
ments engineers can often make use of existing applications (see e.g.
[Fantechi et al. 2003]). The development of a software product line rarely
starts from scratch as product line engineering requires sophisticated domain
experience (Section 1.4). Consequently different applications already exist
that serve the markets and customer groups envisaged by the product line.
These existing applications may be own applications or competitors’ appli-
cations. When performing the commonality and variability analysis as
explained in the following sections, requirements engineers should use,
among other requirements sources, the existing applications in their domain.

10.6 Commonality Analysis

Along with the elicitation of requirements for the intended software product
line applications, the commonality of the applications has to be defined.

(3) Document the identified
requirements in detail

(2) Develop the orthogonal
variability model (OVM)

Invariant Part
(Common Requirements)

Variable Part

Variable Part

Invariant Part
(Common Requirements)

VP

Variation
Point 1

VP

Variation
Point 2

Variant 2.1
V

Variant 2.2
V

Variant 1.1
V

Variant 1.2
V

Variant 2.3
V

(1) Identify an initial set of variable requirements

(4) Assign requirements
to variants in the
OVM

V1.1
V1.2

V2.1
V2.2
V2.3

Fig. 10-4: Steps for modelling variable requirements

Stakeholders, existing
products, etc.

Use of existing
applications

202 10. Domain Requirements Engineering

It is important to have as much commonality as possible, and thereby to
reduce the amount of variability to the required minimum [Ardis and Weiss
1997]. Common requirements form the basis of every software product line
application. The higher the amount of commonality, the less effort has to be
spent in design for flexibility. Nevertheless, the amount of variable require-
ments should at least allow the development of individual applications that
satisfy the goals and needs of the envisioned customers and/or market seg-
ments.

The identification of common requirements starts with the simultaneous
exploration of the requirements for all foreseen applications of the software
product line. Requirements that are identical for all these applications are
good candidates for common requirements. There are different ways of
identifying common requirements. A simple way to perform commonality
analysis is to use an application–requirements matrix.

10.6.1 Application–Requirements Matrix
The application–requirements matrix (see Table 10-1 for an example) gives
an approximation of the commonality (and also of the variability) for a given
set of software product line application requirements. The application–
requirements matrix details the product roadmap, which typically defines
common and variable features at a higher level of abstraction. The left
column of the matrix lists the requirements of the considered applications.
The applications themselves are listed in the top row. In the body of the
matrix it is marked for which application a certain requirement is mandatory.

In the application–requirements matrix presented in Table 10-1 the require-
ment ‘R1’ is mandatory for all applications and is thus a candidate to be
defined as a common product line requirement. Requirement ‘R2’ is not
available in ‘App. 1’ and ‘App. 2’. Hence, it is not identified as a common
requirement for the product line. The same holds for requirement ‘R3’.

As much commonality
as possible

Exploration of
applications

Contents of
the matrix

Table 10-1: Structure of an application–requirements matrix for four applications

Application
Requirements App. 1 App. 2 App. 3 App. 4

R1 mandatory mandatory mandatory mandatory

R2 - - mandatory mandatory

R3 - mandatory - -

… … … … …

10.6 Commonality Analysis 203

10.6.2 Priority-Based Analysis
A more sophisticated analysis of commonality can be obtained by applying
the priority-based analysis scheme. Priority-based commonality analysis is
based on set of requirements in which each requirement is rated by different
stakeholders according to a certain scheme such as the classification pro-
posed by Kano [Kano et al. 1996] (see Chapter 9 for more details on the
Kano classification).

Common requirements encompass at least the set of all basic requirements
that every application for the envisioned domain must fulfil. Example 10-1
describes such a basic requirement.

Another indicator for commonality is a requirement having a high priority
for a large group of customers, and the other customers do not reject it. This
case is illustrated in Example 10-2.

Furthermore, it is useful to define all requirements that might be of interest
to many customers in the future as common requirements. We refer to this
kind of requirements as strategic commonalities. Strategic commonalities are
foreseeable basic needs that will appear in the product line’s lifetime, and
thus should be implemented as commonalities to attain a stable set of com-
mon artefacts. Such kinds of commonalities may be important to differenti-
ate from competitors’ products (Example 10-3).

Example 10-1: Heating Control as a Basic Requirement

The Kano classification reveals that the requirement “The home
automation system shall be able to control the heating of the home” is
a basic requirement. Hence, it is a good candidate to be included into
the set of common requirements.

Example 10-2: Access Control as a High-Priority Requirement

The requirement “The home automation system shall be able to con-
trol access to the home” is rated with a high priority by most custom-
ers. There are no customers who rate this requirement negatively.
Thus it is likely to be accepted as a common requirement.

Example 10-3: Wireless Communication as a Strategic Commonality

The requirement “The home automation system shall communicate
via a wireless network” is going to become a basic need in the near
future. Hence, it is defined as a commonality of the product line.

Prioritised
requirements

Basic
requirements

High-priority
requirements

Strategic
commonality

204 10. Domain Requirements Engineering

10.6.3 Checklist-Based Analysis
A more general approach than the priority-based identification of common
requirements is the use of checklists. Each item on the checklist represents a
category of requirements that should be considered as candidates for com-
mon requirements. The basic needs, high-priority requirements, and strategic
commonalities described in Section 10.6.2 are examples of such categories.
In addition the following general categories should be considered:

Requirements that are prescribed by national or international laws and
standards.

Requirements that are prescribed by organisational standards.

Requirements that only differ marginally.

Requirements that do not conflict with each other.

Requirements that are necessary for the technical support, like error
handling, maintenance, communication, etc.

10.7 Variability Analysis

The goal of variability analysis is to identify requirements variability and to
define the variation points and their variants related to these requirements. In
software product line engineering, there is no strict need to harmonise differ-
ent requirements that for example originate from contrasting customer needs
or from the necessity to support different legacy systems. Rather, require-
ments that differ from each other indicate a need to introduce variation
points and variants. However, not for every difference a variation point is
defined. Whether a variation point should be introduced needs careful con-
sideration by the stakeholders involved, as the variation point may, for
instance, have significant influence on the reference architecture. The
following example illustrates the introduction of a variation point due to
different customer needs:

Example 10-4: Variability in the Home Security System due to
Different Customer Needs

The different requirements of customers with regard to the security
system lead to the introduction of a variation point ‘home security by’
with the variants ‘motion detection’ and ‘camera surveillance’. Each
application of the product line can be customised to provide either
motion detection or camera surveillance.

Requirements
categories

Defining variation
points and variants

10.7 Variability Analysis 205

To extract the necessary variability information, the requirements analyst has
to examine the requirements for all product line applications. The identifica-
tion of variability starts with the analysis of high-level requirements. The
analysis reveals those requirements that are unique to a subset of the appli-
cations and those that have different characteristics in different applications.
As a result of variability analysis, variation points and variants are defined.

10.7.1 Variability Analysis with the Application–Requirements
Matrix

Variability analysis is based on the same techniques as commonality analy-
sis. The application–requirements matrix helps to identify variable require-
ments. Requirements that are only mandatory for one or a small set of
applications are definitively candidates for variable requirements.

10.7.2 Priority-Based Variability Analysis
Requirements that have a high priority for some customers but a low priority
for other customers are candidates for variable requirements. Example 10-5
illustrates the identification of a requirement with different prioritisations.

Example 10-5: Variability due to Different Prioritisations

A study reveals that the requirement “The system shall automatically
inform the police in case of intrusion” is rated high by a significant
group of customers but is of less importance for another group of
customers. Hence, the requirements engineer defines this requirement
as a variable requirement of the software product line.

Similarly, requirements that are rated positively by one group of customers
but are rated negatively by another group of customers can lead to the intro-
duction of variability.

Example 10-6: Conflicts in Home Security Requirements

The requirement “the security system shall be equipped with a video
storage system that records all surveillance video data” is appreciated
by a significant group of customers. Yet the requirement “The system
shall not record personal data” also has a high priority for many cus-
tomers. Hence, the requirements engineer decides to define video
storage as a variable requirement.

In addition, there may be requirements with high ratings, possibly from dif-
ferent customer groups, which cannot be realised within the same application
as they are in conflict with each other. This may be due to a real, semantic

Examination of high-
level requirements

Initial set of variable
requirements

Different
priorities

Conflicting
priorities

Conflicting high-
priority requirements

206 10. Domain Requirements Engineering

conflict or due to technical incompatibility. This situation is illustrated in
Example 10-6.

10.7.3 Checklist-Based Variability Analysis
In general each difference in structure, functionality, behaviour, or quality
between different applications is a candidate for requirements variability. A
checklist helps in identifying requirements variability. Apart from the cate-
gories defined in Section 10.7.2, a checklist may contain, for example, the
following items:

Differences in functionality.
Different quality attributes, e.g. with respect to safety, security, or
dependability.
Different interface requirements, in order to allow the exchange of
information with different legacy systems (e.g. legacy heating control).
Different requirements with respect to the system’s user interface.
Different design constraints, such as different databases, network types,
COTS components, or operating systems.

10.8 Defining Requirements Variability

Defining the variability of domain requirements is a prerequisite for the suf-
ficient understanding of, and the communication about, the variability of a
product line. In Chapter 4, we introduce an orthogonal variability model for
defining variability in different development artefacts. In Chapter 5, we out-
line how variability in various requirements artefacts should be documented
using the orthogonal variability model.

To define the requirements variability of the indented software product line,
the domain requirements engineer has to:

Carefully define the right set of variation points and variants.
Determine their dependencies.
Define together with product managers which part of the product line
variability is offered to the customer as external variability.

10.8.1 Variation Points and Variants
Initially it is often not clear which variant has to be related to which vari-
ation point. The documented requirements often do not state this explicitly.
However, by considering the common variability subject of the variants,
appropriate variation points can typically be identified. Example 10-7 illus-
trates this:

Candidates for
requirements

variability

Orthogonal
variability model

Defining
variability

Related variability
subjects

10.8 Defining Requirements Variability 207

Example 10-7: Finding Correlated Variants

Application ‘App. 1’ has the requirement “The front door shall be
secured with a keypad.” whereas ‘App. 2’ has the requirement “The
system shall provide fingerprint-based authorisation.” These require-
ments refer to the same variability subject, namely the identification
mechanism used. Hence, the variation point ‘door lock identification
mechanism’ is defined with the two variants stated above. These vari-
ants are associated with the corresponding requirements artefacts.

After the variation point and the initial variants have been defined, additional
variants have to be identified. Reasons for introducing additional variants
can be the provision of an additional benefit for the customers or the differ-
entiation of the software product line from competitors’ products. Especially
variants leading to high customer satisfaction should be taken into account in
this step (we introduced the term “delighters” for requirements that lead to
high customer satisfaction, see Chapter 9). The identification of additional
variants can also be performed before the definition of the variation point.
However, identifying additional variants after the definition of the variation
point is usually better, since the variation point and the variants, which have
already been identified, support the identification of additional variants.

10.8.2 Variability Dependencies
The types of the variability dependencies between a variation point and its
variants and the defined alternative choices (Section 4.6) determine the
permissible combinations of variants for each product line application. For
some variants the appropriate variability dependency and/or alternative
choice may be clear from the available requirements sources, such as
product brochures (Example 10-7). If such information is not available
directly, the requirements engineer has to involve the relevant stakeholders
to identify the proper variability dependencies and alternative choices.

Again, by defining the variability dependencies, the requirements engineer
should consider the fact that the variability can have a strong influence on
the reference architecture. For example, designing a reference architecture
which supports a wide range of optional variants that differ significantly in
quality may be impossible. Consequently, among other stakeholders, archi-
tects should be involved in the definition of variability dependencies. Or,
more generally, software architects must be involved in the definition of
requirements variability.

Additional
variants

Mandatory, optional,
and alternative choice

Software architects
involved in variability
definition

208 10. Domain Requirements Engineering

Example 10-8: Identifying the Proper Variability Dependency

A product brochure for the home security system states that the sys-
tem is always delivered with the feature “acoustic alarm”. In addition,
the customer may choose the “police information” feature, which
enables the system to inform the police in the case of an attempted
burglary. The variability model of the home security product line
contains the variation point “alarm activation” with the mandatory
variant “acoustic alarm” and the optional variant “police information”.

First example
application

Goals
G1: Protection against burglary.
G2: Catching the thief.
G...: ...
G5: Video surveillance of the house.
Desired Features
F1: Video surveillance.
Fn: ...
F2.2: Inform police via phone line.
Requirements
R1: The time between the detection of an open window and the

recording of the video surveillance shall be less than 2 sec.
R2: The alarm signal shall be deactivated by the police, by the

owner, or automatically after 20 minutes.
R2.1: The alarm signal shall start immediately after the detection

of the open window or door.
R11: The camera shall have enough storage for 5 minutes’ video

stream to be stored as alarm buffer.
R11.1: The recording is only initiated if motion is detected.
R28: The system shall be able to generate user-specific reports that

document the system events.
R77: The stored video streams of the video surveillance system

shall be safe against misuse and tampering.
R78: The time period between motion detection and start of

recording shall be less than 0.5 seconds.
R78.1 The password shall consist of at least 10 characters and

include special characters (such as numbers). The password
shall be changed every 3 months, and an old password
cannot be used again.

Goals
G1: Protection against burglary.
G2: Catching the thief.
G...: ...
G5: Video surveillance of the house.
Desired Features
F1: Video surveillance.
Fn: ...
F2.2: Inform police via phone line.
Requirements
R1: The time between the detection of an open window and the

recording of the video surveillance shall be less than 2 sec.
R2: The alarm signal shall be deactivated by the police, by the

owner, or automatically after 20 minutes.
R2.1: The alarm signal shall start immediately after the detection

of the open window or door.
R11: The camera shall have enough storage for 5 minutes’ video

stream to be stored as alarm buffer.
R11.1: The recording is only initiated if motion is detected.
R28: The system shall be able to generate user-specific reports that

document the system events.
R77: The stored video streams of the video surveillance system

shall be safe against misuse and tampering.
R78: The time period between motion detection and start of

recording shall be less than 0.5 seconds.
R78.1 The password shall consist of at least 10 characters and

include special characters (such as numbers). The password
shall be changed every 3 months, and an old password
cannot be used again.

Fig. 10-5: Example excerpt of a requirements specification for the first application

10.9 Example 209

10.8.3 Constraint Dependencies
By defining constraint dependencies (“requires” and “excludes”, see Section
4.6.5 for the definitions) the domain requirements engineer restricts and/or
enforces the binding of variation points during application engineering. The
requirements engineer has thus to determine the essential influences among
the variants that exist at the requirements level. In other words, the domain
requirements engineer must elicit and document the variant to variant, vari-
ant to variation point, and variation point to variation point “requires” and
“excludes” dependencies stemming from domain requirements artefacts.

10.8.4 Adaptation of Product Line Variability Based on Product
Management Decisions

The final decisions on the variability in domain requirements artefacts are
made by product management. In other words, product management decides:

If a variation point identified and defined in the domain requirements
engineering sub-process should be part of the product line or not, or
even if a new variation point should be added.
If the variants identified and defined in the domain requirements engin-
eering sub-process should be part of the product line or not, or even if a
new variant should be added.
If the variability constraints and dependencies defined in the domain
requirement engineering sub-process are correct, or if they have to be
adapted and how.
Whether a variation point is categorised as external product line vari-
ability or as internal product line variability.

Domain requirements engineers have to adapt the requirements artefacts
affected by changes or adaptations of the variability definitions in the ortho-
gonal variability model made by product management.

10.9 Example

In this section, we provide an example of how to identify and document
variable requirements for a software product line. We first provide a simple
outline of the requirements for the first three foreseeable applications. Sub-
sequently, we demonstrate the major steps performed during commonality
analysis, variability analysis, and during the documentation of common and
variable requirements artefacts. Figures 10-5 to 10-7 present excerpts of the
requirements for each of the three software product line applications.

Restricting admissible
combinations

Final decisions by
product management

Adaptation of
requirements
artefacts

Three example
applications

210 10. Domain Requirements Engineering

10.9.1 Commonality Analysis
The identification of common requirements is done top down from abstract
requirements artefacts to detailed ones. We use the application–requirements
matrix to document in which applications the requirements are mandatory. In
Fig. 10-8 a set of common requirements is identified in the application–

Second example
application

Goals
G1: Protection against burglary in the office.
G… ...
G4: Meet clauses of the insurance agency.
G5: Determent of thieves through alarm signal.
Desired Features
F1: Video surveillance.
F1.1: Alarm activation.
F2: Alarm signal.
F2.1: Motion detection.
F2.4: Automatic deactivation of alarm.
F3: Alarm call.
F3.1: Call by SMS (short message standard).
F3.2: Call by internet message.
Requirements
R1: The recording of the video surveillance system shall start no

later than 1 second after the detection of the open door or
window.

R2: The police shall be informed about the burglary via radio
transmission.

R3: The alarm shall be activated in case of burglary.
R3.1: The alarm signal shall only start if the police do not arrive

within 5 minutes of alarm detection.
R3.2: The alarm (signal) shall only be deactivated by the police or

by the owner, via password and TAN (transaction number).
R10: The time period between motion detection and start of

recording shall be less than 2.5 seconds.
R13: The camera shall have enough storage for 5 minutes’ video

stream to be stored as alarm buffer.
R68: The stored video streams of the video surveillance system

shall be safe against misuse and tampering.
R68.1: The length of the password shall be at least 5 characters. The

password shall only be changed if necessary.

Goals
G1: Protection against burglary in the office.
G… ...
G4: Meet clauses of the insurance agency.
G5: Determent of thieves through alarm signal.
Desired Features
F1: Video surveillance.
F1.1: Alarm activation.
F2: Alarm signal.
F2.1: Motion detection.
F2.4: Automatic deactivation of alarm.
F3: Alarm call.
F3.1: Call by SMS (short message standard).
F3.2: Call by internet message.
Requirements
R1: The recording of the video surveillance system shall start no

later than 1 second after the detection of the open door or
window.

R2: The police shall be informed about the burglary via radio
transmission.

R3: The alarm shall be activated in case of burglary.
R3.1: The alarm signal shall only start if the police do not arrive

within 5 minutes of alarm detection.
R3.2: The alarm (signal) shall only be deactivated by the police or

by the owner, via password and TAN (transaction number).
R10: The time period between motion detection and start of

recording shall be less than 2.5 seconds.
R13: The camera shall have enough storage for 5 minutes’ video

stream to be stored as alarm buffer.
R68: The stored video streams of the video surveillance system

shall be safe against misuse and tampering.
R68.1: The length of the password shall be at least 5 characters. The

password shall only be changed if necessary.

Fig. 10-6: Example excerpt of a requirements specification for the second application

Requirements
matrix

10.9 Example 211

requirements matrix. Those requirements that are mandatory for all applica-
tions constitute the commonality of the product line.

In a next step, the matrix is analysed for further commonalities between the
applications. The requirements are analysed, for example, with regard to:

The same content, represented in different words.
Requirements that will become common in the near future.
Requirements that only differ slightly from each other.
Requirements that should be common from a strategic point of view.

Detailed
analysis

Third example
application

Goals
G1: Safety against thieves.
G…: ...
G5: Video surveillance of the flat.
Desired Features
F1: Video surveillance.
F1.1: Activation by motion detection.
F...: …
F2.2: Door and window sensor.
F2.3: Manual deactivation of alarm (by owner, or police).
Requirements
R1: The police shall be informed immediately after the detection

of an open window or door.
R1.1: The police shall be informed via internet message or SMS.
R2: The alarm signal shall start immediately after the detection

of the open window or door.
R2.1: The alarm signal shall be deactivated by the police, by the

owner, or automatically after 20 minutes.
R9: The video surveillance shall be active as soon as activated by

the user.
R9.1: A recording is only initiated if motion is detected.
R9.2: The camera shall have enough storage for 5 minutes’ video

stream to be stored as alarm buffer.
R10: The time period between motion detection and start of

recording shall be less than 0.5 seconds.
R11: The video recording shall continue for 2 minutes after the

last motion was detected.
R79: The stored video streams of the video surveillance system

shall be safe against misuse and tampering.

Goals
G1: Safety against thieves.
G…: ...
G5: Video surveillance of the flat.
Desired Features
F1: Video surveillance.
F1.1: Activation by motion detection.
F...: …
F2.2: Door and window sensor.
F2.3: Manual deactivation of alarm (by owner, or police).
Requirements
R1: The police shall be informed immediately after the detection

of an open window or door.
R1.1: The police shall be informed via internet message or SMS.
R2: The alarm signal shall start immediately after the detection

of the open window or door.
R2.1: The alarm signal shall be deactivated by the police, by the

owner, or automatically after 20 minutes.
R9: The video surveillance shall be active as soon as activated by

the user.
R9.1: A recording is only initiated if motion is detected.
R9.2: The camera shall have enough storage for 5 minutes’ video

stream to be stored as alarm buffer.
R10: The time period between motion detection and start of

recording shall be less than 0.5 seconds.
R11: The video recording shall continue for 2 minutes after the

last motion was detected.
R79: The stored video streams of the video surveillance system

shall be safe against misuse and tampering.

Fig. 10-7: Example excerpt of a requirements specification for the third application

212 10. Domain Requirements Engineering

Example 10-9: Identifying Similar Goals

Application 1, G1: “protection against burglary”
Application 2, G1: “protection against burglary in the office”
Application 3, G1: “protection against thieves”
The three goals of the different applications can be described by one
common goal: “protect against burglary”.

Application–
requirements matrix

Requirements App. 1 App. 2 App. 3

The police shall be informed immediately after the
detection of an open window or door.

mandatory

The police shall be informed via internet message or
SMS mandatory

The alarm signal shall start immediately after the
detection of the open window or door mandatory mandatory

The alarm signal shall only start if the police does
not arrive within 5 minutes after alarm detection

mandatory

The alarm signal shall be deactivated by the police,
by the owner, or automatically after 20 minutes

mandatory mandatory

The video surveillance is active as soon as activated
by the user mandatory

… … … …

A recording is only initiated if a motion is detected. mandatory mandatory

The camera shall have storage for 5 minutes' video
stream to be stored as alarm buffer

mandatory mandatory mandatory

The time period between motion detection and start
of recording shall be less than 0.5 seconds

mandatory mandatory

The time period between motion detection and start
of recording shall be less than 2.5 seconds

mandatory

The video recording shall continue 2 minutes after
the last motion was detected mandatory

The stored video streams of video surveillance
system shall be safe against misuse and tampering

mandatory mandatory mandatory

Fig. 10-8: Using the application requirements-matrix to identify variability

10.9 Example 213

In Example 10-9 we illustrate three different goal descriptions that can be
summarised by a single goal “protection against burglary”.

10.9.2 Variability Analysis
The application–requirements matrix presented in Fig. 10-8 is used to iden-
tify an initial set of variable aspects among the requirements of different
applications. The candidates for variable requirements, which we focus on in
the following, are highlighted in Fig. 10-8 by grey bars. The requirement
“the alarm signal shall be deactivated…” is variable because it is only man-
datory for applications “App. 1” and “App. 3”. In addition, the requirement
itself contains variable aspects; see Examples 10-10 and 10-11.

Example 10-10: Variable Aspects Within a Requirement

The requirement differentiates among the following variants: ‘The
alarm signal shall be …’
Variant 1: “…deactivated by the police”
Variant 2: “…deactivated by the owner”
Variant 3: “…deactivated automatically after 20 min.”

Example 10-11: Variants Among Different Applications

For the authentication variant ‘password authentication’ the security
requirements differ among the applications. App. 1 requires a high
password quality, whereas App. 2 requires a low password quality.
Variant 1 ‘high password quality’: Req-78.1, App. 1: “The password
shall consist of at least 10 characters and include special characters
(such as numbers). The password shall be changed every 3 months,
and an old password cannot be used again.”
Variant 2 ‘low password quality’: Req-68.1, App. 2: “The password
shall be at least 5 characters long. The password shall only be changed
if necessary.”

10.9.3 Defining Variation Points and Variants
The correct definition of variation points is essential, since a variation point
provides the central location for binding the variability during application
engineering. Typically, the variation subject is a good indicator for a vari-
ation point and its name. In Example 10-12, we define the variability subject
by abstracting from related variants.

Identifying variable
requirements

Determining the
variability subject

214 10. Domain Requirements Engineering

Example 10-12: Defining a Variation Point for a Set of Variants

By abstracting from the requirements “the alarm signal shall be deac-
tivated…” we define the variation point ‘alarm deactivation’. More-
over, we define only two variants as manual deactivation can be done
by any person authenticated by the system.
Hence, for the variation point ‘alarm deactivation’ the following vari-
ants are available:
Variant 1: “…manual deactivation by an authenticated person”
Variant 2: “…automatic deactivation after 20 minutes”

10.9.4 Defining Variability Dependencies
After determining the variation point and its variants, the required variability
dependencies have to be defined. We illustrate this step in Fig. 10-9 for the
variation point ‘alarm deactivation’ from Example 10-12.

Example 10-13: Definition of Variability Dependencies

The variants ‘manual’ and ‘automatic’ shall be optional variants for
deactivating the alarm. Exactly one of them must be selected for an
application. Hence, we relate them to the variation point ‘alarm deac-
tivation’ using optional variability dependencies and group the
dependencies by an alternative choice with a range of [1..1]. As this is
the default range we do not show it in Fig. 10-9.

10.9.5 Defining Constraint Dependencies
In Example 10-14, we illustrate the use of a constraint dependency between
a variant and a variation point. If the variant at the source end of the con-
straint dependency (‘video surveillance’) is selected, the variation point at
the target end (‘video surveillance quality’) has to be bound by selecting the
desired variants. The selection thus has to take into account the defined vari-
ability dependencies and alternative choices.

Alarm
Deactivation

VP

Automatic
V

Manual
V

Fig. 10-9: Example of a variation point with a an alternative choice of two variants

Variant to variation
point constraint

10.10 Differences from Single-System Engineering 215

Example 10-14: Use of the “Requires” Constraint Dependency

The ‘requires_v_vp’ dependency between the variant ‘video surveil-
lance’ and the variation point ‘video surveillance quality’ (Fig. 10-10)
means that the video surveillance system is available in different
quality variants, such as required by the individual applications.

10.9.6 Documenting Domain Requirements
Commonality and variability have to be defined in the various requirements
artefacts and related to the corresponding concepts (variants and/or variation
points) in the orthogonal variability model. Figure 10-11 illustrates an
excerpt of a variable use case scenario, which is enriched by XML tags.
These XML tags structure the textual scenario in different elements. Due to
the definition of the elements in the scenario the variable parts (e.g. steps,
preconditions, etc.) of the use case scenario can be related to the corres-
ponding variants in the variability model.

10.10 Differences from Single-System Engineering

The main goal of domain requirements engineering is the prospective devel-
opment of common and variable requirements artefacts for the product line
in order to enable large-scale reuse in application engineering. Consequently,
the requirements engineering activities (elicitation, documentation, negoti-
ation, and validation/verification) do not deal with a single application but
with the requirements of all envisioned product line applications. The
requirements engineer has to involve a potentially large number of different
stakeholders (product managers, architects, customer groups, maintenance
staff, etc.) and different requirements sources (legacy systems, country laws,
etc.) to be able to identify all relevant common and variable requirements.

Video
Surveillance

V
Police

Information

V
Acoustic

Signal

V
High Quality

t<=0.1

V
Mid Quality

t<1

V
Low Quality

t>2

V

Alarm
Activation

VP

Video
Surveillance

Quality

VP

requires_v_vp

R2, App. 1
R2, App. 2
R9, App. 3

R1, App. 3
R2, App. 2

R3, App. 2
R2.1, App. 1

R10, App. 3 R1, App. 2 R1, App. 1

Fig. 10-10: “Requires” dependency between a variant and a variation point

Variants in a
use case scenario

Identifying and
defining commonality
and variability

216 10. Domain Requirements Engineering

<variation point name = "alarm system">
<optional-variant name = "video surveillance">
Use Case Name: activate video surveillance
Precondition: system online
<variation point name = "alarm activation">
<alternative-variant name = "authentication first" >
USER SYSTEM
1. select video surveillance
2. request authentication
3. authenticate
4. provide access
5. request activation of surveillance
6. confirm activation
7. logout
</alternative-variant>
<alternative-variant name = "access first">
USER SYSTEM
1. select video surveillance
2. provide access
3. request activation of surveillance
4. request authentication
5. authenticate
6. confirm activation
7. logout
</alternative-variant>
</variation point>

…

<variation point name = "alarm system">
<optional-variant name = "video surveillance">
Use Case Name: activate video surveillance
Precondition: system online
<variation point name = "alarm activation">
<alternative-variant name = "authentication first" >
USER SYSTEM
1. select video surveillance
2. request authentication
3. authenticate
4. provide access
5. request activation of surveillance
6. confirm activation
7. logout
</alternative-variant>
<alternative-variant name = "access first">
USER SYSTEM
1. select video surveillance
2. provide access
3. request activation of surveillance
4. request authentication
5. authenticate
6. confirm activation
7. logout
</alternative-variant>
</variation point>

…

Fig. 10-11: Example of a variable, textual scenario description

10.11 Summary

Along with the elicitation of requirements from different sources, the domain
requirements engineering sub-process has to identify which requirements are
common to all applications, and which requirements differ among the appli-
cations. Hence, also during domain requirements engineering a commonality
and variability analysis is performed. The application–requirements matrix
provides a synopsis of the high-level requirements for several applications
and can thus be used to support the identification of commonality and vari-
ability. A more sophisticated analysis can be performed on a set of priori-
tised requirements. In addition, checklists can be used to guide the identifi-
cation of common and variable requirements.

To support efficient communication and to enforce consistency of the vari-
ability of the software product line, the variability is defined in the orthogo-
nal variability model. Variability modelling involves the identification and
definition of variation points, variants, variability dependencies, and con-
straint dependencies. Variation points and variants are identified by abstrac-
ting from variable requirements and/or by grouping similar requirements
artefacts. Architects have to be involved in the definition of product line
variability as the variability has a strong influence on the reference archi-
tecture. External variability is defined together with product management.

Identification of
commonality and

variability

Definition of
variability

11
Domain
Design

In this chapter you will learn:

o About the interrelations of the domain design sub-process with the domain
requirements engineering, domain realisation, and application design sub-
processes.

o The key mechanisms to embed variability into a reference architecture.
o About the consideration of quality requirements, in particular flexibility,

evolvability, and maintainability, for the reference architecture.

Frank van der Linden

218 11. Domain Design

11.1 Introduction

The main goal of the domain design sub-process is to produce the reference
architecture, defining the main software structure and the texture. The
architect determines how requirements, including variability, are reflected in
the architecture. The sub-processes and artefacts closely related to the
domain design sub-process are highlighted in Fig. 11-1.

The most important connections of domain design are the relations with
domain requirements engineering, domain realisation, and application
design; see Fig. 11-1. Domain design provides a reference architecture for
the software product line to domain realisation and to application design. An
important characteristic of this architecture is the ability to select and con-
figure reusable software artefacts.

11.1.1 Interrelation with Domain Requirements Engineering
Domain requirements engineering is responsible for providing common and
variable requirements together with a variability model that defines the
external variability of the product line but may also define internal variabil-

Goals of
domain design

Fig. 11-1: Sub-processes and artefacts related to domain design

Requirement
variability

11.1 Introduction 219

ity (in Fig. 11-2). The input from domain requirements engineering is
used to determine the technical solutions that are chosen in the reference
architecture. The variability model defines the basis for the variability in the
reference architecture. It is adapted in domain design by resolving part of the
variability and adding internal variability.

Domain requirements engineering and domain design are performed iter-
atively. Due to the decisions made in domain design and the additional
insights gained, the need for detailed and for revised requirements arises
(in Fig. 11-2; Chapter 10 describes this interrelation in more detail). In the
course of the interplay between domain requirements engineering and
domain design, the stakeholders assign priorities to the requirements. The
architects use the priorities to guide the design process.

11.1.2 Interrelation with Domain Realisation
Domain design provides the reference architecture to domain realisation
(in Fig. 11-2). The reference architecture includes a variable structure that
is the basis for the structures of all applications. Furthermore, the reference
architecture provides the texture of reusable components and interfaces (we
elaborate on the architectural structure and texture in Chapter 6). Along with
the reference architecture, a selection of reusable domain artefacts that
domain realisation must build is passed on. The selection of artefacts
encompasses the reusable components and interfaces as well as their
traceability to application-specific components and interfaces.

The most important task of domain realisation is to build the reusable com-
ponents and interfaces. Issues arising in realising domain artefacts, e.g.
problem reports, are provided as feedback to domain design to improve sub-
sequent design (in Fig. 11-2).

Detailing and revision
of requirements

Reference
architecture

Feedback from
realisation

Domain
Realisation

Domain
Design

Domain
Requirements
Engineering

Application
Design

Variability model
Common and variable
requirements artefacts

Reference architecture
Reusable domain artefact
selection

5 Requests for additional / altered
design
Design artefacts to be integrated
into the platform

same as (3)

Issues in realising domain
artefacts

Requests for detailed and
for revised requirements

3

6

42

1

Fig. 11-2: Information flows between domain design and other sub-processes

220 11. Domain Design

11.1.3 Interrelation with Application Design
Domain design supplies the reference architecture to application design,
which has to specialise the reference architecture for a single application
(in Fig. 11-2). In doing so, application design has to obey the rules
defined in the architectural texture. As the application developers must know
what reusable software artefacts are available, the reusable software artefact
selection is also passed on to the application design process.

Application design provides feedback to domain design in terms of requests
for additional and altered design artefacts (first bullet of in Fig. 11-2). For
example, the application architect may find that the architectural structure is
not sufficient for a particular kind of application. By providing this kind of
feedback, the application architect initiates improvements in the reference
architecture. Furthermore, application design may provide domain design
with design artefacts to be integrated into the platform (second bullet of in
Fig. 11-2). Such artefacts are newly developed parts of the application archi-
tecture that are of interest for the product line. To integrate them into the
reference architecture means initiating an evolution of the product line and
investing additional effort for reengineering. The reengineering ensures
flexibility and prepares the corresponding artefacts for reuse. The decision
on whether the application artefacts are integrated into the product line is
made by product managers and domain engineers.

11.2 Traditional Design Activities

The most important single-system design activity is to define an architecture,
which determines the way the system is going to be built. Requirements,
including their variability, have to be mapped to technical solutions, to be
used during the realisation of the system. The architecture determines the
structuring of the software into parts and their relationships and the common
rules to be applied. To support this, the architect performs the following
supporting activities:

Abstracting: This activity clusters information of the system in abstrac-
tions by considering certain aspects only. This reduces complexity of
the design. Separate abstractions deal with different aspects of the sys-
tems.

Modelling: This activity relates abstractions to each other in order to
enable reasoning about them.

Simulating: This activity “executes” certain models in order to measure
certain system aspects. There is often a software execution theory avail-

Reuse of reference
architecture

Feedback from
application design

Building an
architecture

Complexity
reduction

Support for
reasoning

Model
execution

11.3 Quality Requirements 221

able that allows translating the measurement results into actual system
properties.

Prototyping: This activity produces fast implementations, covering
important system aspects. The purpose is to execute the prototype to
measure how actual systems behave.

Validating: In addition to the design activities, the architect has a role in
the validation of the realisation results. The validation considers
whether the architecture is obeyed by the realisation sub-process.

11.3 Quality Requirements

Many requirements do not deal with the functionality. Instead, they are
related to the quality of the resulting systems, dealing with issues like per-
formance, security, safety, and usability. The architect tries to localise these
concerns by addressing them in specific parts of the structure or texture only.
This may be done by having separate components and interfaces dealing
with the requirement at hand, or the determination of certain aspects, giving
rise to texture, which applies to all components.

In addition, requirements originating from the development organisation
have an impact on the choice of the architecture. For instance, the organi-
sation needs to do early integration and testing, which means that the archi-
tect has to make a system that can be developed incrementally. Whenever
realisation has finished an increment, integration and testing can proceed in
parallel with the realisation of the next increment.

Architecture evaluation is a means to assess the architecture according to
certain selected quality requirements. The architecture is tested against a set
of development scenarios [Kazman et al. 2000]. These scenarios deal with
the quality issue at hand, such as preventing unauthorised intrusion into the
system, or dealing with a user that does not act according to the manual.

Certain quality requirements arise just from doing software product line
engineering. The most important ones are support for variability, flexibility,
evolvability, and maintainability. Quality assurance also has to ensure that
these qualities are met, for instance through reviews of the architectural
design. Architecture reviews are fundamental to ensure a high quality of all
products.

Variability support is crucial for domain design. The architect determines
which configuration mechanisms to use and where they should apply. The
work of application design and realisation relies upon the choice of the right
mechanism. Only when the adequate configuration mechanisms are chosen

Fast partial
implementation

Enforcement of
architecture rules

Quality: driver for
the architecture

Quality of
development

Evaluation of
architecture

Product line quality
requirements

Design for
variability

222 11. Domain Design

can quality products be derived easily and is mass customisation supported
(see Section 12.5 for a description of configuration mechanisms).

Software developers have to be aided in finding easily the right way to build
applications based upon variable requirements. Variability available in the
requirements has to be designed into variability in the architecture. In add-
ition, technical options may introduce additional internal variability, which
has to be incorporated as well.

Flexibility is a quality of the architecture providing easy changes. As not all
future applications can be envisioned, the architecture needs to have ways to
cope with that, still keeping its high quality to remain usable for the product
line. When new applications arise in the product line that have unexpected
requirements, the architecture should be ready to accommodate such envir-
onments. It is important to distribute different, identifiable pieces of func-
tionality over different components and interfaces. In this way, there can be
independent solutions for each of these. In addition, variation points where
unexpected variants may be introduced later are ways to separate them even
further. Texture that allows late binding times in the realisation sub-process
increases the flexibility, since variation points may be bound late in the reali-
sation phase. For instance, the use of plug-in components and their specific
properties is a decision involving the texture. Plug-in components have only
few dependencies on the remainder of the system, and thus allow late bind-
ing.

Example 11-1: Flexibility in Lock Control

The architecture of the lock control has incorporated several means for
flexibility. For instance, the separation of the functionalities of lock
control, authentication, and user control enables adaptations to each of
them, independent of the others. This is shown in Fig. 11-3. Improve-
ments stay local, increasing the flexibility. In addition, the use of sepa-
rate plug-in components for each of them improves flexibility further.
By using the right plug-in components, all kinds of lock control are
configured even at late binding times.

Evolvability is the quality of being able to evolve the architecture according
to requirements changes that will possibly come in future. This quality goes
further than flexibility, which only demands that new systems can be accom-
modated. Evolvability deals with changes to the architecture itself. The
architecture has to evolve, since not all future needed solutions are incor-
porated now. However, existing applications in the product line still need to
conform to the architecture. Otherwise, the product line cannot be managed

External and internal
variability

Design for
flexibility

Design for
evolvability

11.3 Quality Requirements 223

well and the architecture may deteriorate to a low quality. Evolvability
ensures that the architecture does not change drastically.

An important precondition for evolvability is a clear separation of concerns.
Solutions for certain stable classes of quality requirements should be as
independent as possible from solutions for less stable classes of quality
requirements. Solutions for these latter ones should be as independent from
each other as possible. Mechanisms that help in evolvability are the layering
of the architecture to separate lower and higher level concerns. Other useful
techniques are the use of separate frameworks for separate quality require-
ments, and the introduction of separate architecture views for them. Still,
there is no simple way to measure the evolvability of architectural models.
The degree of evolvability achieved depends on which kinds of adaptations
will occur in the future.

Example 11-2: Evolvability of Lock Control

Evolvability of architectural models cannot be measured easily from
the architectural models. It depends on an appropriate separation of
concerns. Given the separation of concerns depicted in Fig. 11-3, for
instance, the need may arise to separate user control for entering the
building and user control for managing information, since both evolve
differently. Yet, distinguishing too many separate concerns hampers
evolvability, since each adaptation may affect many different con-
cerns.

Separation of
concerns

Open/Close
Sensor
Plug-in

Electronic
Door Lock

Plug-in

Manual
Door Lock

Plug-in

User Control
Plug-in

Lock
Actuator
Plug-in

Authenti-
cation

Manager

User Control
Manager

Lock
Control

Authenti-
cation
Plug-in

Fig. 11-3: Flexibility in lock control

224 11. Domain Design

Maintainability is the quality of being able to resolve changes in applications
in the field. Maintainability is improved by the possibilities to use late-
binding techniques that allow the uploading of new software and the removal
of unwanted software. As the product line evolves, errors are fixed, and sys-
tems in the product line have to be adapted accordingly, resulting in a good
quality for all products in the product line. As the product line grows, main-
tainability must be supported adequately. Many present-day commercial
operating systems have a component infrastructure support to facilitate such
update actions. Maintainability also deals with the ease of finding errors in
running systems. The field support may use a separate field support frame-
work to be able to inspect every running component, and/or to have debug
reports available.

Example 11-3: Maintainability of Lock Control

Maintainability of lock control is related to the conformance to stand-
ards of the architectural texture and the availability of rules dealing
with maintainability in the texture of the architecture. For instance, the
texture may demand that each component provides a maintenance
interface; see Fig. 11-4. This interface allows the internal state of the
component to be read and adapted and to enable logging for actions
with the component. Actual logging is performed by a different com-
ponent. This enables the plug-in of different logging mechanisms for
different purposes. Maintainability is improved if maintenance can be
done remotely through Internet or phone connections. In addition, the
maintainability is facilitated if components can be replaced on the fly
with improved ones. The use of a separate initialisation and recovery
interface for the component allows it to be reset and to initialise an
updated version of it.

Reference architecture evaluation is a quality assurance technique. It uses
scenarios for the above-mentioned product-line-related quality requirements.
Such a scenario is, for instance, the addition of a new application to the port-
folio with more or less different requirements. For software product line
engineering, an assessment of the reference architecture is crucial, at least
for the product-line-related quality requirements. Only an architecture that
supports the quality requirements sufficiently will survive long enough to be
a reference architecture.

Design for
maintainability

Architecture
evaluation

11.4 Commonality and Variability in Design 225

Example 11-4: Evaluation of the Home Automation Architecture

Assessment of the home automation architecture uses the require-
ments in a systematic way to check the architecture. The software pro-
duct line properties discussed above are part of the requirements. Use
cases dealing with these topics have to be identified and prioritised. It
is checked how the architecture behaves under the mentioned use
cases. Such use cases are described in Examples 11-1 to 11-3. They
deal with independent improvements of functionality, addition of new
functionality, and maintenance scenarios.

11.4 Commonality and Variability in Design

A large part of the commonality and variability in the reference architecture
originates from the commonality and variability in requirements. An essen-
tial issue for domain design is to take into account the requirements variabil-
ity in the development of the reference architecture. As the reference
architecture typically cannot realise all requirements to the same extent, a
prioritisation of requirements is necessary. Moreover, domain design has to
add variability for different reasons such as the preparation for future
changes in requirements (see Section 9.7 and Chapter 10 respectively for
details on commonality and variability analysis).

In the following subsections, we elaborate on requirements prioritisation in
software product lines and describe the resulting mapping between require-
ments and design. Finally, we deal with the basic rules for adding variability
in design.

Logging

Maintenance

Initialisation & Recovery

Lock Control

Fig. 11-4: Maintenance support for the lock control component

Realising
requirements
variability

226 11. Domain Design

11.4.1 Requirements Prioritisation
Based on the requirements prioritisation established during domain require-
ments engineering, the architect prioritises the requirements and considers
those with the highest priority first. In software product line engineering, the
design for flexibility, evolvability, and maintainability typically has the
highest priority. This usually results in common decomposition rules and
patterns within the architecture [Buschmann et al. 1996]. For instance, the
decision to use a layered component-based architecture is inspired by these
requirements. When performance is an important common issue, it should
result in common patterns for process creation and interaction, for example,
and in common guidelines for resource usage. When usability is an impor-
tant common requirement, then it is important to have specific subsystems
dealing with the user interaction. Note that these common solutions are
applicable if their issues are important for a large group of applications to be
considered, even if the corresponding requirements involve variability. If
possible, a single design covering low- and high-end requirements for a
single issue improves the effort needed to develop and maintain the applica-
tion.

Example 11-5: Commonality in the Reference Architecture

The home automation reference architecture is layered to differentiate
between ‘basic control’, ‘device control and management’, ‘home
functions’, and ‘integrated functions’. The architecture is component
based. For each of the layers, specific frameworks are present to fix
the variation points and variation mechanisms. Figure 11-3 shows a
framework within the ‘home functions’ layer. It defines a fixed con-
figuration of the components ‘user control’, ‘lock control’, and
‘authentication’. Each of the components has to be specialised by
plug-in components for the different variants. The framework deter-
mines the presence of interfaces and the components carrying them for
the required functionality.

Lower priority requirements have to fit into the structure determined by the
higher priority requirements. This often leads to the introduction of a frame-
work following the already established rules. Consequently, satisfaction of a
requirement is distributed over several places in the framework. For in-
stance, the functionality is distributed over several layers. Often it is the case
that both components and interfaces are needed for satisfying a given
requirement. The initial requirements may have given rise to common, tex-
tural rules to determine the distribution of the requirements over several
components.

High-priority
requirements

Low-priority
requirements

11.4 Commonality and Variability in Design 227

11.4.2 Mapping Between Requirements and Design
There are several reasons why the traceability relationship between require-
ments and architecture is not a simple one-to-one mapping; see Fig. 11-5.
There are even circumstances when a common requirement is related to a
variable architecture asset and vice versa. However, a good architect lets the
traceability relationship be a few-to-few mapping, where “few” is deliber-
ately a vague word, and is certainly dependent on the circumstances. How-
ever, traceability is only usable when it is comprehensible. Reasons for
deferring from a simple one-to-one mapping are:

Interaction of the requirements.
Product line requirements, like flexibility and adaptability.
Technology options.
Availability of development resources (people, tools, etc.).
Preparation for the future.

Requirements variability is an important source of variability in the refer-
ence architecture. Variation in requirements often results in variation in
design and/or realisation. The architect analyses the commonality of the
variation first, reducing the variation to a minimum to ease flexibility and
evolvability. Except for this external variability, originating from variability
in requirements, the design also takes additional internal variability into
account, which is introduced by the technical solution. Differences in quality
requirements may lead to differences in hardware devices or basic software
functionality such as used protocols or data base access. This results in
variation at several places in the software. The commonality is captured in

Few-to-few
mapping

Requirements
Common Artefacts

Variation Points

Variable Artefacts

Reference Architecture
Common Artefacts

Variation Points

Variable Artefacts

Traces

Fig. 11-5: Traceability between common and variable requirements and architecture assets

Influence of
requirements
variability

228 11. Domain Design

the texture and in frameworks. The variation is captured in multiplicities and
plug-in components.

The trace links in Fig. 11-5 document the relation between requirements
variability and variability in the reference architecture as well as between
domain requirements and domain design artefacts. The links enable, for
instance, the estimation of the impact of changes in the course of a change
management process.

Because of the initial design choices on quality requirements, the remaining
variability is often distributed, for instance because several subsystems and
layers are involved. The architect has to avoid duplication of the same
information as far as possible. It is not a good idea to have the parameters of
a single variation point distributed over several places in the application. A
possible solution is to store the parameters at a single place, and let other
parts of the application access this place to get their information.

Example 11-6: Duplication of Variability Information

In the lock control software, several parts need to know the number of
door actuators. The door lock control software needs to know how
many of them are connected to a single door, and have to be actuated
in case of opening it. The ‘actuator control’ component in the ‘device
control and maintenance’ subsystem activates the actuators and regu-
larly checks the correct functioning of them. It needs to know the
number of all actuators and for each of them the port and address to
use to submit opening and closing commands. It may even be the case
that the actuators for both doors and windows are controlled by the
same component. It is not a good idea to have the number of door
actuators for each door stored in the ‘lock actuator plug-in compo-
nent’, and independently have the number and addresses of all actu-
ators stored in the ‘actuator control’ component. It is better to have a
‘lock actuator configuration’ component, storing the number of doors
(and windows) and store the mapping of actuators and their addresses;
see Fig. 11-6. The ‘lock actuator configuration’ component provides
door opening functionality towards the ‘lock actuator plug-in compo-
nent’ that is not interested in the exact number of actuators per door,
only in the number of doors that can be opened. The ‘actuator control’
component needs the number and exact address information, but does
not need the mapping towards actual doors and windows.

Trace
links

Distribution of
variability

11.4 Commonality and Variability in Design 229

11.4.3 Adding Variability in Design
Future changes in technology find their way into architecture variability. In
many cases, it is known several years in advance that certain technology will
become available or change. Often it is clear where the new technology
should fit. The architect introduces variation points for future variants. The
variants are designed only as soon as the technology becomes available.

Example 11-7: Future Technology for Home Automation

Introducing iris scan authentication affects the ‘basic control’ layer
through the introduction of a new driver; see Fig. 11-7. The ‘device
control and management’ layer and the layers above it are adapted at
selected places, which deal with authentication. ‘Integrated functions’
may be unaffected, because they may abstract from the specific
authentication method used.

A main concern of the architecture is to deal with unstable requirements.
This means that it is known or expected that these requirements will change
over time. In discussion with product management and requirements engin-
eers, it should be made clear which new or adapted requirements can be
expected in the shorter or longer term. The architecture has to support future
adoption of these requirements as far as possible. Just as with normal
requirements, the expected priority of the new requirement influences how
much impact the requirement has on the architecture, and whether the archi-
tect should take measures at an early stage to deal with them. For instance,
through the introduction of frameworks and the use of their plug-ins, the
necessary changes are bound to specific locations. Nevertheless, late changes
to the reference architecture cannot be avoided completely.

Lock Actuator
Plug-in

Lock Actuator
Control

Lock Actuator
Configuration

Door
Activation

Window
Activation

Physical
Actuators

Fig. 11-6: Actuator configuration

Internal
variability

Unstable
requirements

230 11. Domain Design

Example 11-8: Expected Requirements Changes in Authorisation

Within the authorisation software, the present systems deal with key
and card locks. It is expected that in future technology will become
available that allows authorisation based upon fingerprints, iris scan or
voice or face recognition. These latter ways of authorising have higher
storage, processing, and bandwidth requirements than what is neces-
sary for the present applications. The architecture may already intro-
duce measures for dealing with this, e.g. separate authorisation
variation points dealing with different algorithms and processing
requirements; see Fig. 11-8.

Integrated Functions

Basic Control
Iris Scan Driver

Device Control and Management
Iris Scan Functions

Home Functions
Authentication Functions

Fig. 11-7: Incorporating iris scan authentication

AuthenticationAuthentication Variability DiagramVariability Diagram

VP

Authenti-
cation

Keypad

V

Keypad
Authentication

Plug-in

Iris

V

…
Iris

Authentication
Plug-in

Authenti-
cation

Manager

Fig. 11-8: Expected future requirements on authentication

11.5 Designing the Reference Architecture 231

There may be several manufacturers producing a similar piece of equipment.
However, they all differ more or less. The differences may be visible to the
clients of the applications, because there are differences in behaviour of the
equipment, which are related to behavioural variability of the application.
However, some of these differences are not visible to the clients. They relate
to the choice of the manufacturer to support a certain protocol, or have dif-
ferent approaches towards ensuring correct functioning, e.g. repeated trig-
gering, or active fault management at the equipment side. It is not always a
wise choice to reduce this supplier variability. This is part of the risk man-
agement of the home control systems provider. Being dependent on a single
manufacturer for a specific piece of equipment can mean that the freedom to
negotiate the price is diminished. Moreover, there is a risk that the manu-
facturer may go out of business, or redesign its own equipment in such a way
that it becomes less useful. The architecture has to take into account this
kind of variability.

Example 11-9: Actuator Variability

The home automation application developer uses eight types of
actuators from five different manufacturers, supporting three proto-
cols. They have four levels of robustness with regard to failure. Only
the latter point is of relevance for the customers. They see this in the
robustness and guaranteed speed of opening a door. The other vari-
ability is hidden in the ‘device control and maintenance’ subsystem,
which has variants for all these kinds of actuators; see Fig. 11-9.

11.5 Designing the Reference Architecture

In this section, we elaborate on the major topics of designing the reference
architecture that are related to variability. In particular, we deal with compo-

Lock Actuator
Control 8

Lock Actuator
P lug-in

Lock Actuator
Control 1

Lock Actuator
Configuration

Door
Activation

Window
Activation

Physical
Actuators

Fig. 11-9: Variability in lock actuator components

Provider
independence

232 11. Domain Design

nent frameworks, the use of application-specific components, the use of
aspects, and the role of the architectural texture.

11.5.1 Use of Component Frameworks
The reference architecture typically consists of a large number of compo-
nents that can be connected through interfaces. Component frameworks
(Definition 6-8) restrict the number of component configurations. If the con-
figuration task is completely left up to application developers without any
restrictions, configurations can be made that are unwanted since they lead to
unusable or badly performing applications. The application developer may
not find the right configuration within reasonable time, because the number
of possibilities is too large.

Components and interfaces are important domain artefacts. A framework
provides a common structure of components and interfaces. At predefined
places, plug-in components may be added. Plug-in components may be
application specific. In cases where many applications use a specific plug-in
component, it may be designed as a reusable domain component as well.

Configurations

Components and
interfaces

Component FrameworkComponent Framework Variability DiagramVariability Diagram

Open/close
Sensor
Plug-in

Electronic
Door Lock

Plug-in

Manual
Door Lock

Plug-in

User Control
Plug-in

Lock
Actuator
Plug-in

Authenti-
cation
Plug-in

Authenti-
cation

Manager

User Control
Manager

Lock
Control

Door
Actuator

VP

Door
Sensor

VP

User
Control

VP

Door
Lock

VP

Authen-
tication

VP

Fig. 11-10: Example of a domain-specific framework for home automation

11.5 Designing the Reference Architecture 233

The reference architecture determines many frameworks to support a diver-
sity of quality requirements. After a framework is chosen, they guide further
design. Each framework demands a number of plug-in components to be
provided. Concerns related to the plug-in components can be designed inde-
pendently. However, if in future a new independent concern arises, there is a
need to adapt the framework, which may be hard to do. This is a drive to
increase the number of plug-in components. On the other hand, if there is a
group of plug-in components that always change together, it is not a good
idea to separate them. Separate realisations cannot profit from each others’
knowledge, which may lead to less development efficiency. This is a drive to
fewer plug-in components.

Example 11-10: Framework Use

Figure 11-10 shows a domain-specific framework for home automa-
tion. It contains a fixed configuration of ‘lock control’, ‘user control
manager’, and ‘authentication manager’ components. In addition, sev-
eral plug-in components are in the diagram to address separate con-
cerns for ‘door lock’, ‘authentication’, ‘user control’, ‘door actuator’,
and ‘door sensor’. This enhances flexibility since realisation can pro-
vide independent solutions for each of these issues. However, it also
restricts future adaptations of the application.
There may be different rules for the use of plug-in components.
Although the ‘authentication plug-in’ component is optional, the ‘user
control plug-in component’ has to be available. This means that it has
to be provided even in cases, not yet conceived, where no user control
is needed, e.g. because it is triggered by a clock, by weather condi-
tions, or by something else in the environment. Of course, even in
these cases, a solution can be found in a default ‘user control plug-in
component’, or a mock-up simulation user control. An even larger
problem occurs when a future design not only needs actuators and
open/close sensors, but for instance also a sensor to measure a dis-
tance in which the door is open.35 This needs a redesign of the frame-
work, where also ‘lock control’ may need adaptation. Since such
applications are not yet envisioned, the framework is not made that
general, since that would hamper present-day realisation.

Not all frameworks are domain-specific. Many frameworks, for more or less
basic functionality, can be acquired externally in the market; see for instance
the collection of frameworks in J2EE [Alur et al. 2003]. An architect
chooses to use such external frameworks in the reference architecture to

35 This distance is measured in a certain way, e.g. an angle or an opening width.

Number of plug-in
components

External
frameworks

234 11. Domain Design

solve common problems. The choice of such a framework speeds up design.
However, it restricts the architecture much more than a domain-specific
framework, since it cannot be adapted at all. Therefore, the use of an exter-
nal framework supports the independent solution of certain concerns from
each other, whereas for other concerns, no support is available, and the
architect has to provide solutions.

11.5.2 Use of Application-Specific Plug-ins
The reference architecture determines what reusable software assets are in
the software product line. This covers not only the commonality over the
applications, but also variants that are chosen often. By using many of these
prepared variants, application engineering can be very efficient. However,
there may be cases where reusable assets are not applicable, e.g. because of
very specific requirements. In that case, the application architect defines
application-specific variants at places where this is allowed by the reference
architecture. The domain architect has to prepare for the possibility of such
application-specific variants.

Example 11-11: Domain- and Application-Specific Components

The requirements have a variation point for the support of different
kinds of door locks. Variants are the distinct door locks, both manual
and different kinds of electronic locks. Consequently, the reference
architecture for home automation also defines one or more variation
points for door locks. If an electronic door lock is chosen, a terminal
and a key database are necessary, each with its own variability. The
simplest way to realise the variation point is to define an interface that
the door lock software has to provide. In this case, the variants have to
be developed for each application separately, and are not part of the
reference architecture. This may put a lot of effort on application
engineering, which hampers mass customisation. Therefore, the
architect defines generic, reusable components that do not
differentiate between the different types of locks. The generic terminal
and database components are optional, but still generic and reusable.
The variants of locks, terminals and databases can be designed inde-
pendently as variant-specific components. By satisfying mass cus-
tomisation requirements, the single variation point in the requirements
is spread over different parts of the architecture.

11.5.3 Use of Aspects
The domain architect introduces aspects [V.d. Linden and Müller 1995] to
recurring problems of realisation, thereby both reducing the effort of realisa-

Plug-in locations for
application-specific

variants

Cross-cutting
concerns

11.5 Designing the Reference Architecture 235

tion, and improving the commonality over the complete design. Aspects
provide solutions for several architectural concerns, such as maintainability.
The texture contains, for instance, realisation guidelines and the rule to sepa-
rate aspects. The architect may require separate interfaces for certain aspects,
to be provided or required by each component. Although this holds for any
architectural concern, it certainly holds for rules regarding variability. A
common treatment of variability eases subsequent application configuration,
since only a few recognised variability-binding mechanisms are used.

Example 11-12: Aspect-Related Interfaces in Home Automation

The architecture requires the provision of interfaces for the following
aspects: enabling a uniform treatment of ‘initialisation & recovery’,
‘self test’, ‘configuration’, and ‘field service’. In addition, it is
required that a component uses specified interfaces for certain other
aspects, for ‘logging’, ‘data access’, ‘error handling’, and ‘process
handling’. In Fig. 11-11 a component is shown with its aspect inter-
faces.

11.5.4 Role of the Architectural Texture
The architectural texture consists of coding rules and general mechanisms
such as styles [Shaw and Garlan 1996] and design patterns [Gamma et al.
1995] to deal with specific situations that may occur during design, realisa-
tion, and coding. Texture determines the common solution for high-priority
requirements and decomposition rules for lower priority requirements. It is
the main set of guidelines used for realisation.

Configuration

Logging

Data Access Process Handling

Field Service

Initialisation & recovery

Self Test

Error Handling

Component

Fig. 11-11: A component decorated with aspect-related interfaces

General
rules

236 11. Domain Design

In the case of software product line engineering, the texture has to be present
within all applications. In particular, this means that the texture is defined
once for all applications, and thus it is a part of the commonality in the
architecture. Textures are also used to provide a common way to deal with
variability. We introduce some commonly used textures for variability.

A framework is part of the texture, since it restricts the variability to using
plug-in components at predefined places. Inside the framework, there may
be widespread use of certain patterns. For instance, in the framework we
have a high-level controller surrounded with specific managers, each con-
trolling a single type of hardware or software device. The specific device is
implemented through a plug-in component. In addition, the use of registra-
tion of the plug-in components is part of the texture.

Example 11-13: Textures for Home Automation

Within the home automation example the texture contains the facade
pattern [Gamma et al. 1995] for providing a single interface at subsys-
tem level. It uses the observer pattern for decoupling user interface
issues from the data. With regard to the quality requirements of
flexibility, evolvability, and maintainability, the texture determines the
use of layers and components, as well as the role of the layers and
which piece of functionality has to be implemented in which layer.
For instance, single-device control has to be done in the ‘device con-
trol and management’ layer; see Example 11-5. In addition, the texture
requires the presence of certain common interfaces in each compo-
nent, such as a maintenance interface, a debug interface, a reset inter-
face, and an initialisation interface.

11.6 Architecture Validation

In this section, we describe the issues for architecture validation that arise
from domain design. The reference architecture is an important asset that
determines the design of many software assets. Because knowledge of the
reference architecture is necessary for the validation, the architect is often
involved in the validation of these assets. In particular, this holds for the
application architectures and the results of domain realisation.

In order to keep the application architecture consistent with the reference
architecture, it has to be validated. This mainly involves checking the struc-
ture and the texture. Only after the application architecture is validated
should it be used to build the application. In that case, ease of integration of
domain assets can be guaranteed.

Texture is part of the
common platform

Frameworks

Validation of
application

architecture

11.6 Architecture Validation 237

Example 11-14: Application Architecture Check

In the home automation case, the domain architect checks whether
newly provided plug-in components meet the structural rules of the
virtual plug-in components provided by the reference architecture.
They should carry the right interfaces, and they should be present in
the right subsystem. Other components should not call the plug-in
components directly. Otherwise, it is difficult to replace the plug-in
components with new ones.

After domain realisation has finished with the design of a component or
interface, the design must be validated for conformance to the architecture.
Both structure and texture should be checked. For instance, the following
checks may be performed:

Do interfaces carry the right functionality to the right level of abstrac-
tion?
Are components and interfaces produced according to texture?
Does each component carry all its interfaces, and no more?
Do components call only the required interfaces, and all of them?

If the asset does not conform to the architecture, problems may occur in
future, both in maintaining the software and in fulfilling all kinds of depend-
ability requirements. In that case, a redesign should be done.

Example 11-15: The Architecture Review of ‘ Simple Lock Control’

After the design of the ‘basic lock control’ component, the architect
checks whether it carries all the interfaces it provides. As designed,
these are the ‘bind authentication’ interface and all interfaces of ‘lock
control’: ‘bind lock’, ‘lock command’, and ‘bind lock actuator’; see
Fig. 11-12. In addition, the component should carry all interfaces
defined by the texture, e.g. for initialisation, field service, or self-test.
Since the open/close sensor is designed later, the component should
not carry related interfaces of ‘lock control’ such as a ‘bind open close
sensor’ interface. Calls to interfaces that are not required should not be
present. The only calls should be to the call-back interfaces of the
plug-in components: ‘lock authentication’, ‘lock actuation’, and ‘lock
command’. Again, the calls to ‘open close status’ are designed later.
In addition, the interface rules in the texture should be obeyed. It
should call, for instance, the specified interfaces for error handling and
logging. Finally, of course, the component is checked to perform the
required functionality, i.e. performing the right actions on its plug-in
components.

Validation of
domain assets

238 11. Domain Design

Only when the architect has accepted the asset may implementation start.
After implementation and unit testing the architect is involved in integration
testing for the first set of applications using the asset. The first set of applica-
tions shows whether the asset indeed behaves as was planned. If this is not
the case, the architect has to adapt the architecture, after which detailed
domain design has to adapt the assets produced. This should be avoided as
much as possible since it usually takes a lot of time and effort. This is
another reason for a thorough acceptance check before implementation.
However, it is often the case that several redesigns are necessary before a
reusable software asset is stable and reusable in many contexts.

11.7 Differences from Single-System Engineering

The domain architect has to provide a reference architecture for the software
product line. This means that:

The reference architecture has to support mass customisation. It defines
common parts of the product line and determines its variability in a
technical sense.

The reference architecture determines which software parts are
reusable. These parts are part of the platform and are reused in the
development of applications.

The reference architecture may be under-specified. Certain variants do
not differ too much, so that it does not make sense to capture them

process handling
error handling

logging
data access

Lock Control Interfaces

Provided Interfaces Required Interfaces

Specific

Generic

bind authentication
bind lock
lock command
bind lock actuator
bind open close sensor

lock authentication
lock actuation

lock command
open close status

initialisation & recovery
self test
field service
configuration

Fig. 11-12: Lock control component interfaces

Integration test
validates architecture

Reference
architecture

Mass
customisation

Reusable
parts

Under-
specification

11.8 Summary 239

completely in the reference architecture. The specifics of these variants
can better be designed during application design.

The domain requirements may conflict with each other, or have
conflicting priorities to be satisfied for different applications. This is
captured in variability of the requirements, and the architecture has to
consider this variability.

The texture in the reference architecture not only captures the com-
monality within a single system, but also defines commonality that is
present within all applications. It is defined once for all applications,
and thus it is a part of the commonality in the architecture. Texture gets
an additional role by providing common ways to deal with variability
issues.

Even more than for normal development, an important task for the
architect is to make the architecture robust and future proof. It should
support the quality requirements of evolvability, flexibility, and main-
tainability. This provides, together with thorough design reviews, a high
level of quality assurance.

11.8 Summary

The architect has to map the domain requirements to technical solutions. The
main result of domain design is the reference architecture, involving vari-
ation points, supporting platform and mass customisation. The reference
architecture has to be flexible, evolvable, and maintainable. Its design incor-
porates the accommodation of future requirements and technology. In par-
ticular, the reference architecture changes over time. The domain architect
has many interactions with neighbouring sub-processes, i.e. domain
requirements engineering and realisation as well as application design.

External variability in the requirements has to be designed into variability in
the architecture. In addition, technical options introduce internal variability,
which has to be incorporated as well. The architects are stakeholders in the
requirements engineering process. They provide feedback on what is easy
and what is more difficult to vary. Similarly, developers providing the reali-
sation inform the architect where adaptability is most needed.

With respect to normal single-system software development, the relationship
to application design is different. Application architects use the reference
architecture to prepare application development. This means that the domain
and application architects together have to find a balance between what is
better done at the domain level and what is done at the application level.

Variability

Texture

Quality

Prospective
design

Variability
in design

Balance between
domain and
application design

240 11. Domain Design

Over time, this balance changes, as solutions applicable for a single applica-
tion may become useful for others as well.

In addition to the normal architecture issues, variability and reuse have to be
solved by the reference architecture. Moreover, the architecture should solve
the quality requirements of variability, flexibility, evolvability, and maintain-
ability. For many other quality requirements the architecture has to provide
solutions that work for a group of applications, not all of which are envi-
sioned.

Quality
requirements

12
Domain

Realisation

In this chapter you will learn:

o About the interrelations of the domain realisation sub-process with the
domain design, domain testing, and application realisation sub-processes.

o About the role of interfaces of components for defining and realising com-
monality and variability.

o How to realise configurability of components.
o About different implementation mechanisms for variability.

Frank van der Linden

242 12. Domain Realisation

12.1 Introduction

The goals of the domain realisation sub-process are to provide the detailed
design and the implementation of reusable software assets, based on the
reference architecture. The reusable software assets are mainly reusable
components and interfaces. However, other artefacts like thread designs,
database tables, protocols, and data streaming formats are also products of
domain realisation. In addition, domain realisation incorporates configur-
ation mechanisms that enable application realisation to select variants and
build an application with the reusable components and interfaces. The sub-
processes and artefacts closely related to the domain realisation sub-process
are highlighted in Fig. 12-1.

The main relations of domain realisation are those with domain design,
domain testing, and application realisation. In Fig. 12-2 the relationships
with the most important neighbouring sub-processes are depicted. In the next
sections, we briefly describe the relationships of domain realisation with
these neighbouring sub-processes.

Goals of domain
realisation

Fig. 12-1: Sub-processes and artefacts related to domain realisation

Interrelations with
other sub-processes

12.1 Introduction 243

12.1.1 Interrelation with Domain Design
Domain design provides the reference architecture, which determines the
structure and texture of the complete software product line, and a selection
of reusable software artefacts that determines which are the reusable parts in
the structure (in Fig. 12-2). Domain realisation designs and implements
the corresponding reusable artefacts.

Domain realisation provides domain design with issues in realising domain
artefacts designed and implemented according to the architecture (in Fig.
12-2). The issues include all kinds of problem reports.

12.1.2 Interrelation with Domain Testing
Domain realisation provides reusable components and interfaces ready for
test to domain testing (in Fig. 12-2). In addition, domain realisation pro-
vides domain testing with interface descriptions, which serve as test refer-
ences for the design of component tests.

Domain testing reports back test results, which state whether the object
under test has passed or failed a test, and problem reports that describe in
which way the object under test has failed. If domain testing detects defects
in interface descriptions, these defects are also reported back to domain
realisation (in Fig. 12-2).

12.1.3 Interrelation with Application Realisation
Domain realisation passes the reusable components and interfaces designed,
implemented, and ready for reuse (i.e. after having passed the tests per-
formed in domain testing) on to application realisation. In addition, applica-
tion realisation needs configuration support to assemble the specific

Domain
Testing

Domain
Realisation

Domain
Design

Application
Realisation

Reference architecture
Reusable software
artefact selection

Reusable components
and interfaces
Interface descriptions

5
Requests for additional /
altered realisation
Realisation artefacts to be
integrated in domain artefacts

Reusable components
and interfaces
Configuration support

Test results
Problem reports
Defects in interface
descriptions

Issues in realising domain
artefacts

3

6

42

1

Fig. 12-2: Information flows between domain realisation and other sub-processes

Defined structure
and texture

Problem
reports

Detailed design
specifications

Test
results

Reusable components
and interfaces

244 12. Domain Realisation

applications (in Fig. 12-2). The configuration support may be automated,
e.g. by providing a configuration management tool.

Application realisation provides feedback through requests for additional
and altered realisation (first bullet of in Fig. 12-2). This involves
functionality or quality that should be provided by the domain artefacts but
is not realised sufficiently well or not realised at all by the reusable compo-
nents. The feedback initiates an evolution of the software product line. The
decision on whether the feedback from application realisation leads to an
adaptation of the domain artefacts and thus to software evolution is made by
domain architects and other stakeholders who decide on the evolution of the
product line. Furthermore, application realisation provides domain realisa-
tion with realisation artefacts which may be incorporated into the product
line (second bullet of in Fig. 12-2). These are designs and implementa-
tions of application-specific components and interfaces which turn out to be
actual needs of the domain. The integration of application artefacts into the
product line usually involves some reengineering as the artefacts are not
realised primarily with reuse in mind.

12.2 Traditional Realisation Activities

The most important realisation activity is to build a working system accord-
ing to the reference architecture. This activity includes the detailed design
and implementation of software artefacts and compiling, linking, and con-
figuring them to executable code. In single-system engineering, the detailed
design determines the internal structure of components and software pack-
ages before they are implemented. In addition, other artefacts like threads,
database tables, protocols, and data streaming formats are the subject of
realisation. However, the realisation of these artefacts does not differ much
from the realisation of components. Therefore we do not treat such realisa-
tion activities separately.

The reference architecture determines the decomposition of an application
into software artefacts, such as components and interfaces. Detailed design
provides designs for each of them, and, after validation, they are implemen-
ted. In many cases, the realisation of different software artefacts is done by
different groups of people, each taking care of some related artefacts. The
following activities belong to realisation:

Interface design: Interfaces are designed in close cooperation with all
developers of components providing or requiring them. This design is a
compromise between the abilities of the components that provide or use
the interface functionality.

Evolution

Detailed design
and implementation

Components
and interfaces

12.3 Realising Interfaces 245

Component design:36 Components are designed to deliver functionality
of the provided interfaces using the functionality of the required inter-
faces.

Interface implementation: After interface design, its implementation is
usually rather straightforward. Its elements have to be declared in a pro-
gramming language file, to be included by the implementation of the
components that provide and require the interface.

Component implementation: After the design of the components, they
are implemented in a programming language. Usually the component
developer performs a unit test before the component is delivered and
used for application configuration.

Compilation: All components have to be compiled into object files.
These object files are linked into working executables during applica-
tion realisation.

12.3 Realising Interfaces

In this section, we elaborate on the detailed design of the interface of a vari-
able component. The same interface is valid for a number of components.
Hence, interfaces deal with common aspects of the components. Variability
makes it necessary, on the one hand, to abstract from the differences in pro-
viding components and, on the other hand, to offer functions that expose
certain information related to variability at the interface, e.g. to determine
the required variant at run-time.

12.3.1 Variable vs. Invariant Interfaces
An interface specifies functionality that is provided by certain components
and required by others. As such, the interface is a contract between provid-
ing and requiring components. Variability is implicit through the independ-
ent abilities of having variability both at the providing component’s side and
at the requiring component’s side. The interface itself is invariant, as both
providing and requiring components have to interpret it in the same way.
The requiring component can only rely on the presence of some variant of
the providing component but without knowing which variant. The introduc-
tion of variants in the interface itself leads to variable choices by the pro-
viding and requiring components which may lead to incompatibilities.

Interfaces may be used to access the variability realised in components. A
provided interface may have functions that adapt internal variant selection.

36 And threads, database tables, protocols, streaming formats, etc.

Effects of
variability

Variability
in interfaces

Accessing
variability

246 12. Domain Realisation

This means that it is possible for the environment to adapt the variant at run-
time. A required interface may be used by a component to enquire about
variability-related information from the environment [V. Ommering et al.
2000].

12.3.2 Interface Elements
The interface provides elements that are abstractions of internal details of the
providing components. These elements may be functions, constants, types,
exceptions, events, and object classes to use or from which to inherit. How-
ever, the developer of the interface should be careful not to provide too
many details of the component (Example 12-1). Otherwise, variation may be
bound too early, ruling out different implementations. On the other hand, the
requiring component needs at least a minimum level of detail before it can
actually use the functionality.

The level of abstraction determines how generic or specific the information
is that is shown at the interface (Example 12-2). If the level of abstraction is
high, the interface can be used for many purposes, but the developers of the
requiring components are in doubt about what is actually going on, and
whether the provided functionality matches the required functionality. If the
level of abstraction is too low, too much irrelevant information is exposed at
the interface. This has to be matched exactly by the providing components.

Level of
interface detail

Specific and
abstract data types

DesignDesign Variability DiagramVariability Diagram

Electronic
Door Lock

Plug-in

Authenti-
cation

Manager

User Control
Manager

VP

Authenti-
cation

Yes

V

VP

Door Lock

Electronic

V

Authenti-
cation
Plug-in

Bind lock

Authorise
access

Authorise

Lock command

Authorise

Lock
ControlKey data

Fig. 12-3: Lock control and authentication interfaces

12.3 Realising Interfaces 247

Example 12-1: Interface Details

In the home automation example, there are several components deal-
ing with lock control and authentication; see Fig. 12-3. The ‘lock con-
trol’ component provides a ‘lock command’ interface to the user
interface. This interface is meant to issue open/close commands. The
commands are transferred to the ‘door lock plug-in’ via the ‘authorise’
interface to determine whether the open/close command is permitted.
The ‘door lock plug-in’ requires a ‘bind lock’ interface at the ‘lock
control plug-in’ to make its ‘authorise’ interface known. In case of
authorisation, the door lock plug-in is an ‘electronic door lock plug-
in’, which also uses the ‘authorise’ interface of the authentication
manager as part of its own authorisation procedure. Authorisation key
data information is passed directly from the ‘user control manager’ to
the ‘authentication manager’, which is available before an authentica-
tion request is issued. The ‘door lock plug-in’ may also use the ‘lock
command’ interface in case of a lock that has to be closed automatic-
ally after some period has elapsed. The interfaces carry the following
information, and no more:
 ‘Lock command’ interface: open/close commands including infor-

mation to determine the door to be opened or closed.
 ‘Bind lock’ interface: function for binding the ‘authorise’ interface

of a specific door.
 ‘Authorise’ interface: function for getting permission to perform an

(opening or closing) action.
 ‘Key data’ interface: function to pass through authentication key

data.

In certain cases, a low level of abstraction cannot be avoided. Then, a simple
data type such as a byte stream is transferred between two components. This
may be the case if all kinds of objects are transferred, e.g. to and from an
object-oriented database. This works if both sides of the interface have the
same understanding of the meaning of the byte stream. They share the same
data dictionary, and are thus able to interpret the information transferred in
the byte stream. An exchange of such a data dictionary may be the first step
before the actual data exchange is done. During the design of both compo-
nents, it has to be clear which kinds of data dictionaries may be transferred.
New dictionaries often result in new designs of the components using them,
or they cannot produce or transcribe the received data completely.

Low-level
abstractions

248 12. Domain Realisation

Example 12-2: Interface Abstraction

We reconsider the ‘key data’ interface from Example 12-1. The
authentication information has to be passed through. This information
is the kind of information provided by the user interface. Making it
too precise in the interface, e.g. that it shall be an integer, is too low a
level of abstraction, and may block future, perhaps more complex,
authorisation algorithms that use a large amount of user data. Alterna-
tively, the designer may give a lot of freedom by defining a byte
stream as the type of an authorisation parameter. Such an interchange
format is too high an abstraction level to be able to test adequately the
components carrying the interface as all kinds of data can be repre-
sented as byte streams. To avoid both too high and too low levels of
abstraction, it is better to use an authorisation information type or
class that may be specialised for different cases of authorisation.

There may be interfaces that are provided by many components. This holds
for instance for the aspect-related interfaces. Such an interface has to be very
generic. Otherwise, it cannot be provided by each component. The types in
these interfaces have to be at a low level of abstraction. Byte streams and
data dictionaries may be necessary to transfer complex data. Similar restric-
tions on the level of detail hold for interfaces called by many components,
e.g. an interface for logging actions.

12.4 Realising Variable Components

The variability of the product line eventually has to be realised in terms of
reusable components. In order to enable reuse, domain realisation develops
high-quality components that provide the required variability.

12.4.1 Quality of a Component
Reusable domain components are used in many applications. For their
design, this means that special attention is given to their robustness. The
usage context of a component is not known at development time. Thus, only
assumptions can be made that are justified by the required and provided
interfaces. Robustness means that the component interacts correctly in many
circumstances, independent of resource usage and the order and timing
between calls. This does not mean that a component must be designed to
perform the called function under any circumstances. An appropriate error
message may be returned in cases in which the component is not able to
fulfil a request. However, this means that such behaviour is already declared
in the interface.

Interfaces for
many components

Robustness

12.4 Realising Variable Components 249

The provided interfaces determine the functionality of a component. The
functions, types, and classes are all provided in the way that is declared in
the interface. No additional restrictions may be put on them, such as a calling
order, or limiting re-entrance conditions. Parts of the provided interface typ-
ically also occur in the required interface of a component and thus can be
used directly by the component. A component may only use external func-
tionality that is made available through required interfaces.

12.4.2 Distributing Variability over Components
Component design is constrained by the interfaces provided and required.
The reference architecture determines most of the variability. Variability
occurs mainly through different configurations. Domain realisation has to
provide several variants for a single component having the same interfaces.
In many cases, several variants of the component are realised, where each of
them combines certain variants. A balance has to be found between the effort
for building separate components and the ease of understanding of the vari-
ability internal to the components. The two extreme choices are usually
avoided since both take too much effort to build:

A single component containing all variants may incorporate too much
variability internally, which increases internal complexity and is there-
fore difficult to realise. This only works if the variability is limited.

Having a separate component for each variant introduces a large num-
ber of components, which require much development and maintenance
effort. Again, this only works if the variability is limited.

Example 12-3: Variable Components for Home Automation

In the home automation example, several ‘door lock plug-in’ compo-
nents are needed. Each of them implements different door lock behav-
iour. Realisation decides to provide six variants, each with its internal
variability; see Fig. 12-4. They are separated by having ‘auto close’ or
not, and independent from this by having a lock that is ‘manual’,
‘electronic without authentication’, or ‘electronic with authentication’.
The plug-in components with authentication have variability related to
the authentication functionality. Those with auto close have variability
with respect to the parameters that are necessary to close the door
automatically, such as delay times and speed. The product line may
additionally contain more complex plug-in components, but these are
designed to be application specific.

Interfaces determine
functionality

Complexity and
development effort

All variants in
one component

A component
for each variant

250 12. Domain Realisation

12.5 Binding Time of Variability

Implementation is the final step of domain realisation. In this step the actual
coding is done, based on the design of the components and their interfaces.
Architectural texture, e.g. coding standards, has to be obeyed. Since there are
many ways of realising variability, it is important that the architecture pro-
vides clear guidelines on what to do under which circumstances. We provide
a brief overview of the basic principles of implementing variability.

The components and interfaces are implemented in program files. These files
are configured and combined in applications in several steps:

Compilation leads to object files.

Linking leads to executables and DLLs (Dynamic-Link Libraries).

Loading brings several executables and dynamic link libraries together
in the same system.

For a more detailed description of the different options for the binding time,
the consequences for flexibility, and other concerns, see [Coplien 1998].

The realisation defines different binding times of variability. Different
mechanisms are used to bind variants before, during, or after each step. Such

Door Lock Plug-insDoor Lock Plug-ins Variability DiagramVariability Diagram

VP

Door Lock

Electronic

V

Authorise

Bind lockAuthorise

Electronic
Authentication

Bind lockAuthorise

Electronic

Bind lockAuthorise

Manual
Lock command

Bind lockAuthorise

Manual
Auto Close

Authorise

Bind lockAuthorise

Lock command

Electronic
Authentication

Auto Close

Lock command

Bind lockAuthorise

Electronic
Auto Close

Manual

V

VP

Authentication

Yes

V

No

V

requires_vp-v

VP

Auto Close

Yes

V

No

V

Fig. 12-4: Six reusable door lock plug-in components

Implementing
variability

Configuration
steps

Binding
mechanisms

12.5 Binding Time of Variability 251

mechanisms have to provide the appropriate means to locate variants and to
determine which variants have to be bound. The choice of binding time and
the supporting mechanism is independent of variability modelling. It is a
consequence of decisions made during design and realisation. Demands for
flexibility and the support of tools allow late binding times or even the use of
variable binding times [V. Ommering 2004]. The exact technology at hand
and the competing requests for comprehensibility and flexibility lead to spe-
cific choices of binding mechanisms. As a consequence, these are issues to
be solved in design. The mechanisms that have to be used are dictated by the
architectural texture. Some exemplary configuration mechanisms are those
described in the following subsections.

12.5.1 Before Compilation
Automatic code generation is a technique that generates parts of the code
automatically, based on some design model and/or on parameter lists. Part of
the components is not programmed in the traditional way, but produced by a
code generator. Variants are selected by giving values to the available
parameters. Examples of such approaches are domain-specific languages
[Batory et al. 2004], generative programming [Czarnecki and Eisenecker
2000], and model-driven architecture [Kleppe et al. 2003].

Aspect-oriented programming is a technique where different views of the
code, so-called aspects, get their own implementation [Kiczales et al. 1997].
Prior to the actual compilation the different aspects are weaved together into
a single piece of code dealing with the different aspects. Each aspect may
have its own variability. Choosing a variant for an aspect leads to a variant
of weaved code.

There are other realisation approaches that are well suited for product line
engineering. Atkinson describes a method called KobrA which supports a
model-driven UML-based representation of components and a product-line-
based approach to their development and evolution [Atkinson 2001]. The
representation is implementation independent and uses a simple and ortho-
gonal feature set so that feature overload is avoided and the most appropriate
kind of implementation method can be used.

The “Software Factories” described in [Greenfield et al. 2004] are also an
approach to model-driven development. They apply domain-specific lan-
guages and the Extensible Markup Language (XML) to describe their
models.

Code
generation

Aspect-oriented
programming

Model-driven
approaches

252 12. Domain Realisation

12.5.2 At Compile Time
Before compilation, the compiler reads one or more files containing macro
definitions. A macro can be any fragment of program code and thus be used
to realise a variation point. The defined code fragments correspond to the
variants of this variation point. The macros are expanded to their definition
at every occurrence in the code. Moreover, IFDEF statements may guard
certain pieces of code; depending on the presence of a definition of the
macro, a piece of code will or will not be compiled. Thus, generation of code
is dependent on the definition of the macro. It is a very generic mechanism,
which may become very complex, since the IFDEF statement can govern
any piece of code, and the consequences of using it cannot always be deter-
mined easily, especially when IFDEFs are nested. The advantage of using
pre-compiler macros is the code efficiency obtained. Configuration takes
place before actual compilation. Code that is not useful for a specific appli-
cation is not present. The complexity can be managed if the macro usage is
regulated by architecture rules, determining which macros are admissible,
what their meaning is, and where and how they have to be applied in the
code.

Conditional compilation is a similar mechanism to pre-compiler macros. In
this case the macro definitions are not defined in a file, but given as
parameters to the compiler command. The advantages and drawbacks are
similar to the pre-compiler macros.

12.5.3 At Link Time
The makefile is an executable file that is able to perform a sequence of
compilations and linkages. Depending on the makefile parameters, different
sets of compilations and linkages are performed. Variation points can be
realised by the parameters provided to the make command which executes
the makefile. The selection of variants is realised by the different sequences
of the makefile that are executed based on these parameters. For instance,
depending on the makefile parameters, different compiler parameters are
used, and/or different macro files are included. In this case configuration is
performed before actual compilation. However, the mechanism can also be
used to select different configurations of variable binary components. The
makefile determines a sequence of dependencies, and is usually very diffi-
cult to read. Therefore, architecture rules are necessary to limit its use.
Moreover, it is recommended to use makefile generator tools, to generate the
makefiles from more comprehensible configuration notations.

Pre-compiler
macros

Conditional
compilation

Makefiles

12.6 Realising Configurability 253

12.5.4 At Load Time
A configuration file contains a list of files that have to be loaded together.
The set of files in the selection forms an executable system. The configur-
ation file may have variable content in order to realise different variants of a
variation point. The configuration file uses the run-time system to locate and
initiate all files that should be loaded. This mechanism is useful for produc-
ing systems consisting of variable binary component configurations. Usually
architecture rules are necessary to provide each executable with the right
mechanisms to enable its localisation, initialisation, and linkage to the
remainder of the system.

12.5.5 At Run-Time
The target machine may host a central registry, in which each compiled com-
ponent registers its interfaces together with their access points within the
component. If at run-time a certain component needs another component
carrying a certain interface, it can be found through the registry. No separate
configuration files are necessary, each component should just know which
interfaces it needs, and from which kinds of components. After the binary
components are loaded, an initialisation mechanism makes them known to
the registry. Components carrying the same interface may realise variants of
the same variation point.

12.6 Realising Configurability

During application realisation, variability in components is bound. Domain
realisation has to prepare for this. The component designer determines a col-
lection of configuration parameters to be able to select the right component
variant (Example 12-4). Many mechanisms can be used to deal with config-
uration parameters. Configuration mechanisms such as compiler parameters,
macros, and parameter files are discussed in Section 12.5. Alternatively,
certain languages enable components to be parameterised, either through a
parameter list, or through a separate file with component parameters. Part or
all of the parameters can be exposed over interfaces towards other compo-
nents, which may use the parameter values to determine their internal vari-
ants, or alternatively may set them to certain values, depending on their own
parameter values [V. Ommering et al. 2000].

Because there are many parameters that belong to a single application, the
parameters must be related to the variation points and variants in the vari-
ability model. This is crucial for the selection of the right variants. A vari-
ation point may have an impact within several components, and the selection
and configuration of components is based on the given variants.

Configuration
files

Registry

Configuration
parameters

Variability
model

254 12. Domain Realisation

A component is configuration independent when it does not need much of its
environment in order to work correctly. The level of configuration independ-
ence of a component or interface is dependent on the role it plays in the
reference architecture. This means that it should be designed in such a way
that it provides precisely the functionality specified in its provided interfaces
and use precisely what is specified in its required interfaces. It should not put
any additional restrictions on the functions that can be called through its
provided interface. The component designer should not rely on presently
available implementations of its required interfaces, e.g. that results are pres-
ently always sorted, while this is not specified in the interface itself. New
implementations may not sort the results. Knowledge of the role of the com-
ponent in the product line may reduce the effort to make a component more
or less dependent on the configuration, while it still is robust.

Two important aspects support configuration independence: level of detail
and level of abstraction. The level of detail relates to the granularity of the
functions exposed at the interface. The level of abstraction relates to the data
types exposed at the interface; see Section 12.3.2.

Example 12-4: Configuration Variability

The selection of the door lock plug-in components of Fig. 12-4 is
related to several parameters. First, there are parameters that select the
right component to use:
 Bool: Door_lock_electronic
 Bool: Door_authentication
 Bool: Auto_close

Next, there are parameters that govern the internal variability of cer-
tain of these components:
 String: Authentication_algorithm, for selecting the authentication

algorithm.
 Int: Auto_close_delay, for selecting the delay before auto close

takes effect.
The five configuration parameters may also be necessary for selecting
variants in other components as well. In particular, they are used by
the ‘lock control’ component (Fig. 12-3). It is the case that all these
components use the same parameters, and that their value is defined
only once.

Configuration
independence

Level of detail
and abstraction

12.8 Summary 255

12.7 Differences from Single-System Engineering

Domain realisation provides a coherent collection of reusable software arte-
facts. This means that:

Domain realisation does not provide a complete application. Therefore,
domain realisation is not able to build an executable. Instead, domain
realisation provides mechanisms to application realisation in order to
configure the domain realisation results with the results of application
realisation into executables.

Interfaces have to be designed carefully with the appropriate level of
detail and the appropriate level of abstraction to be usable in many
applications. Too much detail or too low a level of abstraction restricts
the providing components too much. Too low a level of detail or too
high a level of abstraction makes it too generic for the requiring compo-
nents to do something useful.

Configuration management is an activity that is more important for
domain engineering than for single-system development. At any
moment, there are applications that use different versions of reusable
components. For maintenance purposes, it is crucial to know which ver-
sion of any component and interface is used in which application.

Software artefacts have to incorporate variability. Software artefacts
have variation points and variants. Domain realisation has to provide
mechanisms to select the variants before the domain realisation results
are integrated into an application.

The components and interfaces are more robust than what is required
for single-system development. Reusable components have to be con-
figuration independent to ensure that they can be used in different
applications with different variability bindings.

12.8 Summary

Domain realisation deals with the design and implementation of reusable
components and interfaces. In particular, the design of interfaces is crucial,
since they are the basis for architectural variability based upon configuration
variants. As different components provide or require a single interface, there
may be many stakeholders in the component design, having their own inter-
est in moving the level of abstraction. Reusable components should only use
functionality that is presented by their required interfaces and they should
provide exactly what is declared by their provided interfaces.

No executable

Interface
design

Variability in
time and space

Variable software
artefacts

Quality

Component and
interface design

256 12. Domain Realisation

The component developer has different mechanisms available to implement
the variability of components. The choice is guided by the architectural tex-
ture, thus allowing a high degree of uniformity to be achieved in the imple-
mentation. The variability has to be presented to the application developer in
order to enable the selection of the proper variants. For instance, this can be
done by relating component parameters to the variability model.

The components and interfaces have to be designed for robustness and con-
figuration independence to be reusable. Interface adaptations have to be
reduced to a minimum. Each such adaptation results in many component
adaptations. Components do not always have to be designed from scratch.
Often a component that was originally designed for a single application is
promoted to a domain component. This involves redesign to remove the
dependency of the component configuration in the specific application. In
addition, variability has to be added in order to get the application-specific
components as variants.

Realisation
mechanisms for

variability

Robustness and
configuration
independence

13
Domain
Testing

In this chapter you will learn:

o About the interrelations of the domain testing sub-process with domain
requirements engineering, design, and realisation as well as with application
testing.

o Strategies to accomplish testing in software product line engineering.
o About the embedding of variability in domain test artefacts.

Klaus Pohl
Andreas Reuys

258 13. Domain Testing

13.1 Introduction

The goal of domain testing is to validate the output of the other domain
engineering sub-processes. Our main focus is on the validation of the realisa-
tion artefacts. The derivation of test cases is based on the input from domain
requirements engineering, domain design, and domain realisation. The goal
of domain testing is to establish an efficient overall testing process. This
involves testing early and often what can be tested within the domain engin-
eering process and providing reusable test artefacts. Testing aspects have to
be considered right from the beginning of the development, e.g. to ensure
that requirements and design support testing. For instance, testing requires
that the state of a component can be evaluated at run-time to be able to com-
pare the expected results of an action with the actual results. Consequently,
component interfaces need to be designed to enable the introspection into a
component’s state at run-time. The sub-processes and artefacts closely
related to the domain testing sub-process are highlighted in Fig. 13-1.

The main challenge for domain testing is to deal adequately with both the
separation between domain engineering and application engineering and the

Goals of
domain testing

Fig. 13-1: Sub-processes and artefacts related to domain testing

Variability

13.1 Introduction 259

presence of variability. The variability of the product line and its relation to
domain artefacts are documented in a variability model throughout domain
engineering. In domain testing the variability model is used to derive test
artefacts for the domain artefacts under test.

Variable artefacts pertaining to only one or a few applications are not real-
ised in domain engineering. They are defined during application engineering.
For example, plug-in components that are required only for one specific
application are designed during application engineering (Section 11.5). We
refer to variants for which no realisation is available in domain engineering
as “absent variants” (Section 13.5). The absence of a variant complicates
domain testing, as part of the component interactions cannot be tested easily.

In order to test the interactions between a common component and an absent
variant, a stub can be used. The stub simulates the behaviour of the corres-
ponding plug-in component during integration testing. Yet, stubs have three
major shortcomings. First, the creation of stubs requires considerable effort.
Second, a stub is often no adequate substitute for the plug-in component.
The actual component’s behaviour may be quite different from the stub’s
behaviour and thus may cause errors that do not occur in the integration test
with the stub. Third, the stub itself is a source of errors and must be tested.
Consequently, the interactions of common components with plug-in compo-
nents cannot be regarded as sufficiently tested in domain engineering even if
stubs are used.

In order to achieve the goals of domain testing and avoid the problems
related to the handling of variability, we employ specific software product
line engineering test strategies. These strategies consider both the separation
between domain testing and application testing and the presence of varia-
bility. The activities performed in domain and application testing strongly
depend on the strategy pursued.

The essential interrelations between domain testing and the other domain
engineering sub-processes are shown in Fig. 13-2. The results produced dur-
ing domain requirements engineering are used as input for the domain sys-
tem test. The architecture resulting from the domain design is required for
the domain integration test, and the components produced during domain
realisation are validated in the domain unit test. Moreover, the application
that is finally delivered must be validated. Application testing reuses domain
test artefacts to test specific applications. Test levels, i.e. system test, inte-
gration test, and unit test, are explained in more detail in Section 13.2 along
with other test foundations.

Absence of
realisation

Limited value
of stubs

Product line
test strategies

Interrelations with
other sub-processes

260 13. Domain Testing

13.1.1 Interrelation with Domain Requirements Engineering
The input stemming from domain requirements engineering for domain
testing consists of the domain requirements artefacts and the variability
model (in Fig. 13-2). The domain requirements artefacts contain the
specifications of common and variable domain requirements. The variability
model defines the variability of the software product line. Domain testing
uses the domain requirements artefacts to develop system tests. As the plat-
form merely contains a set of loosely coupled components but no complete
applications, the test engineer can only perform system tests on the parts of
the system that realise common requirements and are not affected by the
variability of the software product line. Thus, strategies are necessary to deal
with the lack of an executable application and the variability in requirements
and components respectively. Part of such a strategy is the use of the vari-
ability model for developing test cases that contain variability themselves
(Chapter 8).

It may be the case that system tests cannot be derived from the requirements,
because the requirements are not clearly stated or there are unwanted
dependencies between the requirements that prevent the creation of tests.
Such requirements defects are reported back to domain requirements engin-
eering (in Fig. 13-2) so that the defects in the requirements artefacts can
be corrected. Consequently, domain testing contributes to the validation of
domain requirements, and thus, to the overall quality assurance of the soft-
ware product line.

Application
Testing

7
Defects in
test artefacts
Test artefacts to
be integrated in
domain artefacts

Domain
test
artefacts

Requirements
defects

Interface
descriptions
Reusable
components and
interfaces

8

Reference
architecture
Reusable
software artefact
selection

Domain
requirements
artefacts
Variability
model

Defects in
design artefacts

Domain
Design

Domain
Requirements
Engineering

Domain
Testing

Domain
Realisation

2 4 6
Test results
Problem reports
Defects in
interface
descriptions

1 3 5

Fig. 13-2: Information flows between domain testing and other sub-processes

Domain requirements
artefacts and

variability model

Feedback about
domain requirements

13.1 Introduction 261

13.1.2 Interrelation with Domain Design
The input from domain design consists of the reference architecture and the
selection of reusable software artefacts (in Fig. 13-2). Integration tests use
the reference architecture as a test reference for validating the interactions
between components. Such interactions are, for example, evident from the
architectural structure and, in particular, from the component frameworks
(Definition 6-8), or from the use cases defined in the domain requirements
engineering sub-process.

Integration tests cannot validate all interactions between the components as
there may be variable components that are not realised during domain engin-
eering. The reusable artefact selection indicates which component realisa-
tions are part of the platform and sets the scope for the domain integration
tests. As stated above, the interactions with components that are realised in
application engineering cannot be sufficiently tested in the domain testing
sub-process. However, it is possible to define reusable test artefacts for such
interactions.

The design of integration test artefacts leads to some kind of validation of
the reference architecture. Defects in domain design artefacts such as incom-
pleteness and ambiguity prevent the definition of test artefacts. They are
reported back to the domain design sub-process (in Fig. 13-2).

13.1.3 Interrelation with Domain Realisation
The input from domain realisation consists of interface descriptions and the
reusable components and interfaces implemented and ready for test (in
Fig. 13-2). Domain testing uses the interface descriptions as a test reference
for the unit test. Again, testing can be performed only for the components
that are implemented within the domain realisation sub-process.

Domain testing provides domain realisation with the test results including
acceptance or rejection as well as the corresponding problem reports (in
Fig. 13-2). Defects in interface descriptions detected in domain testing are
reported back as well. The test results capture which test cases have been
performed and whether the object under test passed or failed the test. The
problem reports capture the observed deviations from the expected behav-
iour, which the object under test should possess according to the test refer-
ence. Defects in interface descriptions hamper test case design and must be
corrected before testing can be completed.

13.1.4 Interrelation with Application Testing
Domain testing provides application testing with reusable test artefacts (in
Fig. 13-2) such as test cases. As domain tests may have to be performed
again in application testing, all test cases, including those already performed

Reference
architecture

Absent
components

Feedback on
reference architecture

Interfaces and
components

Test
results

Reusable test
artefacts

262 13. Domain Testing

in domain testing, are delivered to application testing. Like other domain
artefacts, domain test cases may contain variability. Application testing
binds the variability to obtain test cases for the specific application.

Application testing returns defects in domain test artefacts as well as test
artefacts to be integrated into the domain artefacts (in Fig. 13-2). Test
artefacts are developed in application testing, for instance to test application-
specific features. If application-specific features are integrated in the domain
artefacts, the test artefacts, along with the design and realisation artefacts,
have to be integrated as well.

13.2 Software Testing

In dealing with software testing, the notion of software defects and the
notion of software test levels are essential.

Software testing (Definition 13-1) allows the stakeholders to determine the
quality of the software. It is an essential part of the quality assurance pro-
cess, which also includes reviews of all requirements and design specifi-
cations, code reviews, acceptance procedures, etc.

Definition 13-1: Software Testing

Software testing is the process of uncovering evidence of defects in
software systems and is a necessary part of any quality assurance
process.

[McGregor and Sykes 2001]

Examples 13-1 and 13-2 present two cases of software testing. Testing is
performed before the delivery of an application. It does not include debug-
ging and fixing bugs. The defects detected in testing are reported back to the
development team in charge.

Example 13-1: Software Testing – Positive Case (Release)

Three software testers perform testing for a whole week and find three
defects in the components of the “door & window management” sub-
system. After the defects are corrected, the subsystem is released as
the defects were hard to find and did not impede the use of the soft-
ware components. The testing results give rise to the assumption that
the components are free of serious defects.

Feedback from
application testing

Part of quality
assurance

Testing uncovers the
evidence of defects

13.2 Software Testing 263

Example 13-2: Software Testing - Negative Case (Further Testing)

Three software testers perform testing on the “security & safety man-
agement” subsystem for a week and each tester finds one defect per
hour. The defects are recorded in a protocol and passed on to the
domain realisation team that developed the components. The amount
of defects makes further testing necessary after the detected defects
have been corrected.

13.2.1 Defects
A defect (Definition 13-2) can be interpreted as a difference between a
requirement, which defines the desired behaviour, and its realisation in the
software.37

Definition 13-2: Defect

Defects occur when a software system does not behave as desired or
specified.

Example 13-3: Defect in the User Interface

The specification of the smart home user interface requires that the
icon for lighting control is always visible. Yet, in the implemented
user interface components, there are some dialogs, in which the icon is
hidden behind other elements. This behaviour is a defect as it does not
fulfil the specification.

13.2.2 Test Levels
Techniques and methods for software testing typically distinguish between
different test levels such as system testing, integration testing, and unit test-
ing, see e.g. [Burnstein 2002; McGregor and Sykes 2001; Spillner and Linz
2004]. Before we elaborate on the different test levels, we define the term
test level:

Definition 13-3: Test Level

A test level is defined by the granularity of the items to be tested (test
items) and the requirements used as the test reference.

37 We define the term defect in analogy to [IEEE 1990]. The definition in [IEEE 1990] additionally

distinguishes between error, fault, failure, and defect. We only use the term defect in this book as our
focus is on testing issues that are specific to software product line engineering.

Defect

264 13. Domain Testing

The key terms and their relationships used in the definition are shown in Fig.
13-3. A ‘test’ validates a ‘test item’ with respect to the test reference. The
test reference is called a ‘requirement’ in Fig. 13-3 but, in fact, can be any
kind of specification. For example, a signature (or interface description) can
be used as the test reference to validate a single component. This shows that
the requirement and the specified item are on the same level of development.
In the context of testing these two artefacts determine the test level.

Test Level

Requirement

TestItem

specifies behaviour Test

test reference

validates

Fig. 13-3: The test dependency model

Definition 13-4: Unit Test

The unit test validates the behaviour of a component, method, or class
against its input/output behaviour specified in the corresponding sig-
nature.

Example 13-4: Unit Test Case

A method of the LockActuator class, which is a part of the basic con-
trol subsystem, has the signature “bool unlock(Lock l, Authentication
auth)”. The documentation of the method explains the parameters and
the return value and describes the method’s behaviour. A test case for
the “unlock” method ensures that the initial state of the lock object is
“locked” and the authentication object contains valid authentication
data. Subsequently the test case calls the unlock method, and checks
whether the return value is “true”, i.e. whether the method reports that
unlocking the door succeeded. Finally, the test case checks the internal
state of the lock object to verify that the lock is unlocked.

Test, test item, and
test requirement

13.2 Software Testing 265

The unit test is a test level that is often performed by the programmer of the
unit. The programmer tests each implemented method, procedure, or func-
tion. The test validates the behaviour of the implemented code against its
specification.

Definition 13-5: Integration Test

The integration test validates the behaviour of two or more compo-
nents that together form a configuration specified in the architecture.

The integration test is usually performed on units or components that have
successfully passed the unit test. Therefore, one can assume that the units
behave as specified. Nevertheless, the functionality of the configuration may
deviate from the specified behaviour.

Example 13-5: Integration Test Case

An integration test case of the home security product line checks the
interaction between the ‘authentication plug-in’, the ‘authentication
manager’, and the ‘electronic door lock’ components (Section 6.4).
The test case authenticates a test user against the ‘authentication plug-
in’ component and checks the interaction with the ‘authentication
manager’ component to ensure that the test user is authenticated prop-
erly. Subsequently, the test case requests the ‘electronic door lock’
component to unlock a door and checks the interaction between the
‘electronic door lock’ and the ‘authentication manager’ components to
verify that the ‘authentication manager’ authorises the ‘electronic door
lock’ component to unlock the door.

The system test is performed after the integration test has been successfully
passed (at least partially).

Definition 13-6: System Test

The system test validates the behaviour of a whole system against its
system requirements specification.

The internals of the system are usually not considered during a system test.
The system requirements define the desired behaviour of the system. System
tests validate the implemented system against the specification.

Validation of
 isolated code units

Validation of
interactions

Validation of the
behaviour of a system

266 13. Domain Testing

Example 13-6: System Test Case

A system test case for the home security product line includes a scen-
ario with the following steps: the user approaches the authentication
terminal of the front door and inserts a magnetic card into the card
reader. The terminal checks the data on the magnetic card against the
list of authorised users, acknowledges that the user may enter the
home, and unlocks the front door. The user opens the door, enters the
home, and shuts the door. After 5 seconds the security system locks
the door again.

In practice38 there are even more test levels. The architecture provides layers
or subsystems that can be tested incrementally. Thus, there may be several
incremental integration test levels. Incremental integration testing reduces
complexity since earlier increments have already been tested and can thus be
assumed to be correct during the test of the next increment. Incremental
integration tests do not differ much from normal integration tests. We there-
fore do not consider incremental integration tests in the remainder of this
chapter.

13.3 Domain Testing and Application Testing

Testing is performed in domain and application engineering. Domain testing
deals with loosely coupled, reusable components, whereas application test-
ing deals with complete applications. Both testing processes have to cooper-
ate to reduce complexity and to establish synergies.

Domain testing uncovers the evidence of defects in domain artefacts and
creates reusable test artefacts for application testing (Example 13-7).
Domain testing encompasses the same activities as single-system software
testing but additionally has to deal with variability and the fact that there is
no executable system.

Example 13-7: Domain Testing for Home Automation

In the home automation system, domain testing validates the door
control functionality. The test encompasses functions such as check-
ing the status of a door, opening, and closing a door.

Application testing reuses domain test artefacts to uncover evidence of
defects in the product line applications (Example 13-8). In spite of the tests

38 See [V.d. Linden and Müller 1995] or [Reuys et al. 2004a] for case studies of industrial test approaches

and intermediate test levels.

Incremental
testing

Two test
processes

Defects in
domain artefacts

Defects in
applications

13.4 Testing Variability at Different Test Levels 267

performed in domain testing, each application has to be tested extensively.
Common artefacts may have interdependencies with variable artefacts,
which have to be retested.

Example 13-8: Application Testing in Home Automation

An installed home automation system is tested for a correctly working
door control. All installed doors are tested with respect to the require-
ments specification, which includes status information, open, close,
and automatic close functionality.

Retesting domain artefacts during application testing has some commonal-
ities with regression testing in single-system engineering. The goal of regres-
sion testing is to detect defects that are caused by modifications to the soft-
ware. In regression testing, test cases of older versions of a software product
are reused to test a new software version. Testing only the modified parts of
the software is not sufficient as changes to one part of the software may
cause errors in other parts. An impact analysis is used to determine the sub-
set of test cases to be reexecuted depending on the changes made to the
software. Although regression testing does not offer adequate means to deal
with variability in space, the basic ideas of regression testing can be adapted
to support application testing. For further reading on regression testing, see
e.g. [Binder 1999].

13.4 Testing Variability at Different Test Levels

Variability has an impact on all test levels. Figure 13-4 below shows a part
of the V-model [V-Model 1997; Dröschel and Wiemers 2000; V-Model XT],
which is a commonly used development process in single-system engineer-
ing. The left branch of the “V” shows the different development steps. The
test items, which are defined considering the development artefacts, are
shown in the different test levels on the right branch of the “V”. The grey
bricks at each test level represent common software units or components.
The white bricks indicate variability. The black ellipses indicate test cases
that cover some parts of the specific test item. In the following, we discuss
the impact of product line variability on the different test levels in more
detail.

13.4.1 Domain Unit Test
The techniques used for the domain unit test depend on the realisation of the
variability. If the variability is realised, for example, by IFDEFS (Section
12.5), the unit under test has to be built with each defined variant once and

Regression
tests

Variable test cases
in the V-Model

Local
variability

268 13. Domain Testing

each build is tested as in single-system engineering. The units to be tested
can embed variability. Since this type of variability is local to the test object,
there is typically no problem in performing the unit test during domain
engineering.

Example 13-9: Unit Test for the Electronic Door Locks

The unit test for the electronic door locks tests each unit separately.
One unit containing variability is the authorisation database. The test
checks whether the component is capable of accepting and rejecting
simulated inputs from magnetic card readers, fingerprint scanners, etc.
Therefore, the methods for the variants, e.g. magnet card reader, must
be linked to the unit at first. Second, the methods are tested with valid
and invalid data to validate the unit’s behaviour against its signature.
The test is carried out for each variant separately.

13.4.2 Domain Integration Test
Variability influences components and component interactions in three ways.
Variability may occur within a component, in the way components interact,
or the component itself may realise a variant. Due to variability, it is typi-
cally impossible to test all component interactions during domain testing.
One reason is that not all components that participate in these interactions
are realised during domain realisation (Section 13.1). Even if all the compo-
nents were available, there would still be many optional or alternative inter-
actions. Testing all component pairs and all possible interactions is thus
close to impossible. Existing product line test approaches therefore perform
only the test cases for common interactions and those that contain few vari-
able interactions with already realised components.

Example 13-10: Integration Test for Electronic Door Locks

During integration testing in domain engineering, the units are inte-
grated in pairs. The server is connected to the fingerprint scanner, the
keypad, or the magnetic card reader. More combinations between
these units, e.g. one fingerprint scanner, one keypad, and the server for
both of them, are possible, but in the foreseeable future there will not
be an application with this configuration. Therefore, these combina-
tions are not tested during domain testing.

13.4.3 Domain System Test
The variability relevant for system tests is defined in domain requirements
artefacts. They are the test references for system testing (Fig. 13-4). It is
impossible to perform a complete system test in domain engineering due to

Test of common
interactions

Test of sample
configurations

13.4 Testing Variability at Different Test Levels 269

the presence of variability, and due to the fact that domain engineering does

not deliver a complete system. The variability poses similar problems for the

system test as explained for the integration test. The part of the system tested

by a system test case is typically much larger than the part of the system

tested in an integration test. It is thus difficult to find test cases that do not

include variability. Consequently, system tests cannot be performed on

domain artefacts. To perform a system test a defined configuration of vari-

ants is required. This may be a fictive configuration or an application defined

by product management. Without a configuration, system test case scenarios

can be defined (e.g. with the means provided in Chapter 8), but not executed.

Example 13-11: System Test for the Electronic Door Locks

The system test for the electronic door locks can only be performed on

a particular application. The system test requires one specific config-

uration of fingerprint scanners, keypads, card readers, and one or more

control devices. This configuration is not available during domain

testing. It is defined during application engineering.

Requirements

Engineering

Requirements

Engineering

System

Design

System

Design

ImplementationImplementation

Variable

Part

Variable

Part

Variable

Part

Unit

Test

Integration

Test

System

Test

Test Derivation

Test Derivation

Test Derivation

Test

Cases

Test

Cases

Fig. 13-4: Test levels and their increasing complexity due to variability

270 13. Domain Testing

13.5 Criteria for Product Line Test Strategies

The description of the three test levels in Section 13.4 shows that variability
has a high impact on testing. While unit testing can be performed relatively
well, higher test levels suffer from several problems related to variability.
For example, either variants may be not fully implemented in domain engin-
eering or there may be a huge number of configurations. Finally, there is no
executable system to test.

This impact of variability on the integration and system test stresses the need
for a software product line test strategy. Before we elaborate on possible
strategies, we define five essential criteria for evaluating a product line test
strategy.

13.5.1 Time to Create Test Artefacts
A large part of the testing effort is spent on the creation of test artefacts. Test
artefacts, e.g. test cases, are created in domain engineering as well as in
application engineering. The time to create test artefacts is influenced by the
amount of test artefacts as well as by the difficulty of creating them. Vari-
ability in requirements makes the creation of domain test artefacts a complex
task. This increases the time to create them, but reuse helps to compensate
for the increase in development time. This holds particularly for the planned
reuse of domain test artefacts in application testing.

The time to create test artefacts criterion (see Definition 8-1 for the defini-
tion of “test artefacts”) is the estimation of the overall time required for cre-
ating test artefacts in domain and application testing. The main questions
related to this criterion concern how far the test strategy supports the reuse of
test artefacts, and how far it accelerates the development of test artefacts.

13.5.2 Absent Variants
During domain engineering, some variants might not be realised as they are
developed on demand during application engineering. We call such variants
absent variants since they are not available during domain testing. The abil-
ity to deal with the situation of absent variants is important in domain test-
ing. If techniques or workarounds are defined, the test engineer is able to
perform the integration and system test cases that involve variability at least
partially. This enables the test engineer to test more than just the common
parts during domain testing, which yields a high quality of the product line.

The absent variants criterion evaluates how well a test strategy copes with
absent variants.

Impact of
variability

Overall
effort

First
criterion

Workarounds for
lacking realisation

Second
criterion

13.6 Product Line Test Strategies 271

13.5.3 Early Validation
One important aspect to ensure a high quality of the product line is to per-
form an early validation of development artefacts (by performing reviews,
tests, etc.). This helps to keep the costs for repairing defects low. The costs
rise the later the defects are detected and repaired in the development life
cycle [Davis 1993]. Therefore, the development artefacts, especially the
domain artefacts, should be tested as soon as possible.

The early validation criterion is an indicator for the elapsed time between
the finalisation of an artefact and its validation. The time should be low to
ensure that defects are detected early, preferably in domain testing.

13.5.4 Learning Effort
The separation between domain and application engineering and the pres-
ence of variability lead to an adaptation of the testing process and testing
products, e.g. test cases. A test engineer who is only familiar with single-
system testing has to learn how the software product line test process works
and how to deal with variability. A good strategy makes only few adapta-
tions to the test process and test products, but enable the test engineers to
perform their task in product line engineering.

The learning effort criterion assesses product line test strategies with regard
to the time it takes until a software test engineer is able to perform the test
activities associated with the considered test strategy.

13.5.5 Overhead
Overhead may be caused by producing the same artefact more than once or
by performing additional activities which are not necessary, for instance for
a single-system test process. Modelling variability can be overhead, and
insufficient test artefact reuse can lead to overhead as well.

The overhead criterion evaluates the amount of activities performed and/or
the amount of artefacts produced unnecessarily as the same result could be
achieved with lower effort.

13.6 Product Line Test Strategies

In contrast to single-system engineering, testing activities in product line
engineering have to consider product line variability as well as the differ-
entiation between the two development processes, i.e. domain and applica-
tion engineering. In this section, we define and evaluate four fundamental
test strategies for testing product line artefacts.

Early detection
of defects

Third
criterion

Differences from
single-system testing

Fourth
criterion

Effort caused by
unnecessary activities

Fifth
criterion

272 13. Domain Testing

13.6.1 Brute Force Strategy
The goal of software product line testing is to assure a sufficient quality of
domain artefacts as well as all product line applications. Therefore, a
straightforward idea is to ensure the quality as early and as completely as
possible, which is in line with the early validation criterion. The brute force
strategy aims at assuring the quality of the product line by performing an
extensive domain test for all possible applications (Definition 13-7). This
includes tests at all test levels (unit test, integration test, and system test) for
all possible configurations.

Definition 13-7: Brute Force Strategy (BFS)

Perform all test activities at all test levels and for all possible applica-
tions during domain testing.

As the BFS takes into account all possible applications, no application test-
ing has to be done during application engineering (Fig. 13-5). The inability
to deal with the absence of components implies a longer domain realisation
process that includes the implementation of all components. As the early
validation criterion is fulfilled, the strategy seems quite attractive.

Extensive test of all
configurations

BFS unusable
in practice

All tests in
domain testing

D
om

ai
n

E
ng

in
ee

ri
ng

A
pp

lic
at

io
n

E
ng

in
ee

ri
ng

Domain
Requirements
Engineering

Domain
Realisation

Domain
Testing

Domain
Design

Application
Requirements
Engineering

Application
Realisation

Architecture Components
Tests

Requirements

Product
Management

Application
Design

Requirements Architecture Components

Application 1 – Artefacts incl. Variability Model

Domain Artefacts incl. Variability Model

Application N – Artefacts incl. Variability Model

Fig. 13-5: Brute force strategy (BFS)

13.6 Product Line Test Strategies 273

Nevertheless, it is not usable in practice. The number of possible configur-
ations is by far too large. Example 13-12 shows this for a very small case.
Industrial projects may involve a huge amount of variation points and vari-
ants. The respective number of possible applications prevents the application
of the BFS.

Table 13-1 summarises the evaluation of the BFS. A “+” indicates that the
strategy yields positive results for a criterion, a “-” indicates that the strategy
yields negative results for a criterion, and a “0” indicates that advantages and
disadvantages are almost balanced for a criterion. For the BFS, the time to
create test artefacts criterion is rated with a “-” due to the large amount of
test artefacts that must be created. The learning effort is rated with a “0” as
the BFS requires learning how to deal with different configurations, but
avoids having to learn how to deal with variability in test artefacts. The
inability of the strategy to deal with absent variants leads to a “-” for the
absent variants criterion. Early validation gets a “+” as all tests are per-
formed in domain testing. The overhead is rated with a “-” as most configur-
ations are tested unnecessarily.

Example 13-12: Amount of Possible Configurations

Following the discussion in [Kolb and Muthig 2003], a product line
with only ten variation points, each of which has three possible vari-
ants, leads to 310 = 59,049 possible configurations or applications.
This is an artificial example with independent variation points and
variants, where exactly one variant must be chosen per variation point.
If the variants are optional and the application may be used without a
variant or with up to three variants per variation point, eight possibil-
ities exist per variation point, leading to 810 = 1,073,741,824 possible
applications.

13.6.2 Pure Application Strategy
The opposite strategy to BFS is to neglect domain testing, and to perform
application testing only (Definition 13-8).

Evaluation
results

Table 13-1: Evaluation of the BFS

Evaluation of the Brute Force Strategy

Time to
create

Absent
variants

Early
validation

Learning
effort Overhead

- - + 0 -

274 13. Domain Testing

Definition 13-8: Pure Application Strategy (PAS)

Perform tests only in application engineering. Here, only application-
specific tests are created and performed. No reusable domain test arte-
facts are created during domain testing.

PAS considers only the artefacts used in the actual application (Fig. 13-6).
This approach resembles applying single-system software testing in software
product line engineering. The defects found during application testing are
forwarded to the application engineering team. The development team is
responsible for determining whether a defect is application-specific or per-
tains to the domain artefacts.

The pure application strategy is not suitable for application in practice either,
as it performs poorly in two of the criteria. The first problem is the high
overhead. The test artefacts for the applications are developed all over again
for each application. Such a product line test strategy does not have an
advantage over single-system testing. Consequently, the PAS causes a
bottleneck in the software product line engineering process. Whereas all
development stages are able to assemble the reusable artefacts, testing has to
start from scratch for each application.

No domain
testing

High overhead

All tests in
application testing

D
om

ai
n

E
ng

in
ee

ri
ng

A
pp

lic
at

io
n

E
ng

in
ee

ri
ng

Domain
Requirements
Engineering

Domain
Realisation

Domain
Design

Application
Requirements
Engineering

Application
Realisation

Application
Testing

Architecture ComponentsRequirements

Product
Management

Application
Design

Requirements Architecture Components Tests

Application 1 – Artefacts incl. Variability Model

Domain Artefacts incl. Variability Model

Application N – Artefacts incl. Variability Model

Fig. 13-6: Pure application strategy (PAS)

13.6 Product Line Test Strategies 275

The second problem with the PAS is the lacking early validation. Nothing is
tested until the first application is built. The stakeholders cannot trust the
quality of the platform and it may take a lot of time and money to repair the
defects.

We summarise the evaluation results of the PAS in Table 13-2. The time to
create test artefacts is rated with a “0” as it is roughly equal to the time
needed in single-system engineering. As test engineers neither have to deal
with absent variants nor with variability, the absent variants criterion and the
learning effort are both rated with a “+”. Early validation is rated with a “-”
since no tests are performed in domain testing. The overhead is rated with a
“-” since similar test cases have to be defined for each application.

13.6.3 Sample Application Strategy
The following strategy achieves an early validation at reasonable cost.
Instead of testing all applications like in the BFS, in this strategy only one or
a few sample applications39 are assembled and tested (Definition 13-9).

Definition 13-9: Sample Application Strategy (SAS)

Use one or a few sample applications to test the domain artefacts.
Application testing is still required for each application.

The SAS aims at ensuring a sufficient quality of the domain artefacts. With
the sample application, a representative system is created that can be tested.
This sample application has one particular configuration. All common com-
ponents are tested in the context of the selected variants of the sample appli-
cation(s). Furthermore, the selected variants themselves are tested. Since not
all possible applications are tested, application testing has to be performed,
too. This is depicted in the right part of Fig. 13-7. The application may reuse
some test artefacts produced in domain testing.

39 The sample applications may stem from product management or from development. The development

team may choose a configuration that is easy to realise in order to speed up testing if product
management does not define suitable samples.

No early
validation

Evaluation
results

Table 13-2: Evaluation of the PAS

Evaluation of the Pure Application Strategy

Time to
create

Absent
variants

Early
validation

Learning
effort Overhead

0 + - + -

Sample
applications

276 13. Domain Testing

One speciality of the SAS is that the sample application not only enables an
early validation of the domain artefacts, but also enables the validation of the
commonalities of the whole product line (Example 13-13). Moreover the
definition of the sample applications ensures that the derivation of an appli-
cation is possible and that the binding mechanisms work correctly.

The evaluation of the SAS regarding the criteria is as follows. The time to
create test artefacts in domain engineering is as high as in single-system
engineering as the sample application is tested in a single-system-like
manner. However, it is possible to reuse test artefacts during application
engineering, e.g. for the common parts or variants. This reuse reduces the
time to create the test artefacts in application engineering. However, as the
artefacts have been developed specifically for the sample application, they
have to be adapted. The SAS thus gets an average rating for the time to
create test artefacts criterion.

The ability to handle absent variants is not directly addressed by this strat-
egy. The problem of absent variants is avoided by creating a sample applica-
tion. This leads to a good evaluation result for the absent variant criterion.
Early validation is achieved with this strategy, as the common parts and even
some typical variants can be tested during domain engineering.

Validation of
common artefacts

Effort as in single-
system engineering

Absent variants,
early validation

Test of sample
applications

D
om

ai
n

E
ng

in
ee

ri
ng

A
pp

lic
at

io
n

E
ng

in
ee

ri
ng

Domain
Requirements
Engineering

Domain
Realisation

Domain TestingDomain
Design

Application
Requirements
Engineering

Application
Realisation

Application
Testing

Architecture ComponentsRequirements

Product
Management

Application
Design

Sample
Building

Sample
Testing

Sample 2
Sample 1

Tests

Requirements Architecture Components Tests

Application 1 – Artefacts incl. Variability Model

Domain Artefacts incl. Variability Model

Application N – Artefacts incl. Variability Model

Fig. 13-7: Sample application strategy (SAS)

13.6 Product Line Test Strategies 277

The learning effort criterion is also positive for this strategy since the test
products and activities are very similar to the products and activities in
single-system engineering. Variability does not occur in the documents the
test engineer receives for a sample application.

The SAS has a negative evaluation for the overhead criterion. This is due to
the fact that one or more complete applications have to be realised to enable
testing. Nevertheless, realising the applications proves that applications can
be derived from the platform. Therefore the overhead is costly, but may be
worth doing.

Table 13-3 depicts the evaluation results of the SAS. This is only a rough
evaluation as the values depend on the detailed method that is used to realise
the strategy, e.g. on the number of applications used as samples. If the num-
ber of applications is high, the time for creating the test artefacts increases,
leading to a “-” for the time to create test artefacts criterion.

Example 13-13: SAS for the Home Automation System

The sample application for the home automation system includes the
following configuration of realised variants. The application is
equipped with automatic window control, central heating control, and
central air-conditioning control. For each room, camera surveillance is
installed, and for each door, a lock secured by a magnetic card reader
is present. Based on the configuration, the quality of the product line
is validated. The sample application is tested at the different test
levels. The domain integration test validates the interactions of the
components. The domain system test validates the meaningful behav-
iour of the entire application.

13.6.4 Commonality and Reuse Strategy
The fourth strategy distributes test activities between domain engineering
and application engineering and facilitates systematic reuse of test artefacts
(Definition 13-10). Available domain artefacts are tested during domain
engineering. This usually applies to common artefacts, as depicted by the left
arrow in domain testing in Fig. 13-8.

Low learning
effort

High
overhead

Evaluation
results

Table 13-3: Evaluation of the SAS

Evaluation of the Sample Application Strategy

Time to
create

Absent
variants

Early
validation

Learning
effort Overhead

0 + + + -

Domain testing and
application testing

278 13. Domain Testing

Definition 13-10: Commonality and Reuse Strategy (CRS)

Domain testing aims at testing common parts and preparing test arte-
facts for variable parts. Application testing aims at reusing the test
artefacts for common parts and reusing the predefined, variable
domain test artefacts to test specific applications.

In addition, domain testing prepares test artefacts for test items that contain
variability. Consequently, the test artefacts themselves must include variabil-
ity definitions. Test artefacts that contain variability are added to the domain
artefacts (depicted by the right domain testing arrow in Fig. 13-8) thus estab-
lishing a test artefact repository.

An application is defined during application engineering. At this stage, the
configuration of variants for the application is known (Example 13-14). In
application testing, the test of the common artefacts is conducted with the
test artefacts created during domain testing. This ensures that the common
parts work correctly for the specific application with its specific plug-ins.
For the variable parts, the corresponding test artefacts from the test artefact
repository are adapted according to the binding of the variability and then
used to perform the tests.

Reusable test
artefacts

Test artefact reuse in
application testing

Reuse of tests in
application testing

D
om

ai
n

E
ng

in
ee

ri
ng

A
pp

lic
at

io
n

E
ng

in
ee

ri
ng

Domain
Requirements
Engineering

Domain
Realisation

Domain
Design

Application
Requirements
Engineering

Application
Realisation

Architecture ComponentsRequirements

Product
Management

Application
Design

Tests

Domain
Testing

Application
Testing

Requirements Architecture Components Tests

Application 1 – Artefacts incl. Variability Model

Domain Artefacts incl. Variability Model

Application N – Artefacts incl. Variability Model

Fig. 13-8: Commonality and reuse strategy (CRS)

13.6 Product Line Test Strategies 279

The evaluation of the CRS with respect to the time to create test artefacts
criterion is positive. The inclusion of variability in the test artefacts signifi-
cantly reduces the amount of test cases that must be created from scratch in
application testing. For instance, a domain test artefact may define how a
variation point with all its variants has to be tested. In application testing, the
test artefacts can be reused by binding the appropriate variants for the appli-
cation artefacts under test.

The handling of absent variants is excellent as variability is included in the
test artefacts. The evaluation of this criterion is thus a “+”. Concerning the
early validation criterion, the CRS has a shortcoming since test cases can be
executed only after the variability has been bound, i.e. in application engin-
eering. However, test cases that affect only commonalities can be executed
during domain testing. We rate the early validation criterion with a “0” as
the development of reusable test artefacts involves at least a partial valida-
tion of the test references used (domain requirements, reference architecture,
and interface descriptions).

The learning effort is higher than for the other three strategies as it takes
some time to teach test engineers how to specify test artefacts that contain
variability. Nevertheless, as test artefacts for variants preserve the variabil-
ity, they can be reused in all applications. Therefore, no overhead is pro-
duced during domain engineering. Table 13-4 gives a rough summary of the
strategy regarding the criteria.

Example 13-14: CRS for the Home Automation System

During domain testing, tests are performed to ensure that the door
locking hardware can interact with the server and that the windows
can be opened and closed automatically. Reusable test cases are
developed to enable the creation of application-specific test cases for
the interaction of the three locking mechanisms in specific homes.
Application testing must perform tests to ensure that the home auto-
mation system has a sufficient quality. The home security subsystem
must work correctly in the given configuration, i.e. it must not contain
defects. When there are two fingerprint scanners and one keypad
interacting with one server in a specific home automation system,
application testing must test the interaction of these components in the
given configuration.

Time to create test
artefacts low

Absent variants and
early validation

Learning effort,
low overhead

280 13. Domain Testing

13.6.5 Conclusions for Strategy Selection
As two of the strategies have obvious shortcomings (BFS and PAS) we do
not recommend their use. The two remaining strategies, namely the sample
application strategy (SAS) and the commonality and reuse strategy (CRS)
are reasonable approaches. This leads to the question of when to use which
strategy.

The SAS performs very well in all criteria except the time and the overhead
criteria. The overall time to create test artefacts is unsatisfactory as the SAS
does not produce variable test artefacts and does not establish a systematic
reuse of domain artefacts. The overhead stems from the additional effort to
create the sample application. When a software product line is initiated, in
many cases, the management already has a market or one or more customers
in mind. In this case, the intended applications for the market or the custom-
ers can be used as samples so that there actually is no overhead.

The overhead is the main reason for using the CRS in any other case. No
overhead is produced with this strategy. Furthermore, test artefacts for all
possible combinations of variants can be derived from the test artefacts that
include variability.

However, if one combines the two strategies, the strengths of both strategies
can be retained. The composite strategy enforces the creation of reusable test
artefacts in domain testing and the reuse of these artefacts in application
testing. This leads to a good rating for the time criterion. In addition, an early
validation is performed with fragments of a sample application. This means
that no complete application is built, but only parts that are large enough to
perform the tests. This indeed implies a minor overhead, but the overhead is
significantly lower than the overhead of the SAS. We provide a summary of
the strategies in Table 13-5.

Table 13-4: Evaluation of the CRS

Evaluation of the CRS strategy

Time to
create

Absent
variants

Early
validation

Learning
effort Overhead

+ + 0 - +

BFS and PAS
unusable

Overhead reduction
for the SAS

CRS preserves
variability

Composite strategy
based on SAS/CRS

13.7 Domain Test Activities 281

13.7 Domain Test Activities

The software test process typically consists of the five activities of test plan-
ning, test specification, test execution, test recording, and test completion,
see e.g. [Spillner and Linz 2004; British Standards 1998]. In domain testing,
these activities cannot be performed directly, since variability hampers test-
ing, for instance due to the absence of variants.

The application of the SAS does not influence the traditional test process – it
is just one execution of application engineering during domain testing.
However, the CRS results in a test process that includes the variability
defined in the orthogonal variability model in the test artefacts. Consequent-
ly, the CRS affects all activities dealing with the development of test arte-
facts for common and variable components. In the following, we briefly
explain the single-system test process and sketch the adaptations required to
realise the CRS.

13.7.1 Domain Test Planning
To perform the test planning activity, the test references, i.e. the specifica-
tions of the test items, must be available. For making a schedule it is import-
ant to know when the specified items become available for testing.

In software product line engineering, test planning is based on domain arte-
facts, i.e. on the domain requirements, the reference architecture, the detailed
design artefacts, and, most notably, the variability model of the product line.
The product roadmap determines the schedule when the product line appli-
cations have to be finished. It is therefore relevant for the testing schedule.

In domain testing, there is no single, executable application to be tested.
Following the SAS, test engineers may specify a sample application, e.g. one

Table 13-5: Strategy summary

 Time to
create

Absent
variants

Early
validation

Learning
effort

Overhead

(BFS) - - + 0 -

(PAS) 0 + - + -

SAS 0 + + + -

CRS + + 0 - +

Combined
SAS/CRS + + + 0 0

Software
test process

CRS changes
test process

Test
references

Domain artefacts
as test references

Sample
application

282 13. Domain Testing

that can be realised with very few, simple application-specific plug-in com-
ponents. Alternatively they may create an application that is specified in the
product roadmap in order to enable testing. This typically requires more
effort, i.e. the entire application engineering process has to be performed, but
reduces the overhead as the created application is not a throwaway product.
Only the sample applications are the testable configurations. Nevertheless,
potentially many more other applications can be built from the common and
variable parts of the platform.

The first step of test planning is to select the test strategy. This may be the
SAS, the CRS, or a composite strategy. Depending on the selected strategy,
the resources are allocated, and the test cases are defined (Example 13-15)
and prioritised. To complete the test planning, the tool support should be
defined.

Example 13-15: Planning the Home Automation Domain Test

The test engineers of a home automation product line plan to follow
the CRS in combination with a small sample application. The unit test
is performed on all components. Additional tests are performed on the
common components. Moreover, a test application is set up to perform
the remaining test cases, which are currently not accounted for by the
test plan. A team is allocated to create reusable test cases.

13.7.2 Domain Test Specification
The test specification activity aims at creating reusable test cases. The test
cases are created in two steps. In the first step, logical test cases are created,
which lack concrete details like data, GUI elements, etc. (Section 8.2). In the
second step, the logical test cases are refined to detailed test cases, where the
missing information is defined.

In domain testing, test cases are created for both common and variable
domain artefacts. Detailed test cases are created only for common artefacts.
The effort of creating detailed test cases (including test case scenarios) for
each possible binding of the product line variability typically is significant
and leads to a high overhead. Nevertheless, logical test cases and generic test
case scenarios can be created that reflect the requirements and design vari-
ability defined in the variability model (we deal with the documentation of
variability in test artefacts in Chapter 8). For details on the derivation of
domain test case scenarios that contain variability, see [Kamsties et al.
2003a; Kamsties et al. 2003b] and [Reuys et al. 2003].

For each test artefact, a traceability link is established to the corresponding
test references. Traceability links between domain test artefacts and the

Test
strategy

Test
cases

Generic test
cases for variants

Traceability

13.8 Differences from Single-System Engineering 283

underlying test references are required to support the reuse of test artefacts in
application testing. For instance, when system test cases are derived from
use cases, each system test case is related to the corresponding use case by a
traceability link. If application test engineers know the requirements that
have been reused for the considered application, they can easily identify the
appropriate domain test cases by following the traceability links between
domain requirements and domain test artefacts. In Chapter 18, we show in
more detail how to exploit the established traceability links.

13.7.3 Domain Test Execution, Recording, and Completion
During test execution, the test cases are applied to the test items. A test pro-
tocol with the test results is created. The protocol includes the test case, the
version number of the object under test, and the test result. Documenting the
test execution in this way makes the tests repeatable and the test results veri-
fiable. During test completion, the test record is analysed and the error
classes and the origins of errors are determined. Finally, a test summary
report (see Sections 8.2 and 8.3) is created.

In domain testing, only the test cases for common domain artefacts and for
the sample applications are executed. Only for those items are detailed test
cases available. The tests not covered by domain test execution are the
responsibility of application testing. Moreover, as stated in Section 13.3, test
cases performed in domain testing may have to be repeated in application
testing.

13.8 Differences from Single-System Engineering

There are two key differences between testing product lines in software pro-
duct line engineering and testing applications in single-system engineering:

Two test processes: domain testing and application testing

The consideration of variability in domain and application testing

The main difficulty of domain testing is that there is no single, executable
configuration of components that can be tested. Hence, appropriate strategies
are necessary to ensure early validation of the product line as well as planned
reuse of test artefacts by application engineering.

Test activities are distributed between domain engineering and application
engineering. To avoid creating test artefacts for each application from
scratch, domain testing provides variable test artefacts. Variability in test
artefacts originates from the variability introduced in requirements, design,
and realisation, but may also take into account additional variability, e.g. in
the execution environment.

Documenting
test results

Common artefacts
and sample
applications

No executable
system

Variability in
test artefacts

284 13. Domain Testing

13.9 Summary

In this chapter we establish the foundation for testing in software product
line engineering. Domain testing is characterised by the need to provide an
early validation of the product line, to avoid a bottleneck in the testing pro-
cess, and to reduce the learning effort for test engineers.

Two strategies are recommended that can also be applied in combination.
The first strategy, the SAS, involves building one or more sample applica-
tions. This enables an early validation of the software product line. In add-
ition, testing can be performed in the same way as in single-system
engineering. The second strategy, the CRS, performs tests for the common
artefacts in domain engineering and provides variable test artefacts for reuse
in application testing. The reuse of these artefacts reduces the effort during
application testing. We elaborate on the effects of the strategies on applica-
tion testing in more detail in Chapter 18.

Product line
test strategies

14
Selecting High-

Level COTS
Components

In this chapter you will learn:

o The key aspects that have to be considered when selecting a commercial off-
the-shelf (COTS) component for a software product line.

o How to select a COTS component for a software product line.
o About the interrelation of the COTS-selection process with the other domain

engineering sub-processes.

Klaus Pohl
Nelufar Ulfat-Bunyadi

286 14. Selecting High-Level COTS Components

14.1 Introduction

In order to select a COTS component, candidate components that are avail-
able in the market or which exist in the organisation have to be evaluated
and ranked according to defined criteria. We distinguish between high- and
low-level component selection. The key discriminator is the fraction of
functionality that a COTS component is supposed to provide with respect to
the overall functionality of the software product line. Low-level components
provide a minor part of the overall functionality and have little influence on
the reference architecture. They are selected during domain realisation. The
focus of this chapter is on the high-level components. Since they provide a
significant fraction of the overall functionality they must be considered in
the design right from the beginning. When we speak about COTS selection
in this book, we refer to the high-level COTS selection process. The sub-
processes and artefacts closely related to high-level COTS selection are
highlighted in Fig. 14-1.

High- and low-
level selection

Fig. 14-1: Sub-processes and artefacts related to COTS selection

14.1 Introduction 287

A COTS component is evaluated and selected either during application
engineering or during domain engineering. Evaluating the component in
application engineering means to consider its integration into only one appli-
cation of the software product line. This kind of evaluation resembles the
single-system engineering case. More important for software product line
engineering is the evaluation and selection of a COTS component within the
domain engineering process. That is, to consider the integration of a COTS
component as a domain artefact into the software product line. Such a com-
ponent must fulfil domain requirements and be integratable into the refer-
ence architecture (Fig. 14-1). In addition, it has to provide variability in
order to be adaptable to different applications.

The high-level COTS selection process is closely interrelated with domain
requirements engineering and domain design. It takes requirements, archi-
tecture, and the variability model as input to find the best-fitting COTS com-
ponent for use as a domain artefact in the product line. In addition to the
identification of strengths and weaknesses of the examined components,
COTS selection may also reveal necessary adaptations of requirements,
architecture, and the variability model [Pohl and Reuys 2001]. Figure 14-2
depicts the main interrelations between the COTS selection process and the
domain requirements engineering and domain design sub-processes.

14.1.1 Interrelation with Domain Requirements Engineering
Domain requirements engineering defines the required component features
(first bullet of in Fig. 14-2) which are considered during the COTS selec-
tion. They define the required functionality and quality that a component
should offer. COTS components usually realise basic requirements or satis-
fiers and rarely provide delighters (Section 9.5.4 classifies requirements into
indifferent requirements, basic requirements, satisfiers, and delighters).

In addition to the requirements artefacts, a component must match the varia-
bility desired for the software product line. Besides the requirements arte-
facts, the required variability is thus the second important input from the
domain requirements engineering process (second bullet of in Fig. 14-2).

COTS selection
for a product line

High-level
COTS process

Domain
Design

COTS
Selection

Domain
Requirements
Engineering

Required component
features
Required variability

Candidate components
Evaluation results
Design flaws

Architecture constraints
Requirements
adaptations

3

42

1

Fig. 14-2: Information flows between high-level COTS selection and other sub-processes

Required
features

Required
variability

288 14. Selecting High-Level COTS Components

As a result of a COTS selection process, adaptations of requirements can be
required (in Fig. 14-2). One reason for such an adaptation is the
identification of functionality or quality offered by a COTS component that
was not considered by the product line, but which will improve the product
line and is thus added as a new feature. Another reason for an adaptation is
the fact that it is quite unlikely for a COTS component to match all the
desired requirements artefacts and/or to comply fully with the desired vari-
ability. Also in this case an adaptation of the requirements or the variability
is required.

14.1.2 Interrelation with Domain Design
The output of COTS selection includes the identified candidate components
(first bullet of in Fig. 14-2). Typically, rankings of the components with
regard to several criteria are provided. A detailed evaluation is conducted
only for components that perform well in a preliminary screening activity.
The evaluation results of each component (second bullet of in Fig. 14-2)
are passed on to domain design. In addition, the analysis of the candidate
components may unearth design flaws (third bullet of in Fig. 14-2) in the
current reference architecture and thus initiate design adaptations.

As the selected COTS has to become an integral part of the reference
architecture, domain design imposes architecture constraints (in Fig. 14-2)
to be considered during COTS selection, such as the architectural styles and
patterns that the component must conform to, compatibility constraints, and
constraints caused by the process structure of the reference architecture.

14.2 The CoVAR Process

CoVAR (Component Selection considering Variability, Architectural Con-
cerns, and Requirements) is a process for selecting high-level COTS compo-
nents during domain design [Pohl and Reuys 2001; Ulfat-Bunyadi et al.
2005]. CoVAR supports COTS component evaluation and the identification
of the most suitable COTS component for a software product line from a
technical point of view. In the final decision for or against some component,
the stakeholders have to consider other aspects such as cost, ROI (Return On
Investment), legal aspects, etc. Such aspects are considered and decided by
product management. CoVAR focuses on the engineering and thus only on
the technical aspects.

Each COTS component has some built-in variability, its so-called provided
variability. One goal of the component selection process is to determine the
component that achieves an adequate fit between required variability and
provided variability.

Requirements
adaptation

Candidate
components,

evaluation results

Architecture
constraints

Focus on
technical aspects

Required vs.
provided variability

14.2 The CoVAR Process 289

A selection process that has to take into account provided and required vari-
ability of a component differs from traditional COTS selection. In order to
investigate a conventional component it is often sufficient to check the
documentation and an evaluation copy of the executable component. When
evaluating a component with regard to its provided variability, several prob-
lems occur that are specific to software product line engineering:

Information regarding the variability provided by a COTS component is
often hidden. In most cases, the documentation of a candidate compo-
nent does not explicitly state all variation points as components today
are usually not developed with the goal in mind that they should
become part of a software product line. Despite this fact, designers and
developers usually have envisioned different usage situations and pre-
pared the component for them. Moreover, there is often a mismatch in
terminology between a customer looking for a component and a sup-
plier offering one.

Conventional information sources are not sufficient. The issues arising
from the insufficient documentation of a component require a deeper
examination of the component itself. The variability implemented in the
component has to be identified. Different mechanisms exist for imple-
menting variability; see Section 12.5. This makes an evaluation diffi-
cult. Depending on the configuration mechanism used, variants are
bound at different times (e.g. before compilation or during linking).
These binding times make it necessary to investigate not only the exe-
cutable component, but also its source code and its compiling and
linking instructions. For example, if the binding time of a variation
point is implementation time, then this variation point cannot be
detected in an executable component. Instead, only the bound variant
can be spotted. Moreover, because of the variability, not all features
exist in parallel in one executable version of the investigated compo-
nent. That is, several configurations of a component must be evaluated
because the provided functionality and quality vary.

The bottom line is that the usual documentation, such as marketing material,
is not sufficient, especially when variability is considered. Thus, besides the
executable evaluation copy of the component, more artefacts such as config-
uration mechanisms and information must be evaluated. The evaluation is
performed in two ways:

1. The artefacts must be checked for the existence of required features,
required variation points, and required variants.

2. Configurations of the component must be checked for the functionality
and quality they provide.

Problems during
COTS evaluation

Hidden
information

Binding time
of variants

290 14. Selecting High-Level COTS Components

To cope with these problems, CoVAR defines three main activities: compo-
nent screening, detailed component evaluation, and component selection (see
Fig. 14-3). During the component screening activity, the most promising
candidate components are identified on the basis of available documentation.
The detailed component evaluation provides a detailed evaluation of the
components on the basis of development artefacts and evaluation copies. An
evaluation copy denotes an executable version of a component that is pro-
vided by the component vendor for evaluation purposes. The final compo-
nent selection activity produces a ranked list of components so that the best-
fitting component can be selected.

The interaction between domain requirements engineering and COTS selec-
tion described in Section 14.1.1 occurs mainly during the activities of
component screening and detailed component evaluation. The following
detailed descriptions of each activity show that interaction is supported and
even promoted. Thus, the understanding of already specified requirements,
variation points, and variants is increased and is then reflected in the respec-
tive artefacts.

Note that, although the sub-activities of each activity are explained in a
sequential order, they may be iterated, if necessary, or performed in parallel.

Three main
activities

Interaction with
domain requirements

engineering

Domain Requirements
Domain Architectural Concerns

Component
Ranking

2
Detailed

Component
Evaluation

1
Component
Screening

3
Component

Selection

Components
(Evaluation Copies,

Development Artefacts)

Required Component Features

Component Compliances

Actual Component Features

Components
(Documentations)

Activity
Exchanged

Input/Output
Information

Stored Input/Output
Information

Fig. 14-3: Main activities of CoVAR.

14.2 The CoVAR Process 291

14.2.1 Component Screening
During component screening, a first evaluation of candidate components is
performed on the basis of available component documentations, e.g. mar-
keting material, technical manuals, experience reports. The goal is to reduce
the number of candidate components for the subsequent detailed evaluation
to three to seven components and consequently reduce the time and effort
needed for the whole evaluation. The components are mainly checked for
providing the required basic functionality and quality. Only if too many can-
didate components pass this check are the requirements considered in the
examination extended to additional functionality and quality in order to be
able to exclude more candidates. Figure 14-4 provides an overview of the
steps of the component screening activity.

The steps of the component screening activity should be performed in the
following way:

Step 1.1: Conduct technical market study. In order to identify candidate
components, a market study is conducted on the basis of the domain
requirements. Sources may be the public market or in-house. Available
documentations about the candidates are collected. The result of this sub-
activity is, thus, a set of potential candidates for reuse along with the infor-

Domain Requirements

Conduct
a Market Study

1.1

Derive
Evaluation

Criteria
1.3

Derive
Required

Component
Features

1.2

Verify
and Validate
Features and

Criteria
1.4

Check
Existence of

Features
1.5

Check
Configurations

for Functionality
and Quality

1.6

Check
Compliance

1.7

Reduce
Number of

Components
1.8

Domain Requirements

Required Component Features

Required Component Features Actual Component Features Component Compliances

Domain Requirements

Components
(Documentations)

C
om

po
ne

nt
s

(D
oc

um
en

ta
tio

ns
)

C
om

po
ne

nt
s

(D
oc

um
en

ta
tio

ns
)

Fig. 14-4: Sub-activities of the component screening activity

Three to seven
candidates

Screening
steps

Market
study

292 14. Selecting High-Level COTS Components

mation that could be gathered about these components. The market study
may lead to an update of domain requirements, e.g. if no components can be
identified that satisfy them.

Step 1.2: Derive required component features. Based on the domain
requirements that address the whole software product line, required compo-
nent features are derived that specifically describe what is expected from the
COTS component. Variability is inherent in required component features
just as it is in domain requirements. Thus, we distinguish between common
and variable features. Variable features express two kinds of expectations:

1. Required variation points, which express the fact that certain variability
subjects have to be accounted for.

2. Required variants, i.e. the choices that should be possible for variability
subjects.

Required component features, just as, at a later stage, actual component fea-
tures, and their dependencies (e.g. excludes or requires) should be docu-
mented to ensure traceability from the expected features defined at the
beginning of the evaluation to the results of the evaluation. Features are
often captured in feature models (Section 5.2). These models serve as a basis
for discussions between stakeholders, i.e. the evaluation team consisting of
the domain analysts, the domain designers, and the domain experts.

In addition to the feature model containing the required component features,
an accompanying textual description is provided for each feature. The text-
ual description of a feature should contain the following information:

Common and variable
component features

Documentation
of features

Attributes of
the features

File
Management

Create
File

Open
File

Save
File

Close
File Edit

...

Existing
Object

Newly
Created
Object

Linked
File

File

Word Processor

Services

Manually

Define
Position

Resize
Cut to Size

Provide
with an

Inscription

Text
Editing

Correct Copy

Manually

Syllabification Spell
Checker

Manually

Cut Paste FindReplace

Insert ...

Consists of

Optional Feature

Alternative Feature

Save
Versions

Automatically

Import
Export

Automatically
Spell

Grammar
Checker

Foreign
Language
Support

Graphic Object ...

Fig. 14-5: Feature model of a word processor capturing required features

14.2 The CoVAR Process 293

Name: name of feature.
Description: description of feature.
Class: class of feature: basic | satisfier | delighter.
Constraint dependencies: “excludes:” <list of feature names>,
“requires:” <list of feature names>.

Example 14-1: Required Component Features for a Word Processor

The home automation system offers two variants: a standard and a
professional variant. The standard variant is able to generate protocols
and summary reports. The professional variant provides additional
functionality: it comes with an integrated email program that allows,
for example, the system to be called by phone and let one’s mails to
be read out via the phone. Furthermore, it provides the services of an
integrated secretary such as dictating letters, etc. to the home automa-
tion system. For these purposes, both the standard and the professional
variant require a word processor component. For the standard variant,
the component is configured as a simple text editor whereas, for the
professional variant, the component is configured as a more sophisti-
cated word processor. An excerpt of the feature model with the
required component features is depicted in Fig. 14-5.

Step 1.3: Derive evaluation criteria. A set of evaluation criteria is derived
from the required component features. More precisely, an evaluation crite-
rion is developed for each feature that represents a leaf of the feature model.
When a feature is not fully refined by its child features, an evaluation crite-
rion is developed for this feature and not for its child features. If a feature is
not detailed enough for deriving an evaluation criterion from it, it is refined.
The textual description of an evaluation criterion should contain the follow-
ing information:

Identifier: a unique identifier for the evaluation criterion.

Definition: the definition of the evaluation criterion.

Rationale: a description of the rationale of the criterion and how it
relates to required component features.

Scale: the definition of the scale of measurement for the criterion.

Unit/classes: the definition of the unit of measurement for the criterion.

Screening rule: the definition of a possible threshold that is required for
a component to be selected for detailed component evaluation (this

Documentation of
evaluation criteria

294 14. Selecting High-Level COTS Components

attribute is used for documenting which criteria were used in the com-
ponent screening activity).

Baseline: the baseline represents the minimum required level of
functionality and features that a component must satisfy when it is inte-
grated into the software product line.

Qualitative description: guidelines on how additional information gath-
ered about the criterion should be documented.

Feature interaction: a description of features that influence each other
(e.g. efficiency and user-friendliness) and should therefore be evaluated
in close relationship to ensure that an acceptable level of both can be
reached at the same time.

Priority: a description of how important the evaluation criterion is (pos-
sible classes are required, recommended, optional).

Step 1.4: Verify and validate features and criteria. Before features and
evaluation criteria are used for evaluation, they are verified and validated
with all relevant stakeholders.

Step 1.5: Check existence of features. For each component, the documenta-
tion is analysed with regard to the existence of the required component fea-
tures. The existence of variable features is checked independently of their
variability dependency (Section 4.6). That is, features are considered from
the viewpoint of the evaluator. A required optional feature, for example, is
first checked for existence and second for the type of required variability
dependency (optional in this case). If the feature does not exist, the evaluator
documents this fact as – despite being optional – the feature is required for at
least part of the product line applications. The same holds for a group of
alternative features. This check for the existence of required features results
finally in a feature model of the actual component features (see Example
14-2) and accompanying textual description of these features.

Step 1.6: Check configurations for functionality and quality. During the
component screening activity, the candidate components are not part of the
intended configurations. However, possibly information is available about
configurations which are similar to the intended configurations. The avail-
able information is investigated with respect to the functionality and quality
provided by the configuration. The results are recorded in an informal way in
the accompanying textual description of the provided component features.
The feature model may be extended during this step.

Step 1.7: Check compliance. For each component, the required and actual
component features are compared, and a rough quantification is given such

Quality assurance for
features and criteria

Variability
dependencies

Possible
configurations

14.2 The CoVAR Process 295

as “passed”, “not passed”, or “deferred”. The result is a component compli-
ance tuple for each component.

Step 1.8: Reduce number of components. Based on the component compli-
ances, those components are screened out that received one or more “not
passed”.

Example 14-2: Provided Component Features (from Documentation)

TX Text Control from The Imaging Source Europe GmbH is an ex-
ample of a word processor component. The analysis of its documenta-
tion leads to the feature model with provided component features
shown in Fig. 14-6. Apparently, a lot of features that were required
from the component in Example 14-1 are not supported.

14.2.2 Detailed Component Evaluation
During detailed component evaluation, evaluation scenarios are developed
and performed on the candidate components. Figure 14-7 provides an over-
view of this activity. At the beginning of detailed component evaluation, a
pilot component evaluation is conducted on a subset of two to three candi-
date components. The aim of the pilot component evaluation is to develop
evaluation scenarios that are applicable to all candidate components that
successfully passed component screening. That is, initial evaluation scenar-
ios are developed, applied to the two to three candidates, reviewed, and pos-
sibly adapted. Next, the revised evaluation scenarios are used to evaluate the
remaining components (see Fig. 14-7). If the changes to the scenarios invali-
date the evaluation results made so far, the two to three candidate compo-
nents used during the pilot evaluation must be evaluated again using the
revised scenarios.

File
Management

Create
File

Open
File

Save
File

Close
File

Edit

TX Text Control

Services

Manually

Text
Editing

Correct Copy

ManuallyManually

Cut Paste

Insert ...

Image Object
FindReplace

Fig. 14-6: Provided component features identified from documentation

Evaluation
scenarios

296 14. Selecting High-Level COTS Components

Evaluation copies and other development artefacts of the candidate compo-
nents are used for the detailed component evaluation. The components are
checked for the fulfilment of the basic requirements and satisfiers, the qual-
ity, and the support of intended variation points and variants. The following
steps are performed:

Step 2.1: Select initial candidates. Two to three candidate components for
the pilot component evaluation are selected. It is suggested to select the
components with the largest differences in their realisation of requirements
and variation points so that the resulting evaluation scenarios can be
expected to hold for the other components as well.

Step 2.2: Check existence of features. Using the evaluation copies and
development artefacts of each component, the components are checked for
the existence of the required component features. The feature model and
feature descriptions developed during component screening are used as
input. The first goal is to check if the required component features are actu-
ally provided by the component under evaluation. That is, all required
component features (regarding basic functionality as well as satisfiers) are
checked using the development artefacts and the evaluation copies. The
second goal is to identify additional functionality, additional variation points,
and additional variants of expected variation points.

Determine
and Generate

Configurations
2.4

Develop
Evaluation
Scenarios

2.3

Apply
Scenarios to

Configurations
2.5

Evaluation
Scenarios

Check
Existence of

Features
2.2

Configured
Components,
Scenario
Assignment

Select
initial

candidates
2.1

2-3 Components

2-3 Components

2-3 Components

Required Component Features

Actual Component Features

Actual Component Features

Domain Requirements

Check
Compliances

2.6

Component Compliances

Required Component Features

Result
Scenarios

Components
(Evaluation Copies,

Development Artefacts)

E
xp

er
ie

nc
es

Review
Scenarios

2.7

Fig. 14-7: Sub-activities of the detailed component evaluation activity

Check of functionality
and quality

Initial
candidates

Required and
additional features

14.2 The CoVAR Process 297

Validating that required variation points are supported by a component, and
identifying new variation points as well as new variants that belong to an
already known variation point, require knowledge about how variation
points are realised in the different development artefacts. Variation points
can be implemented using different configuration mechanisms offering dif-
ferent binding times. The binding time allows categorisation of the variation
points. For example, a variation point may have been realised in a compo-
nent by using the IFDEF statement in its source code (written in the C/C++
programming language). In this case, variants are bound at compile time. In
the cases when the support of a required variation point is validated or add-
itional variants are identified, the region of the artefact to look at can be
limited. In addition, identifying new variation points necessitates browsing
through the whole artefact.

Example 14-3: Provided Component Features (from Evaluation)

Figure 14-8 shows the feature model of the actual component features
of the word processor component TX Text Control. It becomes appar-
ent that the component actually supports significantly more features
than could be found in the documentation.

Binding mechanisms,
binding time

File
Management

Create
File

Open
File

Save
File

Close
File

Edit

Existing
Object

Newly
Created
Object

Linked
File

File

TX Text Control

Services

Manually

Define
Position

Text
Editing

Correct Copy

Manually

Manually

Cut Paste

Insert ...

Export

Image

Redo

Object File

at Fixed
Positionas

Character

Replace Find

Undo

Select

Part All

Target Hyperlink

Create Edit Delete
Create Edit Delete

Structure

Fig. 14-8: Feature model with provided features after component evaluation

298 14. Selecting High-Level COTS Components

In this way, the feature model and the accompanying documentation of each
component (resulting from component screening) are validated and comple-
ted. Thus, performing the step yields an updated feature model and updated
textual description.

Step 2.3: Develop evaluation scenarios. For each evaluation criterion deter-
mined during component screening, an evaluation scenario for measuring it
in a precise and repeatable fashion is developed. Sometimes, it is useful to
cover several evaluation criteria using a single scenario, if the concerned
features are closely related and interfere with each other. This case is indi-
cated by the feature interaction attribute of the respective evaluation criteria.
Evaluation scenarios are usually narrative scenarios that describe actor
actions and desired component responses (see Example 14-4).

A traceable decision-making process is performed in parallel with the com-
ponent evaluation. Therefore, for each evaluation scenario, measurement
rules for ranking the component’s behaviour are defined. Different levels of
scenario fulfilment are distinguished. The overall goal is to define scenarios
and evaluation criteria in such a way that component evaluations can be per-
formed by different stakeholders. That is, to ensure as far as possible that:

1. Two evaluations of the same component by different people lead to
almost the same result.

2. Two evaluations of different components by different stakeholders lead
to comparable results.

Example 14-4: Evaluation Scenario for the Word Processor

Figure 14-9 illustrates an evaluation scenario that is developed for the
criterion “inserting an existing file as OLE object”. Since the develop-
ers of the evaluation scenario know that a word processor’s stability
may suffer from inserting OLE objects into a document, they evaluate
the two criteria together.

Step 2.4: Determine and generate configurations. During detailed compo-
nent evaluation, configurations of the candidate components can be genera-
ted using evaluation copies. In most cases, it is impossible to check all fea-
tures on all possible configurations of all investigated components. Even
though only three to seven candidates are left for detailed evaluation, the
effort might be unreasonably high. A more efficient solution is to check each
common feature and each variable feature only once on a configuration of a
candidate component. In order to minimise the number of configurations, the
number of features that are checked on one configuration of a component is
maximised.

Updated
documentation

Evaluation scenario
for each criterion

Ensuring
objectivity

Reducing
evaluation effort

14.2 The CoVAR Process 299

Another problem that may occur is that dependencies between variants
cannot be identified by investigating the component. A component can be
checked for required dependencies, but it must also be assured that a compo-
nent under investigation does not restrict the combination of variants more
than required. To this end, a number of foreseeable configurations are gener-
ated. This helps to ensure that there are no hidden dependencies among vari-
ants built into a component prohibiting certain configurations. As a result of
this step, these foreseeable configurations of the candidate components are
generated. Furthermore, each evaluation scenario is assigned to the configur-
ation it is executed on.

Step 2.5: Apply scenarios to configurations. As specified by scenario
assignment, the evaluation scenarios are applied to the component configur-
ations. The results are also captured in scenarios. These result scenarios
describe the actual behaviour of the components and thus concretise the
actual component features. Therefore, they should be related to the respec-
tive features of the feature model of the actual component features.

Step 2.6: Check compliance. Required and actual component features are
compared just as during component screening. But this time the compliance
vector is supplemented by a detailed quantification for each feature covered
by an evaluation scenario. The quantification results from applying the
measurement rule that is assigned to each scenario.

Step 2.7: Review scenarios. Based on the experiences gained during steps
2.5 and 2.6, the evaluation scenarios and accompanying measurement rules
are reviewed to ensure that they can be applied to all components. If neces-
sary, they are adapted.

Scenario for the Criterion ‘Inserting an existing file as OLE object’

Primary goal: check criterion ‘Inserting an existing file as OLE object’
Secondary goal: check criterion ‘Stability of the Word Processor’

Actor: Evaluation team member

Scenario step sequence:
1. The evaluation team member edits a text comprising 150 pages manually into a newly

created Word document.
2. Below the text, the team member inserts an OLE object created from an existing file.
3. The team member opens the OLE object within the Word application in its server

application and makes some changes.
4. The team member closes the server application and returns to the Word application.
5. The team member checks if the OLE object in the Word application has been adapted to

the changes made in the server application.
6. The team member saves the document.

Fig. 14-9: Example of an evaluation scenario

Evaluating
configurations

Result
scenarios

Quantitative
results

300 14. Selecting High-Level COTS Components

Step 2.7 represents the final step of the pilot component evaluation. The
revised evaluation scenarios can then be used for the evaluation of the
remaining components. As stated above, if the changes to the scenarios
invalidate the evaluation results for the two to three candidates used for the
pilot evaluation, these components must be re-evaluated using the revised
scenarios. For this subsequent evaluation, only steps 2.2 (“Check existence
of features”), 2.4 (“Determine and generate configurations”), 2.5 (“Apply
scenarios to configurations”), and 2.6 (“Check compliance”) have to be per-
formed with the components.

14.2.3 Component Selection
Component selection is the final activity of the CoVAR process. During this
activity, evaluation criteria are prioritised and a final ranking of the compo-
nents is computed based on the component compliances. To determine the
final ranking, an established multi-criteria decision-making process such as
the AHP (Analytic Hierarchy Process, see e.g. [Saaty 1990]) may be used. In
contrast to the other two main activities of CoVAR, the component selection
activity typically does not lead to new insights about domain requirements
and variability therein.

The result of the component selection activity is a ranking of components
from which the highest ranked component should be selected. All informa-
tion that was gathered about the selected component is then used during
further activities of software product line engineering, such as the integration
of the component into the domain architecture.

14.3 Differences from Single-System Engineering

The main difference between the integration of a COTS component into a
single system and its integration into a software product line as a domain
artefact is variability. Since variability is inherent in domain requirements
and architecture, it has to be taken into consideration as a third facet (besides
requirements and architectural concerns). Considering variability during
COTS component evaluation and selection in turn results in new problems
that have to be solved:

Provided variation points and variants are often not specified explicitly
in component documentations, although they are often present in order
to allow the adaptation of a component to different modes of usage.
This situation requires a closer examination of the component itself.

For investigation purposes, conventional information sources, such as
documentation and evaluation copies, are not sufficient – a second
problem that results from considering variability during evaluation. An

Evaluation
of remaining
components

Multi-criteria
decision

Ranking

Variability

Lacking
documentation

Evaluation
of code

14.4 Summary 301

evaluation copy is executable and, thus, contains bound variants. Conse-
quently, depending on the binding time of variation points, more arte-
facts of a component must be investigated, such as source code and
compiling and linking instructions.

Because of the variability provided by a component, not all features
exist in parallel in one executable version of the component. That is, a
component’s provided functionality and quality may vary from one con-
figuration to another. This third problem requires an evaluation of com-
ponent configurations with respect to the provided functionality and
quality.

14.4 Summary

The CoVAR process supports an evaluation team in evaluating COTS com-
ponents for a software product line. CoVAR consists mainly of two evalu-
ation activities and a component selection activity.

During the first evaluation activity, the component screening, candidate
components are evaluated on the basis of available documentations and the
number of components is reduced to three to seven candidates.

During the second evaluation activity, the detailed component evaluation,
these candidates are evaluated on the basis of evaluation copies and devel-
opment artefacts. In each evaluation activity, the components are checked in
two ways. First, they are checked for the existence of required component
features as well as required variation points and variants. Second, specific
configurations of the components are checked for the functionality and qual-
ity they provide. Based on the results of the component screening and
detailed component evaluation, a ranking of the examined components can
be determined in order to select the component that fits best.

Different
configurations

CoVAR

Component
screening

Scenario-based
component evaluation

Part IV

Application
Engineering

Part IV: Overview

The main goal of application engineering is to derive a software product line appli-
cation by reusing as many domain artefacts as possible. This is achieved by exploit-
ing the commonality and the variability of the product line established in domain
engineering. In this part you will learn how the orthogonal variability model is used
in the application engineering sub-processes highlighted in Fig. IV-1 to:

Consider the commonality and the variability of the product line when defining
the requirements for a specific application.

Document the selected variants.

Bind the selected variants from requirements to the architecture, to the compo-
nents, and to the test cases.

Estimate the impacts originating from differences between application require-
ments and domain requirements on architecture, components, and tests.

The orthogonal variability model supports the consistent reuse of the domain assets,
i.e. the domain requirements, architecture, components, and test cases.

Fig. IV-1: Chapter overview of Part IV

15
Application

Requirements
Engineering

In this chapter you will learn:

o About the interrelations of the application requirements engineering sub-
process with the product management, domain requirements engineering, and
application design sub-processes.

o How to communicate the external variability and the commonalities of the
product line to the stakeholders.

o How to identify deltas between stakeholder requirements and product line
requirements.

o How to analyse and document changes such as adding new features or
adapting product line features for a particular product line application.

Günter Halmans
Klaus Pohl

308 15. Application Requirements Engineering

15.1 Introduction

The goal of application requirements engineering is to elicit and to document
the requirements artefacts for a particular application and at the same time
reuse, as much as possible, the domain requirements artefacts. The reuse of
domain requirements artefacts for each application supports the overall goal
of obtaining a high degree of domain artefact reuse.

The sub-processes and artefacts closely related to the application require-
ments engineering sub-process are highlighted in Fig. 15-1. Application
requirements engineering is related to product management, domain
requirements engineering, and application design. Product management
defines the major features of the applications to be developed. Domain
requirements engineering creates the domain requirements artefacts, which
are reused for the application under consideration. The application require-
ments engineering sub-process reuses the domain requirements artefacts to
define the application requirements artefacts. The application requirements
artefacts serve as a basis for application design.

Goal of application
requirements
engineering

Related
sub-processes

Fig. 15-1: Sub-processes and artefacts related to application requirements engineering

15.1 Introduction 309

An essential activity of application requirements engineering is the commu-
nication of the domain requirements artefacts to the stakeholders. Hence,
product managers and customers are typically involved in the application
requirements engineering process.

Product managers determine the major features of the applications in the
product portfolio based on their market and product (line) strategy. Custo-
mers demand an application that satisfies their individual needs at an afford-
able price. In cases where customers are known to the organisation, applica-
tion requirements engineering communicates the commonality and external
variability of the software product line to them. In the more common case
where the customers are not personally known, product managers and mar-
keting experts represent the customer as stakeholder of the application
requirements engineering sub-process.40 The communication about domain
requirements artefacts41 enables customers, or their representatives, to evalu-
ate the extent to which the software product line can satisfy their needs.

Software product line applications can be divided into two basic categories
with respect to the degree of domain artefact reuse. The first category com-
prises applications which have only requirements artefacts that are a subset
of the domain requirements artefacts. The second category comprises appli-
cations which have requirements artefacts that are not part of the domain
requirements artefacts. For applications of the first category, the domain
requirements artefacts are communicated to the stakeholders, and the appro-
priate requirements are selected and documented. The second category asks
for more effort for application engineering. As the applications of the second
category cannot be realised by reusing domain requirements artefacts exclu-
sively, the differences or deltas between domain requirements artefacts and
application requirements artefacts have to be detected and documented.
Requirements deltas lead to adaptation effort in all application engineering
sub-processes and thus increase the price of the application.

Figure 15-2 shows the interrelations between application engineering and its
related sub-processes. In the following, we describe each interrelation in
detail.

15.1.1 Interrelation with Product Management
Product management defines the major application features (in Fig. 15-2)
for all applications of the product line. The development of the applications

40 A distinction can also be made between the derivation of individual applications and the derivation of

mass-market applications [Halmans and Pohl 2002]. Here, we distinguish between customers and
product managers as stakeholders of the application requirements engineering process, which largely
correlates with the differentiation between individual applications and mass-market applications.

41 In the following, we use the term requirements as a synonym for requirements artefacts (Definition
5-2).

Communication
with stakeholders

Product managers
and customers

Two application
categories

Application
features

310 15. Application Requirements Engineering

is supported by the commonality and variability of the platform. Application
requirements engineering reuses the common parts and chooses the variant
parts that are suitable to match the features defined by product management
for the application. Certain features are application specific, i.e. they only
apply for a single application. As the corresponding application requirements
artefacts do not yet exist, application requirements engineering has to define
them.

Application requirements engineering leads to new insights about required
features, e.g. by communicating with different stakeholders. Based on the
new insights application requirements engineering makes suggestions for
additional and altered features that might be incorporated in the software
product line (in Fig. 15-2).

15.1.2 Interrelation with Domain Requirements Engineering
Domain requirements engineering provides application requirements engin-
eering with common and variable requirements artefacts and the domain
variability model (in Fig. 15-2). Application requirements engineering
employs the variability model to determine the variants as well as the cor-
responding domain requirements artefacts that can be reused for the applica-
tion.

Application requirements engineering passes on requests for additional and
altered domain requirements artefacts to domain requirements engineering
(first bullet of in Fig. 15-2). The requests typically originate from insights
and experiences gained in assembling a specific application. In addition,
customer requirements should be evaluated if they also affect other product
line applications (i.e. if they rather represent needs of the domain than of a
single application). If so, the requirements are passed on to domain require-
ments engineering to be elaborated further.

Product management designates application-specific features to be worked
out during application requirements engineering, e.g. if a lead product strat-
egy is followed. If application-specific requirements address actual needs of
the domain, they might be integrated into the domain artefacts. For this pur-
pose, the application requirements artefacts are passed on to domain
requirements engineering (second bullet of in Fig. 15-2). Before these
artefacts can be integrated into the product line, a decision within the domain
engineering process has to be made and, if the decision is to integrate them,
the domain artefacts have to be adapted to incorporate the new requirements.

Feedback to product
management

Domain requirements
artefacts and

variability model

Additional
needs

Application-specific
requirements

15.1 Introduction 311

15.1.3 Interrelation with Application Design
The main output of application requirements engineering is the application
requirements specification (in Fig. 15-2) which is a complete specification
of the application. It includes the application variability model, which is
derived from the domain variability model, the requirements artefacts that
are reused from the domain artefacts, and the requirements deltas. Require-
ments deltas are determined by analysing the requirements posed by the
customer or product manager and comparing them with domain require-
ments artefacts. The application requirements specification is described in
more detail in Section 15.5. Based on the application requirements specifica-
tion (and the reference architecture), application design derives the applica-
tion architecture.

Application requirements engineering typically involves trade-off decisions
with regard to the requirements posed by a customer or representative. The
realisation effort for the requirements depends on the degree of reuse that
can be achieved. Requirements deltas, such as performance requirements
that are tighter than anticipated by the product line, may involve significant
modifications of the architecture and the reusable components. As such
modifications affect the development costs for the application, trade-off
decisions are necessary on whether to accept a higher price or to abstain
from the specific requirement that causes cost-intensive modifications.
Application design has to support such decisions by providing an effort
evaluation of requirements deltas (in Fig. 15-2).

Application
requirements
specification

Effort
for deltas

Application
Design

Domain
Requirements
Engineering

Product
Management

Application
Requirements
Engineering

Application requirements
specification

3 Requests for additional / altered
requirements
Requirements artefacts to be
integrated in domain artefacts

Variability
model
Common and
variable
requirements
artefacts

Effort evaluation of
requirements deltas

Suggestions for
additional /
altered features

5

4

6

2

1
Application
features

Fig. 15-2: Information flows between application requirements engineering and other sub-
processes

312 15. Application Requirements Engineering

15.2 Application Requirements Engineering Activities

In the following, we do not distinguish whether the need to develop applica-
tion-specific requirements artefacts originates from product management,
from customer needs, or from any other source. We treat the different cases
similarly by the assumption that there are some stakeholders who pose
requirements with respect to the considered application. We define these
requirements as stakeholder requirements:

Definition 15-1: Stakeholder Requirements

Stakeholder requirements are requirements that stakeholders state for
a particular application, i.e. requirements that the stakeholders expect
to be fulfilled by the application.

Due to trade-off decisions made in the application requirements engineering
process, the initial stakeholder requirements are not necessarily identical
with the resulting application requirements. We define application require-
ments as follows:

Definition 15-2: Application Requirements

Application requirements are requirements that completely specify a
particular product line application.

The agreement about the application requirements is a result of the applica-
tion requirements engineering process. The following options exist with
regard to a particular stakeholder requirement:

The stakeholder requirement can be completely fulfilled by an applica-
tion requirement or set of application requirements.

The stakeholder requirement can be partially fulfilled by an application
requirement or set of application requirements.

The stakeholder requirement cannot be fulfilled by any application
requirement or set of application requirements.

The decisions about stakeholder requirements affect the interrelations
between stakeholder requirements, application requirements artefacts, and
domain requirements artefacts:

Interrelation between stakeholder requirements and application re-
quirements artefacts
Normally, stakeholder requirements should be fulfilled by the applica-
tion requirements artefacts. Yet, if the realisation of requirements deltas

Stakeholder
requirements

Application
requirements

Decision
options

Feasibility

15.2 Application Requirements Engineering Activities 313

leads to a significant effort, the stakeholders may decide that their
requirement should only be partially fulfilled by the application or not
fulfilled at all. We address this topic in Section 15.4.4.

Interrelation between stakeholder requirements and domain require-
ments artefacts
The requirements engineer maps stakeholder requirements to domain
requirements artefacts with the goal to find domain requirements arte-
facts that satisfy the particular stakeholder requirement. In case a spe-
cific domain requirements artefact satisfies a particular stakeholder
requirement, the domain requirements artefact can be reused. In case a
particular stakeholder requirement cannot be fulfilled by domain arte-
facts, adaptation effort is necessary to satisfy the stakeholder require-
ment. Then, a trade-off decision is necessary on whether the application
requirements artefacts must fully comply with the stakeholder require-
ment or may be adapted to eliminate the delta (or at least reduce the
adaptation effort). In the latter case, the stakeholder requirement is not
fulfilled (completely).

Interrelation between application and domain requirements artefacts
An application requirements artefact is identical to a domain require-
ments artefact if the domain requirements artefact satisfies a particular
stakeholder requirement and thus can be completely reused. An appli-
cation requirements artefact has a delta to a particular domain require-
ments artefact in case the stakeholder requirement cannot be completely
satisfied by a domain requirements artefact.

For the elicitation and documentation of application requirements, the fol-
lowing three activities are essential:

Communicating the commonality and external variability of the product
line42

The goal of this activity is to make the stakeholder aware of the cap-
abilities of the product line and to elicit application requirements. By
considering the commonality and variability of the product line in
application requirements engineering, the level of domain artefact reuse
can be increased [Halmans and Pohl 2001]. The orthogonal variability
model plays a central role in this activity as it enables the requirements
engineer to communicate the relevant variation points, variants, and
their dependencies to the stakeholder (in Fig. 15-3). Additionally, the
variability model and its traceability links to domain requirements arte-
facts enable the requirements engineer to describe the functionality and
quality of a particular variant. The stakeholders survey the product line

42 Depending on the knowledge the stakeholder already has about the commonality and variability of the

product, the steps of this activity are more or less distinct.

Reuse

Requirements
deltas

Awareness of product
line capabilities

314 15. Application Requirements Engineering

commonality and the external variability and communicate their
requirements for the application to the requirements engineer (in Fig.
15-3). The requirements engineer collects the domain requirements arte-
facts to be reused for the application. The result of the activity is a set of
domain requirements artefacts, which may not completely fulfil the
stakeholder requirements.

Evaluating deltas between domain and application requirements
Deltas between domain and application requirements occur when stake-
holder requirements cannot be completely satisfied by domain require-
ments artefacts. These deltas have to be evaluated with respect to the
required realisation effort. During the evaluation process, first, deltas to
the domain variability model caused by the stakeholder requirements
are analysed. Second, the impact of the variability model deltas on the
corresponding domain requirements artefacts is analysed. The results of
this analysis are variability model and requirements artefact deltas.
They are communicated to the application architect who estimates the
realisation effort based on the deltas. The feedback on the estimated
realisation effort (in Fig. 15-3) allows the stakeholder to decide
whether the requirements artefact deltas should be realised or not. The
stakeholder communicates the decision to the requirements engineer (
in Fig. 15-3). As a result of the delta evaluation activity, the application
requirements, and the corresponding requirements artefact and variabil-
ity model deltas, are defined.

Documentation of application requirements
The two activities described above result in a documentation that
includes the application requirements artefacts, the deltas between
application and domain requirements artefacts, and the traces between
application requirements artefacts and the corresponding domain

Estimation of
realisation effort

Variability model
Common and variable domain
requirements artefacts

Stakeholder

Stakeholder requirements
Application

Requirements
Engineering

1

3
Estimated delta
realisation effort

2

4
Trade-off decision

Fig. 15-3: Information flows with respect to the stakeholder

Basis for later
development phases

15.3 Communication of the Product Line Variability 315

requirements artefacts. In addition, the application variability model
(which is the result of incorporating the variability model deltas) and
the traceability links of application requirements to the application-
specific variability model are documented. Moreover, the estimated
realisation costs are related to the deltas to keep decisions about the
deltas traceable. The resulting application requirements specification is
the basis for the later development phases.

15.3 Communication of the Product Line Variability

This section focuses on the communication of external variability, using the
orthogonal variability model, to the stakeholders. The variability model pro-
vides a coherent view of the variability of the product line. The requirements
engineer navigates between the variability model and the different require-
ments artefacts to supply stakeholders with more detailed information, e.g.
about the functionality and quality of the variants under consideration.

15.3.1 Variation Points and Variants
The communication of external variability based on the orthogonal varia-
bility model typically starts with the variation points that provide the top-
most level of abstraction. Communicating a single variation point involves:

1. Communicating the variants related to the variation point as well as the
variability dependencies and the alternative choices defined for the
variation point.

2. Communicating dependent variation points and/or variants by following
the existing constraint dependencies.

Requirements
artefacts and
variability

Variability DiagramVariability Diagram

requires_v_vp

Basic

V

Advanced

V

VP

Security
Standard

Password

V

Fingerprint

V

VP

Authentication

Fig. 15-4: Variation points ‘security standard’ and ‘authentication’

316 15. Application Requirements Engineering

Example 15-1 illustrates the communication of variation points and variants
to a stakeholder. For a more detailed description of communicating the vari-
ability of the software product line, see [Halmans and Pohl 2003].

Example 15-1: Communicating a Variation Point

Figure 15-4 depicts an extract of an orthogonal variability model. It
shows the two variation points ‘security standard’ and ‘authentica-
tion’. The stakeholder is interested in the variation point ‘authentica-
tion’. The following information can be communicated to the stake-
holder:
 The product line provides two authentication mechanisms. Exactly

one of these has to be selected: authentication via ‘Password’ or
authentication via ‘fingerprint’.

 In case of the variant ‘password’, additionally, the variation point
‘security standard’ has to be bound. The stakeholder has to select
either ‘basic’ or ‘advanced’ security.

15.3.2 Domain Requirements Artefacts
To make a decision for or against a variant the stakeholder may need more
detailed information concerning the functionality or quality associated with
the variant. For instance, the features related to the variant under consid-
eration are used to provide a management view. The related model-based
requirements such as a class diagram provide a more detailed, solution-
oriented view. Example 15-2 illustrates the communication of the domain
requirements artefacts that are related to the variant ‘password’.

Having considered the domain requirements artefacts of a certain variant,
different strategies can be followed to find the next variation point and vari-
ants to be considered. Two basic options are:

The requirements engineer can communicate the next variation point at
the topmost level of abstraction, which has not yet been considered.
Thus the variation points that may affect coarse-grained properties of
the resulting application are bound first.

If a certain domain requirements artefact is associated to more than one
variant, the requirements engineer can communicate all associated vari-
ants and thereby bind the variability related to the considered artefact
before considering other artefacts.

Different views

Navigating the
variability model

15.3 Communication of the Product Line Variability 317

Example 15-2: Communicating the Details of a Variant

The stakeholder is interested in more details about the variant ‘pass-
word’ depicted in Fig. 15-5 . By following the traceability link to the
domain requirements artefacts, the requirements engineer finds the use
case ‘authentication by password’. By considering the use case
description, the stakeholders get a more detailed idea of the benefits of
this use case (the use case description is not depicted in Fig. 15-5).
The variant ‘password’ is interrelated with the variation point ‘secur-
ity standard’. Thus, to explain the considered variant ‘password’ in
more detail, the requirements engineer shows the associated security
requirements of the ‘basic’ variant and the ‘advanced’ variant to the
stakeholder (see Fig. 15-5).

Variability DiagramVariability Diagram

Requirements ArtefactsRequirements Artefacts

Authentication by
Fingerprint

Authentication by
Password

Security Requirements
Sec_Req-682, P2, “high password quality”: the
password shall consist of at least 10 characters
and has to include special characters (such as
numbers). The password shall be changed every
3 months. Old passwords cannot be used again.

Security Requirements
Sec_Req-781, P1, “low password quality”: the
length of the password shall be at least 5
characters. The password shall only be changed if
necessary.

requires_v_vp

Basic

V

Advanced

V

VP

Security
Standard

Password

V

Fingerprint

V

VP

Authentication

Fig. 15-5: Traceability links between variants and domain requirements artefacts

318 15. Application Requirements Engineering

15.3.3 Result of the Communication Activity
The result of the communication activity is a classification of stakeholder
requirements:

a) Stakeholder requirements that can be satisfied by binding variability
defined in domain requirements artefacts.

The domain requirements artefacts that satisfy these stakeholder re-
quirements are documented as application requirements in a way that
supports the reuse of domain artefacts in application engineering. We
deal with this issue in Section 15.5.

b) Stakeholder requirements that do not correspond to domain require-
ments artefacts.

In this case, deltas between domain requirements artefacts and the
application requirements artefacts that satisfy the stakeholder require-
ments exist. Section 15.4 deals with the analysis of these deltas.

15.4 Analysis of Requirements Deltas

The main goal of delta analysis is to support the decision on whether the
deltas should be realised for the application or not. We analyse the deltas
caused by application requirements with respect to the variability model,
domain requirements artefacts, and the application architecture. Based on the
results of the analysis, the stakeholders decide whether the delta shall be
realised in the application or not.

15.4.1 Variability Model Deltas
Variability model deltas are differences between the domain variability
model (see Section 2.5) and the application variability model (Section 2.7).
There are two types of such deltas:

Part of the existing external variability has to be modified: A new vari-
ant must be added, or a variability or constraint dependency must be
modified.

An invariant part must be turned into a variable part: Part of the com-
mon requirements must be made variable. In this case, the external vari-
ability is extended by the introduction of a new variation point.

15.4.2 Impact on the Variability Model
In case the stakeholder requires, say, new functionality or quality with
respect to a given variation point, a new variant must be included in the
application variability model (Example 15-3). In case the stakeholder wishes

Reuse of
domain artefacts

Analysis
of deltas

Decision
support

Adding a
new variant

15.4 Analysis of Requirements Deltas 319

to change the functionality or quality of an existing variant, a new variant
(representing the changed variant) representing the changed functionality or
quality is defined. Thus, the two variants (the original one and the changed
one) are selectable.

The stakeholder may also demand modifications of the variability or con-
straint dependencies. For example, the following cases may occur:

The stakeholder rejects a mandatory variant.

The stakeholder selects a different number of variants than the range of
an alternative choice permits.

The stakeholder selects two variants that are related by an “exclude”
dependency.

The stakeholder selects only one out of two variants that are related by a
“requires” dependency.

Example 15-3: Adding a New Variant

The stakeholder might demand an additional notification mechanism
that enables the home automation system to notify the owner of the
home about alarms via SMS (Short Message Service). This delta can
be realised by adding the new variant ‘SMS information’ (Fig. 15-6).

Modifications of variability and constraint dependencies often occur when
the stakeholder uses the application as a component of a larger system,
which itself is offered in different variants. Then, the permissible combina-
tions of variants have to be aligned with the variability of the larger system.
Example 15-4 illustrates the removal of an alternative choice.

Modification of
dependencies

Application as
product line

Variability DiagramVariability Diagram

Emergency
Call

V
Acoustic

Signal

V

VP

Alarm
Activation

Application Variability DiagramApplication Variability Diagram

New Variant

Emergency
Call

V
Acoustic
Signal

V

VP

Alarm
Activation

SMS to
Owner

V

Fig. 15-6: Example of adding a new variant due to a requirements delta

320 15. Application Requirements Engineering

Example 15-4: Removing an Alternative Choice

Figure 15-7 shows an alternative choice with two variants ‘password’
and ‘fingerprint’. The stakeholder requires an application that can be
configured to support any combination of variants, including no
authentication. In order to satisfy these requirements, the alternative
choice is removed resulting in two independent optional variability
dependencies. Note that the same result could be achieved by defining
the range [0..2] for the alternative choice.

Stakeholder requirements may also require that a commonality is defined as
variability in the application variability model. Making common parts vari-
able is reflected in the variability model by adding a new variation point
together with the required variants.

Variability Diagram (Original)Variability Diagram (Original)

Fingerprint

V

Password

V

VP

Authentication

Application Variability DiagramApplication Variability Diagram

Fingerprint

V

Password

V

VP

Alarm
Activation

Fig. 15-7: Example of a requirements delta realised by removing an alternative choice

Adding a new
variation point

Application Variability DiagramApplication Variability Diagram

Remote

V

Local

V

VP

Home
Security Interface

Fig. 15-8: Example of adding a new variation point due to a requirements delta

15.4 Analysis of Requirements Deltas 321

Example 15-5: Introduction of a New Variation Point

A home security product line provides a common mechanism to set up
the home security system via a local user interface. The stakeholder
needs a home security system that also offers remote user interfaces.
Hence, the stakeholder requires a variation point ‘home security inter-
face’ with two variants ‘local’ and ‘remote’. Local access must be
available in each home automation system while the remote variant is
optional. The corresponding excerpt of the variability model is shown
in Fig. 15-8.

15.4.3 Impact on Requirements Artefacts
For each change to the variability model, the application requirements arte-
facts that are affected by the change have to be determined. The application
requirements artefacts as well as the artefact dependencies to the variants
may need to be adapted. In the following, we analyse the required changes of
application requirements artefacts with respect to the different kinds of
changes in the variability model.

The first type of requirements artefact deltas comprises changes caused by
the introduction of new variants and/or new variation points. An example of
such an adaptation is depicted in Fig. 15-5 and described in Example 15-6.

Changes in variation
points and variants

Variability Diagram (Original)Variability Diagram (Original)

Emergency
Call

V
Acoustic

Signal

V

VP

Alarm
Activation

Sequence Diagram (Original)Sequence Diagram (Original)

Enter secured
area

Activate the
acoustic signal

Acoustic
Signal Intruder

Report motion

Motion
Detection

Security
System

Application Variability DiagramApplication Variability Diagram

New Variant

Emergency
Call

V
Acoustic

Signal

V

VP

Alarm
Activation

Sequence Diagram (New)Sequence Diagram (New)

Enter secured
area

Send an SMS

Owner Intruder

Report motion

Motion
Detection

Security
System

SMS to
Owner

V

Fig. 15-9: Adaptation of a sequence diagram due to an adapted variant

322 15. Application Requirements Engineering

Example 15-6: Introduction of a New Scenario

The upper half of Fig. 15-9 shows a variant ‘acoustic signal’ and its
associated scenario. The scenario includes an actor ‘acoustic signal’
and an interaction that activates the acoustic signal. As the stakeholder
requires an SMS notification, the variant ‘SMS to owner’ is intro-
duced (lower half of Fig. 15-9). The variability model delta is
incorporated into the new scenario by changing the scenario elements
that deal with the acoustic signal in the original scenario.

The second type of requirements artefact deltas comprises changes caused
by adaptations to variability and constraint dependencies. Changes to vari-
ability dependencies may lead to restrictions on the permissible combina-
tions of variants. Grouping a set of optional variability dependencies by an
alternative choice with a range of [1..1] is an example of such a restriction.
Some of the combinations of variants that were originally permitted become
invalid. Requirements artefacts that describe such combinations have to be
adapted. Changes to dependencies may also result in an extension of the
possible combinations. This case is illustrated in Example 15-7.

Example 15-7: Impact of Variability Dependency Changes

In Example 15-4 the alternative choice for the two variants ‘password’
and ‘fingerprint’ is removed resulting in two independent optional
variability dependencies. Consequently, requirements artefacts are
needed that describe each combination of variants: no authentication,
one kind of authentication, or both. For instance a scenario can be
defined that describes unlocking a door using both password and fin-
gerprint authentication together.

Each requirements artefact may be associated with more than one variant.
Hence, the requirements artefact delta to a particular application requirement
may influence other associated variants. The requirements engineer stops the
impact analysis when the influences of all changes in the variability model
on the requirements artefacts have been analysed. For all changes, the stake-
holders are involved to decide how the application requirements should be
adapted.

15.4.4 Impact on the Architecture
For the stakeholder, it is important to get feedback about the consequences
of the deltas on the realisation effort. The realisation effort of a particular
variability model delta and the respective requirements artefact deltas are
evaluated with respect to:

Changes in
dependencies

Impact on
associated variants

Feedback about
realisation effort

15.4 Analysis of Requirements Deltas 323

The adaptation effort for the product line architecture.

The realisation effort for the components.

The maintenance effort

The variability model delta and the associated requirements artefact deltas
are provided to the application architect who maps them to the reference
architecture using the traceability links established between domain
requirements artefacts and domain design artefacts in the domain engineer-
ing process.43 The adaptation effort for the reference architecture is roughly
estimated by determining the category into which the architectural changes
(e.g. changes of interfaces, the structure or the texture of the architecture)
fall. For a more detailed estimation, the realisation effort for components has
to be taken into account as well.

We distinguish between the following four categories of architectural adap-
tation:

Category A – No adaptation effort: A particular variability model delta
belongs to this category if no adaptation of the reference architecture is
needed. In other words, the realisation of the delta has no impact on the
architectural structure and texture.

Category B – Moderate adaptation effort: A particular variability model
delta is assigned to this category if only local architectural adaptations
are required, e.g. changes to single components. Deltas that lead to
slight adjustments of cross-cutting aspects belong to this category as
well. This includes the adjustment of design quality requirements and
simple changes of the architectural texture (but no significant change of
architectural structure).

Category C – High adaptation effort: Variability model deltas lead to a
high adaptation effort if the reference architecture needs global changes.
A change is considered to be global if, for example, a significant num-
ber of components and/or interfaces have to be changed.

Category D – Too high adaptation effort: A variability model delta that
falls into this category means that no economically reasonable realisa-
tion of the delta is possible within the software product line. The devel-
oping company has to reject this delta unless the option exists to realise
the desired application in a separate development project.

43 The mapping of requirements to architecture ensures a consistent integration of changes. A scenario-

based approach for mapping requirements to the architecture of a software product line is presented in
[Pohl et al. 2001a].

Categorisation of
architecture changes

No impact on
architecture

Local impact, slight
adjustments

Global impact

Out of product
line scope

324 15. Application Requirements Engineering

Example 15-8: Examples of Architectural Adaptation Effort

 Effort category B (delta 1): In case the stakeholder has special qual-
ity requirements with respect to a particular variant (e.g. perform-
ance requirements) this may lead to a moderate adaptation of the
reference architecture.

 Effort category A (delta 2): A change from “optional” to “alterna-
tive choice” may lead to essentially zero adaptation effort, because
it is mainly a matter of configuration, i.e. configurations that
include both variants have to be prohibited.

 Effort category D (delta 3): The deletion of an “exclude” depend-
ency might lead to a very large change in the architectural struc-
ture, e.g. if the dependency exists for technological reasons.

 Effort category D (delta 4): A new variation point leads to too high
an adaptation effort if the reference architecture is not able to sup-
port the required external variability. This may happen, for ex-
ample, if the domain artefacts support sequential processing, yet to
realise the delta, a variation point with the two alternative variants
‘sequential processing’ and ‘parallel processing’ is necessary. In
this case all components would have to be reengineered to enable
parallel access and synchronisation.

Table 15-1: Relation between deltas and architectural adaptation effort categories

 Category

Delta

Category A

No
adaptation

effort

Category B

Moderate
adaptation

effort

Category C

High
adaptation

effort

Category D

Too high
adaptation

effort

1. New variant
X X

2. Adaptation of
variability
dependencies

X X X

3. Adaptation of
constraint
dependencies

X X X

4. New variation
point X X X

15.4 Analysis of Requirements Deltas 325

Example 15-9: Trade-off Decision

The stakeholder requires the following functionality: “The home
owner shall be able to send a request about the door lock status via
mobile phone.” Yet, the product line provides the presentation of the
door lock status only via the Internet. Now the stakeholder has the
following alternatives:
1. Insisting on the mobile phone solution. Then the development

organisation may realise the requirement as described above. This
decision causes realisation effort that depends on the assignment to
one of the described categories.

2. Accepting the Internet solution and giving up the requirement
regarding the mobile phone. Then the stakeholder requirement is
adapted (and is satisfied by the domain requirements artefact). The
realisation effort will be very small because this stakeholder
requirement can be fulfilled completely by reusing domain arte-
facts.

Table 15-1 shows the basic relations between the types of variability model
deltas introduced above and the four categories of architectural adaptation
effort. Variability deltas are depicted as rows in the table. Each column
represents a category of architectural adaptations. A grey-filled table cell
with an “X” indicates that the corresponding delta is likely to fall within the
particular adaptation effort category.

When the stakeholders (and the application requirements engineer) get feed-
back from application design about the estimated realisation effort for a vari-
ability model delta and/or a requirements artefact delta, they have to decide
between the following alternatives:

The application variability model and/or the application requirements
artefacts are adapted to fulfil the stakeholder requirement. In other
words, the delta is realised.

The stakeholder adapts the requirement (which means the stakeholder
might only get an 80% solution).44 In this case no additional implemen-
tation is needed and the domain artefacts can be reused without
changes.

The stakeholder requirement as well as the application variability model
and/or the application requirements artefacts are adapted, i.e. the stake-
holder requirement is partially fulfilled.

44 An 80% solution represents an application that fulfils most of the stakeholder’s needs but involves

certain compromises about stakeholder requirements on the one hand and realisation effort on the other
hand.

Assignment of deltas
to effort categories

Decision about
requirements

Realisation
of the delta

Reuse of domain
requirements
artefacts

Partial realisation
of the delta

326 15. Application Requirements Engineering

The stakeholder decides that the requirement should not be realised due
to the high adaptation effort (see the second alternative in Example
15-2).

In the case of a high adaptation effort, but also in other situations, the
orthogonal variability model and the associated requirements artefacts pro-
vide assistance in finding an acceptable trade-off solution. The variability
model presents options that can be chosen instead of realising the original
stakeholder requirement. The stakeholder can select the best possible solu-
tion provided by the product line. Example 15-10 illustrates the support of a
trade-off decision.

Example 15-10: Support for Trade-off Decisions

The variability model depicted in Fig. 15-10 contains the variation
point ‘home security by’. The stakeholder requirement under consid-
eration demands outdoor intrusion detection via photo electric guard.
The product line provides the feature ‘outdoor motion detection’.
Thus, a delta between the stakeholder requirement and the domain
artefacts occurs. During the discussion with the stakeholder about the
estimated realisation effort of this delta, the application requirements
engineer uses the variability model to show the stakeholder possible
alternatives. The engineer presents two alternatives with regard to
home security: ‘camera surveillance’ and ‘motion detection’. The
description of the corresponding features may cause the stakeholder to
resort to one of these alternatives.

15.5 Documentation of the Application Requirements

The results of the activities described in Sections 15.3 and 15.4 have to be
documented in the application requirements specification. The specification
is the basis for the other application engineering sub-processes and defines
all application requirements. The application requirements specification
includes:

The application requirements artefacts that correspond to domain
requirements artefacts including the traces to the respective domain
requirements artefacts
This part of the documentation contains all application requirements
artefacts that are reused without adaptations. It consists of the common-
alities and the bound variation points, i.e. variation points that are bound
to the selected variants.

Removed stakeholder
requirement

Support of
trade-off decisions

Contents of the
specification

Reused
requirements

15.5 Documentation of the Application Requirements 327

The application variability model
This part of the documentation describes the application variability
model with the selected variants, i.e. with the variability bindings.

The variability model deltas including the traces to the original
variability model elements
Variability model deltas are included in the application variability
model.

The relation of the application requirements artefacts to the selected
variants in the application variability model
This part of the documentation captures the traces between the require-
ments and the variants that are selected for the application.

The requirements deltas including the traces to the original domain
requirements artefacts
This part of the documentation contains all requirements artefacts that
are new or have been modified specifically for the application.

The traces to domain requirements artefacts contained in the application
requirements specification are an essential means to support the reuse of
domain artefacts in application design, application realisation, and applica-
tion testing. The bindings of the variability in the application requirements

Fig. 15-10: Example of supporting trade-off decisions

Application
variability model

Application
variability
model deltas

Traces to selected
variants

Requirements
deltas

Traceability

328 15. Application Requirements Engineering

artefacts provide the basis for deriving the bindings for the variation points
in the reference architecture, in the components, and in the test artefacts. The
traces of changes to the variability model enable, for example, the applica-
tion architect to refine the variability model deltas with respect to architec-
tural variability. The traces from modified requirements artefacts to the
original domain artefacts enable the application architect to identify the cor-
responding artefacts of the reference architecture and adapt them accord-
ingly.

15.6 Differences from Single-System Engineering

Requirements engineering in single-system development encompasses the
elicitation, validation, negotiation, and documentation of requirements (see
e.g. [Pohl 1997]). In addition, continuous requirements management has to
ensure that the specified requirements are always up to date.

The application requirements engineering sub-process in software product
line engineering includes four major activities that differ from requirements
engineering activities in single-system engineering:

The communication of external variability to stakeholders
The goal of this activity is to communicate the variation points, vari-
ants, and associated requirements to the stakeholders. The results of this
activity are a set of variants that have to be bound for the considered
application and a set of deltas between the application requirements
artefacts and domain requirements artefacts.

The evaluation of the realisation effort for requirements deltas
The goal of this activity is to evaluate the impact of deltas on the vari-
ability model, the requirements artefacts, the reference architecture, etc.
Based on the estimated effort, the stakeholder decides whether a delta
should be realised or not.

The documentation of application requirements
The goal of this activity is to define the application requirements and to
record traceability links between the domain requirements artefacts and
application requirements artefacts. The result of this activity is the
application requirements specification.

The documentation of variability bindings
The goal of this activity is to document the bindings of the variation
points defined in the domain variability model. The result of this activ-
ity is the application variability model.

Requirements
engineering activities

Specific
activities

Communication
of variability

Deltas

Traceability

Variability
bindings

15.7 Summary 329

15.7 Summary

The goal of application requirements engineering is to elicit stakeholder
requirements for the application and map the stakeholder requirements to
common and variable domain requirements artefacts. Thereby domain
requirements artefacts should be reused as much as possible. The reused
common and variable domain requirements artefacts become part of the
application requirements specification. The bindings of the variation points
defined in the domain variability model are documented in the application
variability model.

If the stakeholder requirements for the application cannot be satisfied by
reusing common or binding variable domain requirements artefacts, applica-
tion-specific requirements artefacts may be introduced. Since these artefacts
differ from the domain requirements artefacts, so-called requirements deltas
arise. In addition, the application variability model may be adapted leading
to deltas between the application variability model and the domain variabil-
ity model. Application architects estimate the effort required for realising the
application-specific requirements. This estimation is taken into account for
deciding if the deltas are realised in the application or not. If it is decided to
realise the deltas, the application requirements engineers adapt the applica-
tion requirements artefacts and/or the application variability model to satisfy
the stakeholder requirements.

Reuse of domain
requirements
artefacts

Realising
deltas

16
Application

Design

In this chapter you will learn:

o About the interrelations of the application design sub-process with the
application requirements engineering, domain design, and application reali-
sation sub-processes.

o How to derive an application architecture from the product line reference
architecture based on the application requirements.

o How to bind variability in the reference architecture.
o How to determine realisation costs of adaptations of the domain artefacts

required for an application.

Frank van der Linden

332 16. Application Design

16.1 Introduction

The main goal of the application design sub-process is to produce the
application architecture. The application architecture is a specialisation of
the reference architecture developed in domain design. Application archi-
tects bind the variability of the reference architecture and introduce applica-
tion-specific changes according to the application requirements specifica-
tion. The application architecture is passed on to application realisation
where the reusable components and interfaces are assembled and where
application-specific components and interfaces are developed. The sub-pro-
cesses and artefacts closely related to the application design sub-process are
highlighted in Fig. 16-1. The major information flows between application
design and its related sub-processes are shown in more detail in Fig. 16-2.

16.1.1 Interrelation with Application Requirements Engineering
Application requirements engineering is responsible for developing the ap-
plication requirements specification. The specification includes the applica-

Goal of
application design

Fig. 16-1: Sub-processes and artefacts related to application design

Application
requirements

16.1 Introduction 333

tion variability model as well as all application requirements, including the
requirements reused from the domain artefacts and the application-specific
requirements. It also contains traceability links to domain artefacts as well as
the relation to selected variants in the variability model. The entire applica-
tion requirements specification is passed on to application design (in Fig.
16-2).

Application design supports trade-off decisions made in application require-
ments engineering by determining the estimated realisation effort (in Fig.
16-2). The trade-off decisions about application-specific requirements are
part of the negotiation with stakeholders in the application requirements
engineering sub-process.

16.1.2 Interrelation with Domain Design
Domain design develops the reference architecture, which is the basis for the
application architecture. The application architect binds the architectural
variability according to the bindings defined in the application variability
model. The reusable domain artefact selection indicates the reusable domain
artefacts (in Fig. 16-2).

The application architect provides feedback through requests for additional
and altered design (first bullet of in Fig. 16-2) that may lead to an im-
provement of the reference architecture. Furthermore, application design de-
livers design artefacts, which have to be reengineered for flexibility and
reusability and incorporated into the platform, to domain design (second
bullet of in Fig. 16-2).

Realisation
effort

Reference
architecture

Feedback from
domain design

Application
Realisation

Domain
Design

Application
Requirements
Engineering

Application
Design

Application requirements
specification

Application
architecture

3 Requests for additional / altered
design
Design artefacts to be integrated
into the platform

Reference architecture
Reusable domain
artefact selection

Design errors
Effort evaluation of
requirements deltas

5

4

62

1

Fig. 16-2: Information flows between application design and other sub-processes

334 16. Application Design

16.1.3 Interrelation with Application Realisation
Application realisation builds the application based on the application archi-
tecture (in Fig. 16-2). The application architecture determines the struc-
ture of the application to be built as well as the rules how to build it, which
are contained in the texture. The application architecture also determines the
configuration of reused domain components and interfaces that are part of
the application as well as their interrelation with application-specific compo-
nents and interfaces.

Application realisation provides feedback on all kinds of design errors (in
Fig. 16-2) that emerge during realisation and have to be solved by the archi-
tects. These include, amongst the normal design errors, components and
interfaces that turn out not to be reusable, and configurations that do not
work properly.

16.2 Development of the Application Architecture

An application architect has similar responsibilities as a traditional architect.
As such, abstraction, modelling, simulating, and prototyping are activities
that are performed by the application architect. However, all those activities
have to be performed only for the application-specific parts. The reference
architecture includes a lot of decisions that can be reused in application
engineering. The application architect starts with the reference architecture
and specialises it towards the application architecture. The reference
architecture models are specialised through the binding of variants according
to the bindings in the application variability model and by adding applica-
tion-specific parts.

Example 16-1: Application-Specific Abstractions

The home automation example employs domain abstractions for
authentication such as “authentication key” and “authentication algo-
rithm”. A new application is planned that supports iris scan
authentication, a feature that is not yet supported by any other product
in the product line. Consequently, there are no abstractions available
for iris scan authentication. The architect adds new abstractions such
as “iris map” and “iris pattern” to support the new feature.
The platform provides abstractions to deal with quality features, such
as safety, security, and performance. The new application needs pre-
ventive maintenance of hardware parts that fail frequently. The appli-
cation architect thus provides abstractions dealing with maintenance,
e.g. “error level” and “error rate”.

Application
architecture

Design
errors

Specialisation of the
reference architecture

16.2 Development of the Application Architecture 335

16.2.1 Application-Specific Modelling
The application architect introduces abstractions that are necessary for the
specific application at hand, i.e. the architect adds abstractions for applica-
tion-specific aspects that are not covered by the domain artefacts. The add-
itional abstractions are usually related to application-specific requirements.
Especially when there are very strict quality requirements, new application
abstractions have to be introduced. For instance, if performance require-
ments of the application are stricter than defined in the product line, the
application architect adds abstractions for threads’ synchronisation and com-
munication. Also in the case where the application supports a feature that is
not provided by the product line, abstractions related to the new feature are
added (Examples 16-1 and 16-2). The abstractions of the application archi-
tecture have to be integrated with the abstractions defined in the reference
architecture to obtain a consistent application architecture.

Example 16-2: Lock Control Application Design Activities

An application is planned for a mid-range system, including both a
sliding door and an iris scan identification feature. Both are new fea-
tures, and the application is the first one that has to support them. In
addition, the application has a normal swinging door and the basic
keypad commands for situations without iris scan. For instance, dur-
ing the recognition phase of a specific iris the keypad is needed. The
application architect provides the necessary abstractions of both new
features and relates them to the abstractions in the reference architec-
ture dealing with door control and authentication. The models get new
elements related to the abstractions of the reference architecture.
There are components or plug-ins for ‘sliding door lock actuator’,
‘sliding door open/close sensor’ and ‘iris scan authentication’. A
thread is added to perform the iris scan authentication. In order to
ensure that this thread does not interfere with the other threads, an
existing application is enriched with a mock-up iris scan algorithm
that occupies the processor and the memory for one-half to three-
quarters of a second and answers “no” or “yes” randomly. This system
is used to simulate the additional thread.

The application-specific abstractions have connections to the concepts and
models defined by the reference architecture. Application-specific models
are built for establishing and dealing with these connections. Additional
models are built to accommodate application-specific concerns, such as spe-
cific behaviour or specific quality requirements.

Application-specific
abstractions

Application-specific
models

336 16. Application Design

As the application architecture is more concrete than the reference architec-
ture, more realistic simulations can be performed. Application architects
employ simulations to get an insight into the properties of a specific configu-
ration and to evaluate application-specific variants (see Example 16-2). For
example, performance simulations can be used to determine the configura-
tion that satisfies the application-specific performance requirements best. As
for simulation, prototyping can be more concrete at the application level, and
relate to application-specific requirements.

16.2.2 Binding of Variants
The application architect has to bind the variants for the variation points of
the reference architecture as defined in the application variability model. The
quality of the reference architecture determines whether this is an easy job. It
depends on:

The way mass customisation is incorporated; this determines which
styles, structures, and patterns are used to deal with variability.

The abstractions used, determining which variation points and variants
are available.

The traceability between variability in domain requirements artefacts
and the reference architecture.

Example 16-3: New Variants in the Application Architecture

The design of the door and window management subsystem for the
considered application has to include additional functionality for
sliding doors and for iris scan identification. The application architect
reuses the keypad and swinging door functionality. For the new fea-
tures, new components have to be made; see Fig. 16-3. For the sliding
door feature, two application-specific plug-in components are needed:
a ‘sliding door lock actuator plug-in’ component and a ‘sliding door
sensor plug-in’ component. Note that the basic lock functionality does
not need a door sensor. For the iris-scan feature, two plug-ins are
needed: an ‘iris control plug-in’, which records the iris scan to initiate
commands, and an ‘iris authentication plug-in’, which performs the
actual authentication algorithm. Interfaces of the reference architec-
ture are reused to connect the new components to the remainder of the
door functionality. No new interfaces are needed, and no new patterns
or frameworks either.

To reduce the work of application realisation as much as possible, reusable
domain artefacts have to be used whenever possible. The reference architec-

Simulation and
prototyping

Variants of reference
architecture

Reusable domain
artefacts

16.2 Development of the Application Architecture 337

ture determines common components and interfaces. By binding the vari-
ation points, the application architect selects additional domain design arte-
facts that can be reused. If no domain artefact is available, the application
architect has to define an application-specific one to be realised during appli-
cation realisation.

Certain variants have to be realised only for one single application. These
variants may involve new components (Example 16-3) or interfaces, but
sometimes also larger parts of the structure, such as configurations of com-
ponents and interfaces, new patterns (Example 16-4), and even new compo-
nent frameworks.

Example 16-4: New Patterns

An application is specified that uses Bluetooth [Bluetooth 2004] to
connect a wireless device for all kinds of user interaction. Since the
product line does not yet have any wireless communication, several
components have to be added to the application architecture. This also
involves the introduction of new interfaces between them, and of cor-
responding patterns. For instance, there is a pattern involving generic
Bluetooth functionality with plug-in components for several specific
input devices. This pattern has to be integrated with the existing com-
ponents dealing with user control.

Design artefacts
for new variants

New Components in the Application ArchitectureNew Components in the Application Architecture Variability DiagramVariability Diagram

VP

Authentication

VP

Door Sensor

VP

Door Actuator

Sliding
Door

V

Sliding
Door

V

Iris

V

Bind
authentication

Bind
user

control

Bind
lock
actuator

Bind door
sensorVerify

Door
status

Actuate
lock

Iris
Control
Plug-in

Iris
Authentication

Plug-in

Sliding Door
Sensor
Plug-in

Sliding Door
Lock Actuator

Plug-in

Fig. 16-3: New variants in lock control

338 16. Application Design

When designing the application-specific parts, the architect has to consider
the additional effort in application realisation. Often, there are not enough
personnel and time available to realise many specific components from
scratch. The architect has to evaluate carefully what can be implemented
specifically for a single application with regard to the available resources.
The amount of available resources for realising the application has to be
negotiated with application requirements engineering, the stakeholders, and
product management. For normal application development, the amount of
resources may be scarce, which means that not much additional work can be
done. In applications that are of strategic relevance, e.g. if the application is
a lead product, or the client is the most important client, additional resources
may be allocated to the project. Section 16.4 treats this topic in more detail.

16.2.3 Determining the Configuration
The specific configuration of components in an application is the result of
the binding of the variation points with the selected variants. Certain domain
components are not required in the application and therefore are absent. If
different variants that are realised in different plug-in components are simul-
taneously present in the application, more than one plug-in is needed. Appli-
cation-specific components are designed as additional plug-ins, if possible.

Application ArchitectureApplication Architecture Variability DiagramVariability Diagram

VP

Authentication

VP

Door Sensor

VP

Door Actuator

Electronic
Authentication
Lock Plug-in

Keypad
Control
Plug-in

Basic Lock
Actuator
Plug-in

Keypad
Authentication

Plug-in

User Control
Manager

Lock Control

Iris
Authentication

Plug-in

Iris
Control
Plug-in

Sliding
Door

V

Sliding
Door

V

Swing
Door

V

Keypad

V

Iris

V

Authorise
Bind
authentication

Authentication
manager

Bind
user

control

Lock
control

Bind
lock

actuator

Bind door
sensor

Bind
lockAuthorise

Verify Verify

Door
status

Sliding Door
Sensor
Plug-in

Actuate
lock

Actuate
lock

Sliding Door
Lock Actuator

Plug-in

Authentication
Manager

Fig. 16-4: Lock control application with sliding doors and iris scan

Realisation
effort

Variants determine
required components

16.2 Development of the Application Architecture 339

In this case they are connected at the places that are planned for them in the
reference architecture.

Example 16-5: Lock Control Application Variants

Figure 16-4 shows a part of the application architecture of the new
application with both an additional sliding door and iris scan identifi-
cation. Reusable domain components are depicted as white boxes.
New application-specific components are depicted as grey boxes.
These are the same as in Fig. 16-3. The configuration resembles the
domain structure, but certain plug-in components are present twice,
once for the basic functionality and once for the additional, new fea-
tures. Moreover, the plug-in for manual door locks is absent. Basic
functionality is provided by the standard, reusable domain plug-in
components. The ‘sliding door lock actuator plug-in’ component is put
in parallel45 with the ‘basic lock actuator plug-in’ component. The
‘sliding door sensor plug-in’ component is the only door sensor plug-
in since, for the basic lock functionality, a door sensor is optional and
is not used in this application. The two plug-in components, ‘iris con-
trol plug-in’ and ‘iris authentication plug-in’, are put in parallel with
the plug-in components for keypad authentication.

16.2.4 Consistent Selection of Component Variants
The application architect is in charge of deciding about the variants that have
global consequences on the application. As the information about variants is
distributed over the different components, care has to be taken to select a
consistent configuration of component variants.

Part of the product line variability deals with the hardware specifics of the
application, such as memory size and amount of peripheral hardware. Hard-
ware-specific variations are either bound by selecting the appropriate com-
ponents or by setting the configuration parameters of one or more compon-
ents to the proper values.

Example 16-6: Hardware-Related Variability

Each home automation system has a specific set of sensors and
actuators in a specific configuration with other hardware, such as
routers or switches. The application uses one of several pre-selected
protocols, each suitable for a specific network configuration. Finally
there is a limited memory size and bandwidth available.

45 This means that it is connected to the same interfaces of other components, and both are present

together.

Global impact
of variants

Hardware-specific
configuration

340 16. Application Design

Example 16-7: Consistency of Component Variants

The application with the sliding door and iris scan has a single sliding
door and two swinging doors. Each swinging door needs one actuator.
The sliding door needs two, one at the top and one at the bottom.
Several variants are selected based on this hardware configuration:
Components Variant
Lock control map of three doors to four door lock actuators
Door lock plug-ins three doors, their properties, and the identifica-

tion of their authentication algorithms
Actuator activation and control of each of the four actu-

ators separately
Application design uses one or more configuration files to keep such
configuration information consistent. Application realisation has to
use the information in these configuration files.

16.3 Feedback of Application Artefacts to the Domain

Variants that are designed by the application architect may be usable for
other applications as well. This also holds for other technical solutions provi-
ded by the application architect. The application architect is in discussion
with the domain architect to identify such possible reusable artefacts, which
may have a wider scope than the present application. In many cases the arte-
facts are first produced for a single application. This is a test bed for the
domain architect. If everything works fine and product management decides
that the new artefacts should be integrated into the domain artefacts, the
domain architect takes over, and takes care of a redesign to make the arte-
facts reusable (Example 16-8).

Example 16-8: Integration of Application Artefacts into the Platform

Since the application with sliding doors and iris scan is a commercial
success, the programme manager asks to allow the corresponding
requirements to be reused in other applications. They are incorporated
as variants of existing domain requirements artefacts for door control
and authorisation. The domain architect takes over the application
architecture for these parts, provides a redesign of the application
design artefacts, and initiates adaptation during domain realisation.

Application as test
bed for the domain

16.4 Effort and Cost of Variants 341

After an application artefact has been successfully integrated into the plat-
form, the application architect may decide to use the reusable artefact in new
versions of the application instead of the non-reusable application-specific
artefact which was originally built for this application. This reduces the
amount of application-specific artefacts that have to be maintained.

16.4 Effort and Cost of Variants

The cost of selecting a variant for the application architecture depends on
what has to be done to realise the variant in the application. If the variant is
realised in the platform, the cost is small (category A, see Section 15.4.4).
The main cost and effort are caused by determining the right parameters. In
the case where application-specific components have to be developed, the
costs are typically much higher. When the application-specific components
provide and use only domain-specific interfaces, the development cost and
effort are still moderate (category B, see Section 15.4.4). In many cases,
application realisation can use other components as templates for the
application-specific components. In the case where a large new part of the
structure has to be provided, costs and effort are typically high (category C,
see Section 15.4.4). In that case, new interfaces have to be provided, which
have to be realised as well. In addition, simulation and validation have to be
performed before the application architecture is finished. In cases where
large parts of the architecture have to be added, e.g. the introduction of a
new framework supporting a new (variant of a) feature, the changes may be
very large, to such an extent that they cannot be realised using the reference
architecture (category D, see Section 15.4.4).

The following factors influence the required effort and costs:

Number of new components to be realised.

Number of interfaces to be realised.

Number of small component and interface adaptations – care has to be
taken that large component and interface adaptations cost almost the
same as, or even more than, writing a new one.

Simulations performed to verify the correct behaviour of adaptations
and extensions – the need for simulation indeed depends on the kind of
changes, but when new quality requirements are involved simulation is
often inevitable.

Adaptations to cross-cutting aspects – this may require adaptations to
all, or many, components. It may require the addition of new interfaces
to be provided or used by many components. Typically this also
involves costs of simulations or other ways to verification.

Replacing non-
reusable artefacts

Realisation
cost

Cost
factors

342 16. Application Design

Tests to be performed on reused components and configurations.

Tests to be performed on new components – this takes more effort,
since new test cases have to be created.

To estimate the effort and costs the organisation may have standard figures
that apply for most situations. In specific situations, the organisation may
have to adapt the standard costs, e.g. if a change does not differ much from
another one, the costs may be smaller. If a complete, new design has to be
introduced, costs may be estimated higher. The cost of introducing a new
variant is communicated to the requirements engineers and other stakehol-
ders, who, in the end, decide whether the costs are worth the value they
bring. If the costs are too high, adaptations of the application requirements
may lead to affordable development costs.

In cases where the application is used as a test bed for a new feature, add-
itional costs may be acceptable to the organisation since the new feature can
also be reused within future applications of the product line.

16.5 Differences from Single-System Engineering

The application architect has to specialise the reference architecture to an
application architecture for a single application. This means that:

A large part of the application architecture is determined by the refer-
ence architecture and does not have to be designed by the application
architect. However, the reference architecture may be under-specified,
meaning that application-specific artefacts have to be designed by the
application architect.

Variation points in the reference architecture are bound to application-
specific variants according to the bindings of the variability defined in
the application variability model. Thereby domain design artefacts are
reused.

Many application-specific requirements are specialisations of domain
requirements. This gives a first indication of where the architecture has
to be specialised.

The texture in the reference architecture not only captures the common-
ality within a single system but also defines commonality that is present
within all applications. The application architecture must conform to the
texture. Texture has an additional role in providing common ways to
deal with variability in the application architecture.

Cost
estimation

Cost amortisation
for reusable features

Reuse of reference
architecture

Traceable
requirements

Common rules
from texture

16.6 Summary 343

Software product line engineering means that the activities of the
application architect require less effort than in single-system software
engineering. If no application-specific adaptations are required, the
application architecture can be established by binding the defined
variation points with predefined variants.

16.6 Summary

Application design has the same role as single-system software design. The
application architecture determines the overall structure of a particular appli-
cation and must be capable of satisfying the application requirements. The
application architect uses the reference architecture, which provides a design
for many of the application requirements that the application architect must
satisfy. Moreover, reusable components and interfaces, and configurations of
them, are provided by the reference architecture. Therefore, application
architects can focus their attention on the application-specific parts, thereby
saving a lot of time.

In discussion with the domain architect, certain solutions and application
artefacts may become candidates for integration into the platform. Usually
the integration takes place after the application is finished and the properties
of the developed artefacts are validated. The application architect has the
responsibility to provide the domain architect with information about such
possible artefacts.

Reduced
effort

Large-scale
reuse

Source of future
domain artefacts

17
Application
Realisation

In this chapter you will learn:

o About the interrelations of the application realisation sub-process with the
application design, domain realisation, and application testing sub-processes.

o How to bind the variability according to the application design and the appli-
cation requirements.

o How to derive application-specific components and interfaces from the appli-
cation architecture and thereby guarantee a high degree of reuse.

o How to realise a consistent application configuration.

Frank van der Linden

346 17. Application Realisation

17.1 Introduction

The goal of application realisation is to develop applications that can be
tested and brought to the market after ensuring a sufficient quality. Applica-
tion realisation provides the detailed design and implementation of applica-
tion-specific components and configures them with the right variants of the
domain assets into applications. The main results of application realisation
are the application-specific components and interfaces, the selected variants
of reused components, and the application configuration. The sub-processes
and artefacts closely related to the application realisation sub-process are
highlighted in Fig. 17-1. The main information flows between application
realisation and its related sub-processes are depicted in Fig. 17-2.

17.1.1 Interrelation with Application Design
Application design provides the application architecture which determines
the configuration of components and interfaces, which are either reused from
the platform or designed specifically for the considered application (in
Fig. 17-2).

Goal of application
realisation

Fig. 17-1: Sub-processes and artefacts related to application realisation

Application
architecture

17.1 Introduction 347

Application realisation provides feedback with regard to all kinds of design
errors (in Fig. 17-2) that are uncovered during realisation and which have
to be corrected by application design. An example of such an error is a con-
figuration that does not work properly.

17.1.2 Interrelation with Application Testing
Application realisation delivers a complete application (first bullet of in
Fig. 17-2), ready for testing. Application testing performs unit, integration,
and system tests based on the application requirements, design, and realisa-
tion artefacts (i.e. the detailed design of components and interfaces). Appli-
cation realisation supports application testing by providing the interface
descriptions (second bullet of in Fig. 17-2) required, for instance, for the
unit test.

As feedback, application realisation gets test results including the acceptance
or rejection of the application and problem reports describing in which way
the test item fails (in Fig. 17-2). The feedback is used to improve the
application until acceptance is reached. Moreover, application testing reports
defects in interface descriptions which are detected in application testing as
they hamper the development of test cases.

17.1.3 Interrelation with Domain Realisation
The input for application realisation from domain realisation consists of
reusable components and interfaces (in Fig. 17-2) designed, implemented,
and ready for reuse. In order to be able to integrate these artefacts into an
application, domain realisation additionally provides configuration support.

Design
errors

Executable
application

Test
results

Reusable components
and interfaces

Application
Testing

Domain
Realisation

Application
Design

Application
Realisation

Application architecture Application
Interface descriptions

5

Requests for additional /
altered realisation
Realisation artefacts to be
integrated in domain artefacts

Reusable
components and
interfaces
Configuration
support

Test results
Problem reports
Defects in interface
descriptionsDesign errors

3

6

42

1

Fig. 17-2: Information flows between application realisation and other sub-processes

348 17. Application Realisation

Application realisation provides feedback through requests for additional
and altered realisation (first bullet of in Fig. 17-2). The requests pertain to
functionality or quality that should be provided by the platform. Further-
more, application realisation develops application-specific components and
interfaces that may possibly be integrated into the domain artefacts (second
bullet of in Fig. 17-2).

17.2 Configuration

Domain realisation delivers components and interfaces for reuse by applica-
tion realisation. Interfaces are reused without changes, but components often
have internal variation points, which have to be bound.

Many interfaces between the components of an application are reusable
domain interfaces. Most of the application components carry them as they
are an important means to support the texture and to implement variation
points. Different variants of a single component often require and provide
the same interfaces. Plug-in components provide the interfaces required by a
particular component framework. Moreover, the architectural texture may
demand that each component provides aspect-specific interfaces (Section
11.5). Such interfaces are realised during domain engineering but are heavily
used during application engineering.

Reusable domain components often have internal variation points. Domain
realisation provides mechanisms to support variant selection. Variants within
a component can be selected, for instance, by parameter bindings. Guided by
the application architecture and the application variability model, application
realisation selects the proper variants of the components to be part of the
application. For each reusable component, application realisation determines
the right choice of component parameters to bind the required variant.

Example 17-1: Lock Control Component Reuse

Suppose that the application has one sliding door with two actuators
and one sensor, and two swinging doors, each with one actuator but no
sensor. The ‘lock control’ component is reused. It has to be configured
in such a way that each of the doors is controlled using the right sen-
sors and actuators.

In many cases, several components need to know the same kind of informa-
tion. This may result in a lot of redundancy in the set of parameters. Human
error in providing the parameters may lead to inconsistencies. Application
realisation has to keep track of the parameters and their relationships in order
to keep the configuration of components consistent. The quality of the refer-

Feedback to domain
realisation

Use of domain
interfaces

Reusable
component variants

Parameter
consistency

17.2 Configuration 349

ence architecture and the resulting component designs determine whether it
is a simple or a complex task to select component parameters consistently.
To reduce the redundancy of parameters, domain design and realisation may
introduce configuration components or employ tool support [V. Ommering
et al. 2000].

Example 17-2: Binding Variation Points in Components

The application with sliding doors and iris scan reuses many platform
components and interfaces, e.g. the ‘user control manager’, ‘authenti-
cation manager’, and ‘lock control’ components of the door control
framework (Fig. 17-3). They have to be configured to be able to deal
with the specific situation of having both keypad and iris scan, two
swinging doors, and one sliding door. Domain realisation provides
them in such a way that they get the necessary configuration informa-
tion from plug-in components that are bound to them. The parameter
information does not have to be provided twice. Certain plug-in com-
ponents are reused as well:
 ‘Keypad control plug-in’ and ‘keypad authentication plug-in’ are

reused by many applications. Their variants are chosen according
to the authentication-key formats, e.g. four digits. Moreover, there
may be variants that differ in the handling of situations when too
few or too many keys are pressed. Since those components and key
formats are already used by other applications, the configuration
information can be reused.

 ‘Electronic authentication lock plug-in’ is one of the six kinds of
reusable lock plug-in components defined in Example 12-3. It
needs to be configured to be able to deal with two different authen-
tication algorithms. The specific parameters of these algorithms are
available in the respective components that deal with these algo-
rithms. The main function of the component is to select the right
algorithm in the right situation.

 ‘Basic lock actuator plug-in’ is reused in many applications with
the same kind of swinging doors. For this component, configur-
ation parameters like timing and speed have to be provided.

350 17. Application Realisation

17.3 Realisation of Application-Specific Components

Application-specific components are realised just as in single-system engin-
eering. However, in many cases, domain interfaces can be reused for appli-
cation-specific components. For instance, an application-specific plug-in
component has to carry all interfaces that are determined by the domain
architecture for such a plug-in.

Application-specific components and interfaces are needed whenever there
is no suitable reusable domain component available. Making application-
specific components reusable is not of interest for the application developer
whose focus is on a single application only. If the component has to be inte-
grated into the domain artefacts, domain realisation takes over at an appro-
priate time, not disturbing application realisation. However, an application
component may resemble already existing domain components. For instance,
it may be the case that the application component and some reusable compo-
nents are variants of a common variation point. In that case, it is a good idea
to use the design of the existing variants as input for the design of the new
variant.

Reused Application ComponentsReused Application Components Variability DiagramVariability Diagram

VP

Authentication

VP

Door Actuator

Electronic
Authentication
Lock Plug-in

Keypad
Control
Plug-in

Basic Lock
Actuator
Plug-in

Keypad
Authentication

Plug-in

Authentication
Manager

User Control
Manager

Lock Control

Sliding
Door

V

Swing
Door

V

Keypad

V

Iris

V

Authorise
Bind
authentication

Authentication
manager

Bind
user

control

Lock
control

Bind
lock

actuator

Bind
lock

Authorise

Verify

Actuate
lock

Fig. 17-3: Reused domain components and interfaces

Reusable component
adaptations

17.4 Building the Application 351

Example 17-3: Application-Specific Components for Lock Control

The application architecture is available for an application that
includes both a sliding door and an iris scan identification feature.
Since there are no reusable components available for these features,
the application architect determines new components for ‘sliding door
lock actuator plug-in’, ‘sliding door sensor plug-in’, ‘iris control plug-
in’, and an ‘iris authentication plug-in’; see Fig. 17-4. All these
components reuse existing interfaces:
 ‘Bind user control’
 ‘Bind lock actuator’ and ‘actuate lock’
 ‘Bind door sensor’ and ‘door status’
 ‘Bind authentication’ and ‘verify’

Application-specific Components and their InterfacesApplication-specific Components and their Interfaces Variability DiagramVariability Diagram

VP

Authentication

VP

Door Sensor

VP

Door Actuator

Sliding
Door

V

Sliding
Door

V
Swing
Door

V

Keypad

V

Iris

V

Bind door
sensor

Door
status

Sliding Door
Sensor
Plug-in

Bind
lock
actuator

Actuate
lock

Sliding Door
Lock Actuator

Plug-in

Iris
Authentication

Plug-in

Bind
authentication Verify

Bind
user

control

Iris
Control
Plug-in

Fig. 17-4: Application-specific components

17.4 Building the Application

The final task of application realisation is the realisation of the configuration
that is actually delivered as the application. Component variants have to be

352 17. Application Realisation

compiled, linked, and deployed on the actual hardware. In all these steps
variability may be bound, depending on the configuration mechanism used.46

A component variant is realised as a collection of files. The files encompass
source code files, header files, and parameter definitions. Interfaces are usu-
ally realised in one or more header files. The header files for required inter-
faces are necessary to be able to compile the component variant. Note that
the provided interfaces do not need to be included themselves. Linking com-
bines the component variants to executables or dynamic link libraries. The
application is made up of one or more executables and dynamic link libra-
ries.

As in single-system engineering, over time, each component and interface
exists in several versions. New versions originate from maintenance as well
as from the incorporation of new requirements. The latter situation occurs
especially if a component is used for more than one application, which is the
normal situation for platform assets. The selection of component variants
also has to take into account the version to be used. A later version is often
better with regard to the quality of the component. Yet, it is possible that a
new version of a component cannot be introduced into an application as it is
not able to interact with other components. This may be due to changes in

46 For a list of possible configuration mechanisms, see Section 12.5.

Files for components
and interfaces

Lock Control ComponentsLock Control Components Variability DiagramVariability Diagram

VP

Door Sensor

VP

Door Actuator

Electronic
Authentication
Lock Plug-in

Authentication
Manager

User Control
Manager

Lock Control
Sliding

Door

V

Sliding
Door

V

Swing
Door

V

Authorise

Authentication
manager

Lock
control

Bind lock
actuator

Bind door
sensor

Bind
lockAuthorise

Door
status

Sliding Door
Sensor
Plug-in

Actuate
lock

Actuate
lock

Sliding Door
Lock Actuator

Plug-in

Basic Lock
Actuator
Plug-in

Fig. 17-5: Lock control configuration

Versions
and variants

17.5 Differences from Single-System Engineering 353

functionality, changes in quality support, and changes in interfaces, for
example. In addition, it may be the case that the application has a combina-
tion of components that has not yet been thoroughly tested yet.

Example 17-4: Lock Control Configuration

The application with the sliding door and iris scan is built from the
compiled components that make up the configuration. Figure 17-5
shows the configuration around the ‘lock control’ component. The
grey components are application specific and the white ones are
reusable domain components. The plug-in components know statically
to which component they have to connect, whereas the components
that provide the connection facility do not know the plug-in compo-
nents statically. Since only statically known connections can be linked
off-line, they are the only ones that are bound before loading the soft-
ware on the target machine. Thus the ‘authorise’ interface of the
‘electronic authentication lock plug-in’ component is bound on the
target hardware at initialisation time to the ‘lock control’ through the
‘bind lock’ interface. The ‘bind lock’ interface is statically known to
the ‘electronic authentication lock plug-in’ and already bound during
linking. During initialisation, the ‘electronic authentication lock plug-
in’ component announces its ‘authorise’ interface to the ‘lock control’
component using the ‘bind lock’ interface. If component support, such
as COM, .NET, or Java Beans, is available on the target machine, part
of the linking can be done based on that. But also in that case, the
statically known connections are bound first, and the dynamic ones
next.

During integration tests and during maintenance in the field, problem reports
are issued. Application engineering is responsible for resolving the reported
problems. When the problems are related to application-specific components
and interfaces, it is the responsibility of application realisation to fix them.
However, when the problem is related to domain artefacts, the problem
report has to be taken over by domain engineering for fixing.

17.5 Differences from Single-System Engineering

Application realisation provides a working application that is ready for test-
ing. The application is based on the application architecture and reuses
domain components and interfaces. This reduces realisation effort
significantly. This means that:

Responsibility for
fixing errors

Working
application

354 17. Application Realisation

The application developer selects variants of the reusable domain
components.

The reusable domain component variants should be consistent with each
other and conform to the application architecture.

The application is built by configuring application-specific and reusable
components and interfaces.

17.6 Summary

Application realisation deals with designing in detail, implementing, and
configuring components to produce an executable application. Interfaces are
reused from the platform without changes, but components often have inter-
nal variation points, which have to be bound, e.g. by providing values for
parameters. Newly developed application-specific components and special-
ised reusable components are configured and connected by their interfaces to
assemble the application. After assembly, the application can be tested and
deployed on the target hardware.

Realisation and
configuration

18
Application

Testing

In this chapter you will learn:

o About the interrelations of the application testing sub-process with the
application requirements engineering, application design, application reali-
sation, and the domain testing sub-processes.

o How to reuse domain test artefacts for a particular application.
o How traceability facilitates the reuse of domain test artefacts.
o A systematic way for deriving application test cases from domain test cases

based on application requirements, application design, and application reali-
sation artefacts.

o The principles of achieving sufficient test coverage in the system test.

Klaus Pohl
Andreas Reuys

356 18. Application Testing

18.1 Introduction

The goal of the application testing sub-process is to achieve a sufficient
quality of the application under test. Application testing thus complements
the testing activities of domain testing.

The sub-processes and artefacts closely related to the application testing sub-
process are highlighted in Fig. 18-1. Application testing reuses domain test
artefacts. The unit test in application testing requires input from application
realisation. The integration test requires input from application design, and
the system test is performed on the basis of application requirements. The
results of application testing are provided as feedback to the related sub-
processes. Figure 18-2 shows the information flows between application
testing and its related sub-processes.

Goal of
application testing

Related
sub-processes

Fig. 18-1: Sub-processes and artefacts related to application testing

18.1 Introduction 357

18.1.1 Interrelation with Application Requirements Engineering
Application system testing validates the created application against the
application requirements specification (in Fig. 18-2). The system test that
is performed in application testing employs the application requirements as
test references. The test must ensure that the application properly realises the
application requirements and that no requirement has been omitted.
Furthermore, the application variability model defines the variability bind-
ings for the application, and thus the variants that have been selected for the
specific application. Application testing binds the variation points in the
domain test artefacts according to the variability bindings in the application
variability model.

The creation of test cases is at the same time a validation of application
requirements. Requirements defects such as ambiguous or incomplete
requirements as well as errors in the configuration of variants are reported
back to application requirements engineering (in Fig. 18-2). Application
requirements engineers must correct these defects before application testing
can be completed.

18.1.2 Interrelation with Application Design
Application design determines the architecture of the application including
its static structure and its dynamic behaviour. The application architecture
(in Fig. 18-2) is used as input for application integration testing. Due to
the binding of the variation points, all components of the application are
available for testing. The components that are part of the application can be
separated into components that are reused from the domain artefacts and

Domain
Testing

7 8

Application
Design

Application
Requirements
Engineering

Application
Testing

Application
Realisation

Test results
Problem reports
Defects in interface
descriptions

Defects in
test artefacts
Test artefacts to
be integrated in
domain artefacts

Domain
test
artefactsRequirements

defects

Application
Interface
descriptions

Application
architecture

Application
requirements
specification

Defects in
design artefacts2 4 6

1 3 5

Fig. 18-2: Information flows between application testing and other sub-processes

Application
requirements

Requirements
defects

Application
architecture

358 18. Application Testing

application-specific components, which encompass modified domain com-
ponents as well as newly developed application-specific components. For
reused domain components, reusable test artefacts are available, e.g. if the
CRS (see Chapter 13) is applied.

During application integration testing, the application design is validated.
Test engineers must ensure that the variability in the design has been bound
properly and that the application design is testable. Whenever the test engin-
eer cannot fully determine the integration test cases and the data required for
a test case, an incompleteness or ambiguity has been detected. Any defects
in design artefacts (in Fig. 18-2) detected in application testing are
reported back to application design.

18.1.3 Interrelation with Application Realisation
Application realisation builds the application (in Fig. 18-2) and provides
the interface descriptions to be used as the test references for the unit test.
The application unit test validates the components, which have been newly
developed or modified by application realisation, but also repeats tests
already performed in domain testing. The different test levels and the corres-
ponding tests are described in more detail in Section 18.4. In addition,
application testing performs tests related to the binding of the variability as
explained in Section 18.3.

Application testing reports all test results, together with problem reports as
well as the uncovered defects in interface descriptions, back to application
realisation (in Fig. 18-2). The test results capture which test cases have
been performed and whether the object under test passed or failed the test.
The problem reports capture the observed deviations from the expected
behaviour, which the object under test should possess according to the test
reference. Defects in interface descriptions hamper test case design and must
be corrected before testing can be completed.

18.1.4 Interrelation with Domain Testing
In order to avoid developing tests from scratch for each application, domain
testing provides application testing with reusable test artefacts (in Fig.
18-2). In order to perform the tests, application test engineers must bind the
variation points in the domain test designs according to the application vari-
ability model.

Any defects in the domain test artefacts themselves are reported back to
domain testing (first bullet of in Fig. 18-2). In addition, application-
specific test artefacts (second bullet of in Fig. 18-2) created during
application testing may be passed on to domain testing. Domain testing may
integrate application-specific test artefacts into the domain artefacts, for

Defects in design
artefacts

Executable
application

Test
results

Domain test
artefacts

Feedback to
domain testing

18.2 Domain Test Artefact Reuse 359

example if the application-specific test artefacts are relevant for more than
one application.

18.2 Domain Test Artefact Reuse

The key idea of establishing test artefact reuse is to develop test artefacts
once for the entire product line, include them in the domain artefacts, and
reuse them for multiple applications. To achieve a sufficient degree of reuse,
domain test artefacts must be reused for common as well as for variable parts
of the application. Following the CRS (Definition 13-10), domain testing
prepares test cases with explicit common and variable parts. Test cases for
common parts can be reused as they are. For test cases that contain variabil-
ity the variation points must be bound according to the application variability
model before the test cases can be executed.

If the SAS (Definition 13-9) is applied, the test cases developed for the
sample application can be used as a basis for developing test cases for the
application under test. It is quite likely that the test cases of the sample
application have to be adapted. Therefore, the variants selected for the
sample application are compared with the variants selected for the
application under test. Based on the differences in the variability bindings,
the required adaptations of the test artefacts can be determined. However, in
case of large differences in the applications, significant rework might be
required to create the application test artefacts. Note that additional test cases
must be defined to validate application-specific requirements.

In the following, we elaborate on two essential prerequisites for establishing
an efficient reuse of test artefacts: dealing with variability and the use of
traceability links. We thereby focus on system tests. However, the basic
principles presented also hold for integration and unit tests.

18.2.1 Dealing with Variability
The application test engineer has to understand the variation points and vari-
ants defined in the domain artefacts and know how to bind the variability
defined in the domain test artefacts. Application test artefacts are built based
on domain test artefacts. The test plans, test cases, and test case scenarios
have to be adapted for the specific application. The application test engineer
thus has to learn how to bind the variability defined in the domain test arte-
facts according to the application variability model. Example 18-1 illustrates
the binding of variability in a domain test case scenario.

Implications
of the CRS

Implications
of the SAS

Focus on
system test

Binding
variability

360 18. Application Testing

: Tester door lock

enter tester data as valid

lay finger on scanner
grant access

enter PIN in keypad

grant access

use magnetic card
grant access

open door

: Tester door lock

enter tester data as valid

lay finger on scanner
grant access

open door

Variability
binding

Fig. 18-3: Example of variability binding in test case scenarios

Example 18-1: Dealing with Variability in Application Testing

The application test engineer of a home automation application con-
siders the domain test case scenario depicted on the left side of Fig.
18-3 (this scenario is explained in more detail in Section 8.3). The
domain test case scenario contains three variants: ‘fingerprint scan-
ner’, ‘keypad’, and ‘magnetic card reader’. According to the
application variability model (not depicted in Fig. 18-3), the variant
‘fingerprint scanner’ has been bound for the application under test. In
order to derive the application test case scenario, the test engineer
binds this variant also in the domain test case scenario. The result is
depicted on the right side of Fig. 18-3.

18.2.2 Use of Traceability Links
To allow for an efficient reuse of test artefacts it is necessary to support the
retrieval of the applicable domain test cases. Figure 18-4 presents the basic
idea. The trace information captured by application requirements engineer-
ing (Chapter 15) is used to detect the reused domain requirements artefacts.
From domain testing, it is clear which test artefact relates to which require-
ment. Thus, based on the domain requirements, the reusable domain test
artefacts can be retrieved. The domain test artefacts retrieved can be used to
test the application requirements which correspond to the domain require-
ments related to the domain test artefacts.

Retrieval of
test artefacts

18.2 Domain Test Artefact Reuse 361

Traceability is the first keystone for structured reuse. The second keystone is
the requirements delta information that is contained in the application
requirements specification. The deltas are the basis for determining whether
a test case can be reused without changes, must be adapted, or created anew.

A detailed process description for application testing defines when to record
and when to use trace information. Although we do not deal with trace
information at this level of detail, clear rules for the recording and usage of
trace information are required in industrial software product line engineering
to facilitate the reuse of domain test artefacts.

Example 18-2: Retrieving Domain Artefacts

In Example 18-1, a trace exists between the requirements artefacts for
electronic door locks and the test case scenario of Fig. 18-3. The
dependency between the two artefacts is recorded by a traceability
link, which we refer to as “DomainDoorLockTestTrace”. Whenever
one of the three door lock variants is incorporated into an application,
the dependency between the domain and the corresponding applica-
tion requirements artefact is recorded as well.
The “DomainDoorLockTestTrace” is used to identify the reusable
domain test case. The domain test case is reused for a new application
test case that validates the realisation of the corresponding application
requirement.

Requirements
deltas

Domain
Tests

Domain
Requirements

Application
Requirements

Application
Tests

Traceability Links

Tr
ac

ea
bi

lit
y

Li
nk

s

Reuse

Test Reference

Fig. 18-4: Traceability between requirements and system test artefacts

Recording and
using traces

362 18. Application Testing

18.3 Tests Related to Variability

The task of application testing is to validate that the application under test
complies with the test references from domain engineering. This implies that
the binding of variability and the configuration realised in the application are
checked for correctness. More precisely, the application test engineer has to
check if:

Application engineers have bound variants for the application that
should not be part of the application.

Application engineers have omitted variants that should be bound for
the application.

Application engineers have configured the application in a way that
violates the constraint and/or variability dependencies.

If the application contains variants that should not be part of it, different
kinds of errors may occur. The usability of the application may be affected
as the customer finds the variant impracticable or the variant consumes add-
itional resources and thus affects system performance. If a variant that
should bound for the application is omitted, the functionality and/or quality
related to this variant is missing in the application. Furthermore, the vio-
lation of dependencies may lead to a malfunctioning application. For
example, if a variant that is required by another variant or variation point is
not included in the application, the components that require this variant may
not work properly. If an “excludes” dependency is violated and thus a vari-
ant that is in conflict with another variant or variation point is included in the
application, the conflicts between the different variants may lead to errors.

Specific tests are required to detect defects in the binding of variability and
the configuration of an application since the proper functioning of an appli-
cation may be affected by such defects. On the other hand, if a dependency
that has strategical reasons is violated, this defect may be difficult to detect.
Only a specific test can reveal this type of deviation from the application
requirements specification. In the following, we thus introduce two types of
tests for detecting defects in the variability bindings and the configuration of
an application.

Definition 18-1: Variant Absence Test

The variant absence test ensures that an application does not include
variants that were not defined to be included in the application.

The variant absence test verifies that no more than the selected variants are
incorporated into the application. To check whether a variant is present or

Defect
categories

Tests

Variant
absence test

18.3 Tests Related to Variability 363

not, the variant absence test may call a function that is provided by the vari-
ant and observe the reaction of the application. The variant absence test
affects all test levels:

The unit variant absence test verifies the absence of variants that influ-
ence code within a component. This kind of variability is often realised
by compile time configuration mechanisms (e.g. IFDEF statements).

The integration variant absence test verifies the absence of variants that
influence entire components. This kind of variability is often realised by
link time, load time, or run-time configuration mechanisms (e.g. regis-
try).

The system variant absence test verifies the absence of variants that
have influence on major system features and may therefore be distrib-
uted over multiple components. This kind of variability is also realised
by link time, load time, or run-time configuration mechanisms.

Definition 18-2: Application Dependency Test

The application dependency test checks if the application is in con-
formance with the constraint and variability dependencies specified in
the domain and application variability models.

The application dependency test has to detect configurations of variants that
are not allowed according to the domain and application variability models.
This task can be subdivided into two sub-tasks:

Checking whether the presence of variants violates any restrictions
imposed by variability and constraint dependencies (e.g. “excludes”
constraint dependencies).

Checking whether the absence of variants violates any restrictions (e.g.
“mandatory” variability dependencies or the “[min..max]” range of an
alternative choice).

Example 18-3: Application Dependency Test for Heating Control

The automatic heating control requires automatic windows to prevent
the waste of energy. Once the home automation system detects that a
room is too cold, the windows are closed and heating is turned on. The
home automation system for a specific customer includes automatic
heating control. Hence, the application dependency test checks
whether the application also contains the automatic windows variant.

Conformance to
variability models

364 18. Application Testing

Similar to the variant absence test, the application dependency test affects all
test levels. At each level those dependencies are tested that affect realisation
artefacts at the corresponding level of granularity, i.e. code excerpts, compo-
nents, or the entire application.

18.4 Testing Variability at Different Test Levels

In this section, we consider the influence of variability on the test levels in
application testing.

18.4.1 Application Unit Test
The goal of the application unit test is to validate single components against
the component specifications. The application test engineers reuse the
domain unit test cases for the common functionality of the unit. It is neces-
sary to repeat unit tests even for common functionality as the specific
configuration of the application may influence the test results (Section 13.3).
The common parts of a component may not work properly due to a particular
combination of variants or due to application-specific modifications.

Example 18-4: Necessity to Reapply Domain Unit Test Cases

The door sensor plug-in, which is a component of the door lock con-
trol subsystem, supports control devices to which up to eight door sen-
sors can be connected. During domain testing the plug-in was tested
with different configurations of sensors, and passed the test. The
domain unit test cases are reexecuted during application testing, as it
is still unclear whether the plug-in component behaves correctly for
the particular configuration of sensors required for the application.

18.4.2 Application Integration Test
The goal of the application integration test is to validate the interactions
between the components of the application. This includes the validation of
the interactions between common components, bound variants of variable
components, as well as application-specific components. During the appli-
cation integration test, test cases that have already been performed in domain
testing may have to be reexecuted to validate the interactions of all compo-
nents in the specific context of the application (Section 13.3). The inputs for
the application integration test are components that have passed the applica-
tion unit test.

Retesting due
to variability

Test of component
interactions

18.5 Application Test Coverage 365

Example 18-5: Application Integration of the Home Security System

The domain integration test case for electronic door locks contains
variability as there are three different variants (fingerprint scanner,
keypad, and magnetic card reader). The application under test includes
a door lock management component and three door control devices,
each with a magnetic card reader and a lock actuator. The application
integration test cases are created by reusing the domain integration test
cases and by binding the variants defined in the application variability
model. The test cases are used to validate the interactions between the
three magnetic card locks and the server.

18.4.3 Application System Test
The goal of the application system test is to validate that the application
satisfies the application requirements specification. Ideally, all requirements
are tested to obtain a detailed assessment of the quality of the application.
Most of the system test cases have to be performed during application sys-
tem testing due to the absence of application-specific variants in domain
engineering and the configurability of domain artefacts (see Chapter 13). If
the commonality and reuse strategy is applied, application test engineers can
reuse predefined domain system test artefacts by binding the variants defined
in the application variability model.

Example 18-6: System Test of a Home Automation Application

A system test case for the home security part of the home automation
application is the activation of the vacation mode. The test case scen-
ario consists of the following steps. The user authenticates against the
system, activates indoor and outdoor surveillance, and locks the doors.
To create the application system test case, the test engineer reuses a
domain system test case. As the domain system case includes different
authentication mechanisms, different surveillance devices, etc., the
test engineer binds the authentication variants, the surveillance vari-
ants, etc., as defined in the application variability model.

18.5 Application Test Coverage

In this subsection, we describe the different types of tests that have to be
performed in application system testing. The different types are based on a
classification of the application requirements:

Reused common requirements artefacts: This category includes all
application requirements that are reused common domain requirements.

Test of application
features

Requirements
coverage by category

366 18. Application Testing

Reused variable requirements: This category includes all application re-
quirements that are reused domain requirements with bound variability.

Adapted requirements: This category includes all application require-
ments that are reused domain requirements containing application-
specific adaptations.

New requirements: This category includes all application requirements
that are purely application-specific and are not derived from domain
requirements.

18.5.1 Application Commonality Test
The application commonality test covers the common parts of requirements
models. It ensures that the common requirements of the product line are
tested in the context of an application. Test cases for common requirements
are developed and executed in domain testing. If, for instance, a common
component is placed in the context of a specific application with its specific
selection of variants, the component can fail even though it has not changed.
Coupling mechanisms like shared variables or inheritance can cause such
failures, even if the components have been tested extensively. Consequently,
domain test cases for common requirements are reexecuted in application
testing.

Example 18-7: Testing Common Requirements

One part of every application is the motion detection sensor. Test
cases for the motion detection sensor are created during domain test-
ing and executed on the sample application. The test case is re-
executed for each application to ensure correct behaviour.

18.5.2 Application Variant Test
The application variant test verifies that all selected variants are part of the
application and ensures the correct behaviour of these variants. The test arte-
facts for the application variant test can be reused from domain test artefacts.
Application test engineers bind the variants based on the application vari-
ability model.

Example 18-8: Testing Variants

The application under test contains exactly three magnetic door locks.
The application variant test must ensure that there are three magnetic
door locks and that each of them locks the specified door.

Retesting common
requirements

Testing
variants

18.6 Application Test Activities 367

18.5.3 Application-specific Tests
The application-specific tests deal with testing new application requirements
and adapted domain requirements.

The application modification test covers adapted requirements, i.e. the parts
of application requirements models that are modified versions of domain
requirements models. For this category of requirements it is not possible to
reuse the domain test artefacts without adapting them.

Example 18-9: Testing Adapted Requirements

Another set of magnetic card locks from another provider has to be
incorporated into an application. The test cases regarding the magnetic
card locks must be adapted to cope with the new hardware, for
instance, pull the card through a card reader instead of placing it on
the card reader.

The application extension test covers parts of the application requirements
models that were newly developed for a specific application. The test arte-
facts for this category of requirements have to be created from scratch. In
addition, the newly implemented artefacts typically have a significantly
higher defect density than reused artefacts.

Example 18-10: Testing New Application Requirements

An iris scanner lock is required for an application. Therefore, the
application extension test must ensure that the requirements are real-
ised within the application. New test cases have to be derived to
validate this requirement.

18.6 Application Test Activities

The application test process description provides guidance for the entire
application test process. It includes instructions on how to derive application
test artefacts from domain test artefacts. The application test process consists
of three main activities: application test planning, application test specifica-
tion, and application test execution.

18.6.1 Application Test Planning
During application test planning the test engineers create an application test
plan for the product line application. The test plan differs from application to
application. For example, there may be some variants that have already been
tested, or there may be new application-specific requirements, which require

Testing adapted
requirements

Testing new
requirements

Adaptation
of the test plan

368 18. Application Testing

the definition of a new test plan. Consequently, the required effort for appli-
cation testing also differs from application to application. The estimation of
test effort can be based on a common scheme defined by domain testing. The
test strategy and the tool support for executing the tests have already been
determined during domain engineering. Only in exceptional cases are they
adapted during application testing (e.g. in pilot projects for evaluating a new
tool or a modified strategy). Such a case may be, for instance, an attempt to
improve the efficiency of domain test artefact reuse.

Example 18-11: Application Test Planning for the Home Automation
System

The differences between application and domain requirements arte-
facts and the previously performed tests are considered. If three mag-
netic door locks have to be built into the home, the interaction
between three door locks and the server has to be tested in the appli-
cation integration test. This validates that the application works with
the three locks.
These test cases are identified on all test levels and for all types of
application tests (e.g. variant absence tests). They are defined as part
of the test plan. Resources are allocated to the test cases, e.g. one test
engineer must perform the door lock interaction tests within two days.

18.6.2 Application Test Specification
During application test specification, test engineers create logical test cases,
detailed test cases, as well as the respective test case scenarios for the appli-
cation. The effort for the specification activity depends on the achievable
degree of domain test artefact reuse:

For application commonality tests, logical and detailed test cases are
available from domain testing and can be reused in application testing.

For application variant tests and, to some degree, for application-
specific tests (Section 8.3), logical test cases can be reused from domain
test artefacts (Section 13.7). Detailed test cases have to be developed by
the application test engineers.

Application-specific tests must be developed from scratch (including
the logical and detailed test cases) or obtained by adapting domain test
artefacts.

Logical and
detailed test cases

18.7 Differences from Single-System Engineering 369

Example 18-12: Application Test Specification for Electronic Door
Locks

During the application test specification activity, test engineers create
the detailed test cases for electronic door locks and adapt the test case
scenarios for the selected authentication mechanism. As the applica-
tion uses only magnetic sensors, the other two variants (keypad and
fingerprint sensors) are omitted. Furthermore, the exact number of
locks is incorporated into the detailed application test cases and appli-
cation test case scenarios.

18.6.3 Application Test Execution
During application test execution, the application test engineers perform the
specified test cases on the application. They record the results and complete
the tests by determining the error classes. This also includes reporting the
detected defects to the other sub-processes (see Section 18.1).

Example 18-13: Application Test Execution for the Electronic Door
Locks

The test cases and test case scenarios for validating the three magnetic
door locks and the interplay with the authentication server are exe-
cuted. Defects in the ‘electronic door lock control’ component, in the
interaction with the ‘authentication’ component, and in the entire
application (e.g. failure during simultaneous access) are uncovered
and reported to the developers.

18.7 Differences from Single-System Engineering

As for single-system testing, the goal of application testing in software prod-
uct line engineering is to ensure a sufficient quality of an application by per-
forming a set of tests that satisfies the chosen coverage criterion. In contrast
to single-system engineering, the test engineers have to consider that the
requirements as well as the application to be tested are created partly during
domain engineering and partly during application engineering. Application
requirements and components that are identical to domain artefacts are tested
by repeating tests that have been created in domain testing. Application-
specific artefacts are tested in a similar way as in single-system engineering
since the test cases have to be newly developed or adapted.

Application test engineers must validate that the variability binding for the
application complies with the application requirements specification, or,
more precisely, with the application variability model. In addition, the appli-

Perform test cases
and record results

Domain and
application artefacts

Tests related
to variability

370 18. Application Testing

cation must not violate any restrictions imposed by the domain variability
model. In single-system engineering, there is usually no need to perform this
kind of test.

In the application testing sub-process in software product line engineering,
the test process description as well as a large part of the required test arte-
facts do not have to be developed from scratch as they are both available
from the domain artefacts, partly in a generic form. After binding the appro-
priate variants and adapting or concretising the artefacts, they can be
employed in application testing (see Chapter 8 for more details on variability
in test artefacts).

18.8 Summary

During application testing a product line application is validated against its
specification. For this purpose, a set of application test cases is defined that
includes all test levels and fulfils a suitable coverage criterion. A thorough
test, even of reused code, is necessary due to dependencies between reused
and application-specific parts.

Many application test artefacts are reused domain test artefacts. To establish
an efficient reuse process, for instance, application test engineers must be
trained to deal with variable test artefacts. In addition, traceability links must
be recorded in domain engineering as well as in application engineering
activities that enable test engineers to locate easily the test artefacts for
reuse.

The test cases performed together with the recorded test results indicate the
level of quality achieved in an application. To ensure a traceable and repeat-
able application test process, the test documentation is recorded as an appli-
cation artefact and interrelated with the other application artefacts, even if
part of it is derived from domain artefacts. Just like other application-
specific artefacts, test artefacts developed for a specific application might be
included in the domain artefacts if they are of interest for other applications.

Reuse

Extensive
application test

Efficient
reuse

Application
test artefacts

Part V

Organisation
Aspects

Part V: Overview

For the successful introduction of the software product line engineering paradigm,
organisation aspects are as important as the technical aspects. This part deals with
organisation aspects which have to be considered when introducing a software
product line engineering paradigm. In this part you will learn:

About the influence of the organisation structure on software product line
engineering.

How domain engineering tasks can be embedded in organisation structure.

A cost model for determining the return on investment for software product
lines.

Transition strategies to be applied for introducing a software product line into
an organisation.

19
Organisation

In this chapter you will learn:

o About the influence of the structure of an organisation on software product
line engineering.

o How to realise software product line engineering in an organisation with a
hierarchical structure.

o How to realise software product line engineering in an organisation with a
matrix structure.

Günter Böckle

376 19. Organisation

19.1 Introduction

In this chapter, we elaborate on the role of the organisation structure for soft-
ware product line engineering. We establish properties of organisation
structures that facilitate or hinder proper functioning of a software product
line engineering process. Finally, several organisation structures are com-
pared with respect to these properties.

In industry, many people have found that even with the best development
technologies and skilled staff there may be little success. Problems may
occur when the allocation of people to tasks is inadequate, or when decisions
are delayed because the responsibilities are not clear and people cannot come
to an agreement. Occasionally, departments may clash with each other over
the power to make decisions. In all these cases, inadequate process and
organisation structure significantly hinder successful development. This
chapter discusses the effect of the organisation structure on software product
line engineering, and how the structure can reduce the problems mentioned
above.

19.2 Properties of Organisation Structures

Organisation structures may facilitate or hinder effective and efficient soft-
ware product line engineering. First, we consider the negative effects that a
chosen organisation structure may have on development work, and then
determine which properties are needed to deal with the problems. The major
problems caused by organisation structure are:

Decisions about the work are not clearly expressed, technologically
comprehensible or economically sound.

Decisions take too much time.

People spend too much time aligning and coordinating their work and
do not have enough time left for management and engineering work.

Internal politics consume time and effort, and distract the employees’
focus from product development.

Employees are not encouraged and motivated to do good work.

The staff focus more on perfecting the technology than on the customer.

The process and other factors influence the severity of these problems, but
the organisation is a major cause. Software product line engineering organi-
sations encounter more problems than organisations producing single sys-

The role of
organisation

Problems due to
inadequate

organisation

Responsibilities
and roles

19.2 Properties of Organisation Structures 377

tems, because the former are usually larger47 than the latter. More respon-
sibilities are involved, for instance those for the domain and those for
separate applications. In addition, special roles are needed to deal with the
relationship between domain and application engineering.

Which structure is suited best for a company or organisation depends on
many factors such as the market, company history, company culture and
culture of the country, power distribution in the company, expertise and
experience of the employees, practised development approaches, etc. These
factors have to be considered together with the properties we develop here
for selecting the most appropriate organisation. In the following, we consider
several organisation aspects and discuss their properties with regard to the
list of problems above:

Responsibilities for decision making

Overhead time

Structure reflecting responsibilities

Motivation

Customer focus

The assignment of responsibilities has a big effect on the way the organisa-
tion behaves. The problem of unclear decisions and the long time to make
decisions can be solved by a clear assignment of responsibilities for making
certain decisions. Decisions internal to domain engineering are to be taken
by those people who are involved in domain engineering, and similarly for
application engineering. Specific responsibilities have to be assigned for
overall coordination. For decisions that involve both domain and application
engineering, coordinator roles are necessary. However, such decisions will
only be effective if the people who are involved in domain and application
engineering take part in them as well. In all cases, the number of people
involved in decision making has to be small to be effective.

A major property of an organisation is the fraction of time that is spent on
effective work versus overhead time. The overhead time we consider here
encompasses time spent coordinating the work and coming to decisions
about the work. The amount of overlap between the tasks of organisational
units and how they influence each other contributes significantly to the over-
head necessary to align and coordinate work. When overlaps and dependen-
cies are minimised, the overhead is small. There are some necessary
dependencies between the process phases of domain and application engin-
eering that cannot be avoided. However, these dependencies are usually

47 This does not necessarily mean that the companies involved are larger, but that larger parts of the same

company are involved in the same development.

Factors influencing
organisation structure

Essential
properties

Responsibilities for
decision-making

Overhead
time

378 19. Organisation

smaller than those internal to such a phase. The right organisation structures
will consider this difference. The overhead time for decision making is also
high when the responsibilities are not assigned clearly and when several
interests conflict.

Responsibilities are only sustained if the distribution of responsibilities is
reflected in the structure. This addresses the problem company policy. A
certain position in the organisation implies certain tasks and responsibilities.
If the assigned responsibilities are not the same as the implicit ones, man-
agers try to increase their responsibility, which leads to power struggles.
Therefore, it is crucial that the organisation structure reflects the presence of
both domain and application engineering, and of coordination tasks.

The way personnel are motivated and encouraged in their work influences
the way they deliver the right value to the organisation. As both domain and
application engineering are crucial for the organisation, this means that the
work in domain and application engineering must be of equal value to the
employees. In certain organisations, working in an application department is
valued higher because the staff are making the final products that are sold to
the customers and bring profit. In other organisations, the domain unit is
esteemed higher. This difference in valuation decreases motivation in the
lower esteemed group and thereby the effectiveness of their work.

Organisational units that have no direct customer contact are in danger of
losing their customer focus. This reduces the effectiveness of their work.
Especially large organisations encounter this problem as there are many
people that are not in direct contact with the end-customer. This holds for
instance in pure domain engineering units.

In the following, we consider some organisation structures for software pro-
duct line engineering and show their strengths and weaknesses in relation to
the properties described above.

19.3 Basic Hierarchical Organisation Structures

In this section, we present different ways to map the different activities of
software product line engineering in an organisation. We consider first hier-
archical or line-oriented structures. These are typically organised along
products or customers. Figure 19-1 shows a hierarchical structure with one
manager at the top and four managers at the second level. These four mana-
gers each head an organisational unit (department, group, etc., shown in a
dotted box) that represents, for instance, a particular product or project. In
many organisations with such a hierarchical structure, there are strong prod-
uct project units that are often rather autonomous and often have good con-
tacts with their own customers. A leaf in the hierarchy tree in the figure may

Structure reflects
responsibilities

Motivation

Customer
focus

Managers and
organisation units

19.3 Basic Hierarchical Organisation Structures 379

represent an individual, an unstructured set of people, or another hierarchy.
The internal nodes represent managers.

There are only a few publications on hierarchical organisations in product
line engineering. In [Jacobson et al. 1997] organisation structures for the
“Reuse-Oriented Software Engineering Business” and the roles needed for a
reuse organisation are presented. In [Weiss and Lai 1999] the use of the
hierarchy as a starting point to distribute responsibility in the FAST process
for product line engineering is discussed. And in [Bosch 2000a; Bosch
2000b] four basic types of structures are presented: namely, “development
department”, “business units”, “domain engineering unit”, and “hierarchical
domain engineering units”. The following descriptions of organisation struc-
tures consider, amongst others, these structures.

19.3.1 Development Department
In this case, there is only a single organisation unit dealing with the complete
software product line engineering. Projects are created as needed within this
unit. Responsibilities for certain tasks are often dynamically assigned when
these tasks have to be performed. The strengths48 of this kind of organisation
are in motivation and customer focus:

Simplicity and ease of communication among the staff.

Little organisational and administrative overhead.

It is possible to adopt a product line approach without changing the
existing organisation (because there is only one unit), which may sim-
plify the adoption process.

The weaknesses are in responsibilities and structure:

It is not scalable – there is a maximum size of a software development
unit that can be managed.

48 For details see [Bosch 2000a] and [Bosch 2000b].

Hierarchies in
product line
engineering

Hierarchical line
organisation

Fig. 19-1: Basic hierarchical organisation with four projects

A single development
unit only

380 19. Organisation

Often, either domain or application engineering has higher status and
staff will prefer one and do the other insufficiently – if people have to
switch too often between different tasks, one will be preferred.

Often there is not a single responsible person, but responsibility swit-
ches with the temporary assignments.

Maintenance may be forgotten when responsibilities switch.

No one will press for usage of assets and no one will plan and support
asset evolution, if there are no associated roles to do these tasks regu-
larly.

This structure is applicable to small organisations with up to 30 software-
related staff; more staff are not manageable without additional structuring.

19.3.2 Distributed Domain Engineering
Figure 19-2 shows a (product) project-oriented organisation based on the
hierarchical structure from Fig. 19-1. The dark squares indicate organisa-
tional units that do domain engineering. This is the same organisation as the
“business units” in [Bosch 2000a] and [Bosch 2000b]. The four project units
indicated by the dotted boxes in Fig. 19-2 typically develop single products
(or product groups), each for a specific customer (group) or market segment.
The task of domain engineering is distributed among these project units.
Either there is a sub-unit for domain engineering inside each project unit or
the domain engineering tasks and roles are mapped to roles in the original
project structure, so that some people have double roles – one for domain
and one for application engineering. An evaluation of this structure with
respect to our properties yields the following results.

Domain engineering
in project groups

Fig. 19-2: Software product line engineering organisation with distributed domain
engineering in four projects

19.3 Basic Hierarchical Organisation Structures 381

The responsibility for the products stays with the project units and the
responsibility for domain engineering is distributed. For decisions concer-
ning domain engineering, the heads of the project units or their representa-
tives have to come to a consensus. The primary focus of these managers will
remain on their own product for their assigned customers, because that is
where their money comes from. Consequently, decision making about com-
mon artefacts will be hard and time consuming because the managers will
typically pursue their product-specific interests. Essentially, the organisation
adapts to software product line engineering only at a low hierarchical level,
while decision-making power is still focused on individual products. There is
no single role with decision-making power for the platform that serves all
products.

The overhead time comes mostly from discussions about what artefacts
should belong to the platform and which ones should be product specific. It
comes also from discussions about adequate interfaces between artefacts.
The partitioning of work over the domain engineering units of the different
project units contributes to this overhead time, too, since the tasks may
overlap and need synchronisation. Decisions about domain engineering to-
pics in this organisation are not made by a single unit. Instead the project
units have to come to a consensus. Therefore, there may be significant over-
head involved for this.

The common tasks (for domain engineering) are mirrored somehow in the
structure – but only at a low hierarchical level, inside the project units. For
instance, the structure does not show the role that represents responsibility
for the platform. Therefore, stakeholders who want to address platform inte-
rests have no one to talk to or have to talk to all project managers. Therefore,
the mapping between responsibilities and structure is satisfactory only to a
small degree.

Staff from the domain engineering unit inside a product project can easily be
assigned tasks for product design when pressure is exerted to deliver a prod-
uct. Such a reassignment may lead to neglecting the domain engineering
tasks. This leaves people unsatisfied because they want to do their work
properly. It also frequently occurs that domain engineering work is not as
highly valued as project work, and this decreases motivation for doing it.
However, since the domain engineering teams are part of the project units,
the chances are high that they get the same compensation, which reinforces
motivation. Thus, we have some aspects increasing motivation and some
aspects decreasing it. Hence, we have only partial support for increasing the
motivation.

The customer focus is strong in this organisation because of the integration
of domain engineering into the project units with their strong customer

No clear
responsibilities for
decision making

Mostly high
overhead time

Structure
partially reflects
responsibilities

Partial motivation
support

Good customer
focus

382 19. Organisation

focus. So, this property is fulfilled; actually, this is the major advantage of
this organisation structure.

The organisation with distributed domain engineering is often selected when
there are strong product projects with high decision authority. The managers
of these projects would typically not allow another group to decide what
kinds of platform assets will be built, who should use them, and how they
should be used. They want to retain authority over domain engineering, only
accepting cooperation among a set of equals, namely the other project units.
The positive side of this is that people keep a customer focus.

The Owen project at Hewlett-Packard (Section 21.5) is an example of an
organisation with distributed domain engineering; see [Douma and
Schreuder 2002] and [Fafchamps 1994].

19.3.3 Centralised Domain Engineering
Another common organisation for software product line engineering is
shown in Fig. 19-3. In [Bosch 2000a] and [Bosch 2000b] this type of orga-
nisation is referred to as “domain engineering unit”.

This organisation has a separate unit for domain engineering, shown by the
dark squares on the right hand side in Fig. 19-3. It is also indicated that the
four project units get smaller when there is a domain engineering unit. The
size of the domain engineering unit relative to the (product) project units
may differ, depending on the relation of the efforts for domain and applica-
tion engineering. In the uppermost hierarchical level, the domain engineering
unit may be headed by the same manager as the project units or by a separate
one. Jacobson describes the differences in these two cases of higher manage-
ment assignment in [Jacobson et al. 1997]. An evaluation of this structure
with respect to our properties yields the following results.

Fig. 19-3: Product line engineering organisation with central domain engineering

Separate domain-
engineering unit

19.3 Basic Hierarchical Organisation Structures 383

The responsibility for domain engineering is clearly assigned to the unit
represented by the hierarchy of dark squares in Fig. 19-3. Therefore,
responsibilities for domain and application engineering are clearly separated.

The overall responsibility for domain engineering is assigned to one single
role, the head of the domain engineering unit. The people from the domain
engineering unit are responsible for the platform, the artefacts that are inclu-
ded and how these artefacts behave. Therefore, discussions on domain engi-
neering topics can be short and fewer discussions are needed than in the
organisation with distributed domain engineering. Thus, the overhead time
for coordinating domain engineering work is low.

The responsibility for domain engineering is clearly displayed in the struc-
ture by having a separate unit for domain engineering with its own manager.

In project units, there is often much pressure to finish products in time. To
encourage this, people from project units may get a better remuneration than
members of the domain engineering unit. Sometimes, domain engineering
work is not valued as highly as application engineering work. Therefore,
compensation and motivation are often problematic in organisations with
central domain engineering. To support motivation, the respective work has
to be given equal value and remuneration.

The members of the domain engineering unit often have no customer contact
and do not work directly on the applications, so the customer focus may
become lost.

The organisation with centralised domain engineering in Fig. 19-3 has more
of the required properties than the one with distributed domain engineering
in Fig. 19-2. However, in cases in which a strong customer focus is import-
ant and there are strong project units with independent managers, the struc-
ture with distributed domain engineering may be adequate.

19.3.4 Several Domain Engineering Units
In big organisations, several domain engineering units may be required; they
may be organised in a hierarchy. In [Bosch 2000a] and [Bosch 2000b] they
are called “hierarchical domain engineering units“. Typically, a considerable
number of staff members, i.e. hundreds, are involved. This structure is an
extension of the previous one.

The strengths of this kind of organisation are in responsibilities and their
mapping on structure:

The structure can encompass large, complex product lines.

It scales up to hundreds of software engineers.

Clear responsibilities
for decision-making

Low overhead
time

Structure reflects
responsibilities

Partial motivation
support

Low customer
focus

Hierarchical domain
engineering units

384 19. Organisation

The weaknesses are in the complexity of the structure, overhead, and cus-
tomer support:

There is considerable overhead involved for synchronisation because
more units have to be synchronised.

It is difficult to achieve agile reactions to changed market properties due
to the increased number of stakeholders involved.

A change in an artefact that is used by many applications may require
considerable synchronisation effort because many stakeholders with dif-
ferent interests are involved.

19.4 Matrix Organisation Structures

The hierarchical organisations described in Section 19.3 are often not suffi-
cient for big organisations. Instead, they often use matrix organisations. The
most important reason for using a matrix structure is that there are two con-
flicting grouping criteria for an organisation. On the one hand, product-
oriented units have a focus on the product and the customer to get products
to the market in time and according to customer wishes. On the other hand,
people are grouped according to functional knowledge in order to keep the
knowledge up to date. Therefore, both groupings are combined in the two

P1

P2

P3

P4
P5

 Function

Project R
eq

ui
re

m
en

ts

Ar
ch

ite
ct

ur
e

U
se

r I
nt

er
fa

ce

D
at

a
M

an
ag

em
en

t

Te
st

Fig. 19-4: A matrix organisation

Weaknesses

Two or more
structuring criteria

19.4 Matrix Organisation Structures 385

dimensions of a matrix.49 An example of a matrix organisation is shown in
Fig. 19-4. Usually each of the dimensions has a hierarchy as well. This is not
shown in the matrix. The product projects P1 to P5 are organised horizon-
tally while major functions, like requirements engineering, architecture, user
interface, data management, and test, are organised vertically. A problem
with matrix structures is the decision-making power at the crossing points of
the matrix. If this is not well determined, power struggles are inevitable and
much time is spent coming to decisions. For product line engineering,
domain engineering has to be added to the matrix. There are three possibil-
ities: as a functional unit, as a project unit, or outside the matrix.

19.4.1 Matrix Organisation with Domain Engineering as
Functional Unit

In Fig. 19-5 domain engineering is a functional unit; this is comparable to
the structure in Fig. 19-2. This structure has the advantage that people in the
domain engineering unit are close to the products and do not lose customer
orientation. They may easily be assigned to product development tasks when
there is time pressure. This is not a disadvantage if the domain engineering
tasks are not neglected and people keep their customer focus. However, the
balance between application and domain engineering tasks is not easy to
maintain in case of time pressure for completing products. An evaluation of
this structure with respect to our properties yields the following results.

Responsibilities are fully assigned in this structure, but the decision-making
power must also be assigned; this depends on the actual situation. It must be
clearly determined who has the power to make decisions at the crossing
points of the matrix.

The overhead time depends on the unique assignment of decision-making
power. If the decision-making power for all domain engineering tasks is
assigned uniquely, preferably to the head of the domain engineering unit,
and so is the power for the individual technical activities, e.g. domain
requirements engineering, the overhead is low.

The responsibility of technical roles in domain engineering, e.g. for domain
requirements engineering, is not represented in this structure. To deal with
this property adequately, the technical roles in domain engineering have to
be included in the structure.

49 There are also multi-dimensional matrix organisations where more than two properties of organisation

structures are captured in more dimensions. These are not considered here. Their extensions for
product line engineering are similar to the ones described here.

Customer focus in
domain engineering

Assignment of power
at crossing points

Overhead time
mostly low

Structure
partially reflects
responsibilities

386 19. Organisation

P1

P2

P3

P4
P5

D
om

ai
n

Ar
ch

ite
ct

ur
e

U
se

r I
nt

er
fa

ce

D
at

a
M

an
ag

em
en

t

Te
st

 Function

Project R
eq

ui
re

m
en

ts
Fig. 19-5: Matrix organisation with domain engineering as functional unit

Care has to be taken that the domain engineering unit has the same opportu-
nities as the other units and that the staff are not reassigned to different tasks
too often. Therefore, there is usually only partial motivation support.

The domain engineering unit is also involved in projects. Therefore, there is
a good chance that domain engineering staff have a good customer focus.
The degree of customer focus depends on the actual assignments.

19.4.2 Matrix Organisation with Domain Engineering as Project
Unit

Figure 19-6 shows a matrix organisation where domain engineering is
assigned to a project unit. Here, the chances are high that people in the
domain engineering unit can do their work without being assigned to
application engineering work. However, this may reduce customer focus.
This structure is well suited for dynamic platforms with many changes and a
managed evolution because domain engineering staff can focus on their
work, and decisions about changes can be made quickly, due to domain
engineering roles with assigned responsibilities. An evaluation of this struc-
ture with respect to our properties yields the following results.

The responsibilities for domain engineering are inside the domain engineer-
ing unit. Therefore, the assignment of responsibilities is clear. Care should
be taken that the head of domain engineering unit has the same decision-
making power as the project unit heads.

Domain engineering
distributed over

projects

Partial motivation
support

Satisfactory
customer focus

Focus on domain
engineering

Adequate
responsibilities for

decision-making

19.4 Matrix Organisation Structures 387

The responsibilities for domain engineering are in the domain-engineering
unit. So decisions can be made quickly, but they depend on the assignment
of decision-making power at the crossing points of the matrix. Therefore, the
overhead is mostly low.

The domain engineering tasks are clearly represented in the structure.

Domain engineering staff can focus on the platform and its evolution and
they are in a project unit like the others. However, it must still be ensured
that this unit is considered as equally important as the other units.

Customer focus depends on the integration of the domain engineering unit
into the overall organisation.

19.4.3 Matrix Organisation with Separate Domain Engineering
Figure 19-7 shows a matrix organisation where the domain-engineering unit
resides separately outside the matrix. This organisation can easily be
extended to organisations with multiple product lines that use a common
platform. Decisions about setting up and evolving the platform are easier
than in the other structures, but usage of the platform may be harder because
the projects are typically less involved in defining it (because the domain
engineering unit is separate and not within the matrix). The use of platform
assets for application engineering and its compensation has to be fixed spe-
cifically in the process to make this organisation effective.

P1

P2

P3

P4

P5
Domain

R
eq

ui
re

m
en

ts

Ar
ch

ite
ct

ur
e

U
se

r I
nt

er
fa

ce

D
at

a
M

an
ag

em
en

t

Te
st

 Function

Project

Fig. 19-6: Matrix organisation with domain engineering as project unit

Domain engineering
distributed over
functions

Overhead time
mostly low

Good basis for
motivation support

Partial customer
focus

Platform decoupled
from projects

388 19. Organisation

An evaluation of this structure with respect to our properties yields the fol-
lowing results.

The assignment of responsibility supports simple and fast decision making
because of the separate domain engineering unit.

The domain engineering tasks and responsibilities are in a separate unit,
responsibilities for the domain engineering tasks reside there, and so deci-
sions can be made quickly, yielding low overhead.

The structure mostly does not mirror functions like requirements engineering
inside the domain engineering unit, while common tasks are well shown by
the fact that there is a domain engineering unit. So, responsibilities are only
partially mapped on the structure.

Motivation and encouragement depend on the image of the domain engin-
eering unit and will be satisfactory if the platform and variability usage are
clearly specified in the process. Equal valuation of domain engineering work
and project work is necessary. So, there is only partial motivation support.

This structure has the advantage that the people in this group may focus
totally on domain engineering (even more so than in the previously
described organisation). However, customer focus may easily become lost
because the domain engineering staff are outside the matrix.

P1

P2

P3

P4

P5

 Function

Project

 D

om
ai

nR
eq

ui
re

m
en

ts

Ar
ch

ite
ct

ur
e

U
se

r I
nt

er
fa

ce

D
at

a
M

an
ag

em
en

t

Te
st

Fig. 19-7: Matrix organisation with separate domain engineering unit

Domain engineering
outside matrix

Clear responsibilities
for decision making

Low
overhead

Structure
partially reflects

responsibilities

Partial motivation
support

Low customer
focus

19.7 Organisation Theory 389

19.5 Detailed Structure

In application engineering organisation units, as in single-system engineer-
ing organisations, the coarse structures are based on products, projects, and
functions like requirements engineering or architecture design. Below that
coarse level there are more detailed structures, based, for example, on roles
responsible for particular features. In domain engineering organisation units,
typically functions form the main structuring criteria at a coarse level. The
detailed structure, however, is different and often important for successful
product line engineering. Here, roles that are responsible for the platform
assets are defined. These roles have to deal with making the assets reusable
for many products, with adequate quality, and with their evolution.

19.6 Cross-Functional Teams

Cross-functional teams play an important role in the success of software
product line engineering. These structures are often temporary and orthogo-
nal to the primary structures that we have considered so far. For determining
whether certain artefacts should be developed for the platform or not, some-
one from domain engineering is responsible. However, the decision making
is often supported by a team consisting of product managers, requirements
engineers, and domain and application architects. Therefore, the interests of
the relevant stakeholders must be considered. For tasks that involve stake-
holders from different units, e.g. from domain and application engineering,
cross-functional teams are set up to express the interests of the different
stakeholders and support decision making.

The domain engineering process and the application engineering processes
have to be synchronised. Typically, application engineering waits for domain
artefacts to be ready, but also domain engineering waits for application test
results and other feedback from application engineering. Synchronisation of
this is done by teams from both domain and application engineering. In the
case of urgent problems, task force teams are set up, mostly comprising
people from both domain and application engineering.

19.7 Organisation Theory

As mentioned earlier, many factors determine the effectiveness of an organi-
sation. These factors have been analysed and described by different schools
of organisation theory. Many books on organisation theory have been pub-
lished; most cover aspects that are relevant to decisions about organisation
structures for product line engineering, but none treats this topic specifically.

Role-based
structures

Secondary
organisational
structures

Synchronisation and
task force teams

390 19. Organisation

We provide a brief overview of the major schools and the factors they con-
sider. Details can be found in the referenced literature.

For over a hundred years, from F. W. Taylor and Max Weber until today,
organisation theory has analysed what factors determine organisations and
their structures. Seven different schools of organisation theory are distin-
guished in [Morabito et al. 1999] (see also [Hill et al. 1992]). These schools
and their major characteristics are as follows:

Scientific management: Developed by Frederick Winslow Taylor in
1911 [Taylor 1911]. Characterised by detailed, scientific design of
tasks, scientific selection and training of workers, separation of plan-
ning (management) and execution (labour). Another famous representa-
tive of this school is Henri Fayol; see [Fayol 1916].

Human relations: This school sees an organisation as a cooperative sys-
tem [Barnard 1938]. It is based on authority that does not flow from the
top, but instead it is accorded to the manager by the employees; the role
of the manager is to motivate the employees. Later, the human
resources school was added and both were combined as the motivation-
oriented approach. The Tavistock group represents this school.

Bureaucracy: According to Max Weber [Weber 1922], the ideal struc-
ture of an organisation is characterised by a division of labour, hierar-
chical decision making, a high degree of formal procedures and
regulations, and impersonal relationships.

Power, conflict, and decisions: Other sources call this the decision-
oriented approach, consisting of two major variants: first, the formal
decision-theoretical approach that uses linear programming, game
theory, and team theory; second, the behavioural approach (see for
instance [Cyert and March 1963]). This school challenges the notion
that organisations make rational decisions. Organisations are best
understood by looking at power, conflict, and how decisions are actu-
ally made.

Technology: Mechanistic and organic forms of work are distinguished.
In [Woodward 1965], Joan Woodward classified manufacturing
technology into unit, mass, and process production and found a correl-
ation between the type of technology employed and the structure
chosen. Perrow looked at knowledge technology [Perrow 1970] and
[Perrow 1972]; using the dimensions of task variability and problem
analysability, four types of task technologies were identified: routine,
craft, engineering, and non-routine. They are characterised by the con-
trol and coordination mechanisms employed.

Schools of
organisation theory

Tasks designed
in detail

Motivation and
cooperation

Hierarchy and
formal regulations

Focus on
decision-making

Manufacturing
and knowledge

technologies

19.8 Differences from Single-System Engineering 391

Systems: This school sees the organisation as an open system, e.g. Peter
Senge’s publications on learning organisations (see for instance [Senge
1990]). This school comprises two variants: the organisation-socio-
logical approach and the systems-theoretical/cybernetic approach.

Institutional: This school advocates the importance of culture, organisa-
tion history, and particular circumstances. It tries to encompass the
other schools. Its approach is also called the interaction-oriented ap-
proach. It comprises three variants: the organisation-cultural approach,
the micro-political approach, and the transaction-cost economical ap-
proach, see [Douma and Schreuder 2002].

There are also modern types of organisations that do not count as schools of
their own (yet). These include lean organisations, fractal organisations, busi-
ness process organisations, virtual organisations, and network-based organi-
sations.

The schools of organisation theory help us to understand the factors that
influence an organisation and that have to be considered when designing the
structure for an organisation.

A method for structuring groups so that the interfaces between them are
minimised, in order to reduce overhead, is presented in [McCord and
Eppinger 1993]. For readers who wish to learn more about the role of motiv-
ation, the reports of Hackman and Oldman are recommended [Hackman and
Oldham 1975; Hackman and Oldham 1976; Hackman et al. 1978; Hackman
and Oldham 1980]. The role of organisation structure for the success of plat-
forms in the automotive industry is presented in [Cusumano and Nobeoka
1998].

19.8 Differences from Single-System Engineering

In product line engineering the organisation structure has to provide for the
integration of domain engineering and the assignment of the responsibility
for the whole product line. There are various ways to achieve this, as shown
in this chapter. The organisation can choose the most adequate structure
depending on its current circumstances, such as market, customers, person-
nel structure, experience, culture, its experience in doing product line engin-
eering, and its process maturity.

The detailed structure of an organisation is essential for its success in prod-
uct line engineering. It should clearly assign the responsibilities for platform
assets, and facilitate cross-functional teams who can bring different expertise
together and thus support decision making.

Open
systems

Interactions

Modern
organisation types

Integration of
domain engineering

High relevance of
detailed structure

392 19. Organisation

19.9 Summary

The organisations presented in this chapter all have their advantages and
disadvantages. The selection of a structure depends on the actual situation of
an organisation. Its markets, kinds of products, company culture, employees’
skills, and many other factors determine the structure that fits best. Heuris-
tics that support a decision about an adequate organisation can be found in
[Boeckle et al. 2004b].

The basic hierarchical structures described in Section 19.3 are suitable for
small and medium-sized organisations. For an organisation with strong pro-
ject groups and with a need for a strong customer focus, the distributed
domain engineering shown in Fig. 19-2 is suited best. In all other cases,
central domain engineering is best, shown in Fig. 19-3. In all cases, the prop-
erties from Section 19.2 have to be considered.

For bigger organisations, matrix structures are best suited. To decide if
domain engineering should be realised as a function unit, as a project unit, or
as a separate unit, the current situation of the organisation has to be analysed
on the basis of the properties from Section 19.2 and their evaluation for the
different structures.

Situation-dependent
selection

Small and medium-
sized organisations

Large
organisations

20
Transition

Process

In this chapter you will learn:

o How to initiate product line engineering in a company.
o Different strategies for the transition process from single-system development

to software product line engineering.
o A cost model for estimating the costs of establishing a software product line.
o The key steps of a transition process.

Günter Böckle

394 20. Transition Process

20.1 Introduction

An organisation that considers switching to product line engineering typ-
ically has products on the market and is under economic pressure. This pres-
sure originates from the drive to produce the next products more efficiently
or to get them to the market faster to stay competitive. Software product line
engineering is a solution for both kinds of goals – increased efficiency and
decreased time to market. However, a transition to software product line
engineering is not easy. It requires investments that have to be determined
carefully to get the desired benefits.

20.2 Motivation and Business Objectives

There are two major reasons for considering a move from the current way of
development to software product line engineering. Often these reasons are
related to each other; the first one is usually a trigger for the second one.

External pressure: This comes from the market; customers ask, for
instance for new features in the products and for a common look-and-
feel. Alternatively, competition increases so that the organisation has to
achieve a shorter time to market, cover more different markets, reduce
production costs, or enhance quality. The product managers are those
first affected by this pressure. This causes them to consider improving
development so that time to market is decreased and more customer
wishes can be realised in the products.

Internal pressure: When time schedules cannot be met, project man-
agers and architects are inclined to make the work more efficient. They
try to improve development so that development time is decreased
while retaining the quality.

Improving the development means investing time and money. This must pay
off, so the business objective is that the change must yield a positive return
on investment (ROI). Product managers have to define the time frame: how
long will it take from investing money until the ROI becomes positive. They
also have to ensure that the ROI becomes positive for the organisation as a
whole, not just for individual products. The basis for determining the ROI is
a cost model; Section 20.4 presents such a cost model.

To become more efficient, the amount of work has to be reduced or through-
put increased. The business objective is to reuse what can be reused. Reuse
was considered in big projects in the 1990s. Experience shows that reuse
may entail more cost than benefit (see for instance [Schmidt 1999; McClure

Goals of
a transition

Triggers for the
transition

Positive return
on investment

Reuse

20.3 Transition Strategies 395

1995]). Reuse has to be managed which leads to platforms (Definition 1-2).
Reuse means two things: reusing existing artefacts and building new ones
that can be reused for the applications. Thus, managed reuse leads to the
introduction of two processes, one where the reusable artefacts are produced
(domain engineering) and one where they are used to create the applications
(application engineering); see Chapter 2.

To support the increased number of customer wishes and support more mar-
kets, the applications must be adaptable to these various wishes. Thus, the
next business objective is to provide variety in features to satisfy customer
wishes. This leads to the introduction of variability, and together with the
required efficiency, to mass customisation.

To improve development, we need to improve the process, the development
methods and technology, and the organisation. Therefore, the next business
objective is that the transition to product line engineering improves the pro-
cess, development methods and technology, and the organisation. In the past,
the introduction of software product line engineering was often ad hoc (see
for instance [Clements and Northrop 2001]). For a successful transition, we
have to change all relevant aspects, not just some of them.

A change of process and development methods can generate unrest in an
organisation, and it can frustrate the staff if the changes are too drastic. In
addition, current customers can get angry if the focus of the organisation
changes too much towards new markets. The business objective is to con-
sider the situation of the current and new markets, as well as that of the
organisation for the transition.

The business objectives listed above have to be considered to select the right
transition strategy and to perform the right steps in that strategy, so that a
positive ROI is achieved.

20.3 Transition Strategies

An important part of the transition process to software product line engin-
eering is the determination of the transition strategy. The selection of this
strategy has to take into account the business objectives stated above in
Section 20.2. For a good introduction to fundamental transition strategies
and their pros and cons, see [McGregor et al. 2002]. In the following, we
present four major transition strategies (for details see [Boeckle et al. 2002]).

20.3.1 Incremental Introduction
The incremental introduction starts small and expands incrementally. Expan-
sion may occur in two dimensions:

Variety in
features

Process and
technology
improvement

Current and
future situation

Expansion in two
dimensions

396 20. Transition Process

Expanding organisational scope starts with a single group doing soft-
ware product line engineering and when that is successful, other groups
are added incrementally.

Expanding investment starts with a small investment for software prod-
uct line engineering that is incrementally increased, depending on the
success that has been achieved so far.

For the first dimension, the initial group consists of experts who know the
domain and have the necessary technical experience to assess new processes
and new development methods.

For the second dimension, a careful selection of the funded activities is per-
formed at each increment. This has to guarantee a high ROI for each incre-
ment, fostering the acceptance of the succeeding increment. Activities
funded in the increments often concentrate on creating reusable components
or making existing components reusable. It is important that other specific
activities are added in early increments, such as product planning in the
product line context. Product planning gives the direction for the develop-
ment efforts and makes the efforts measurable and predictable.

Weiss and Lai recommend an incremental transition to their FAST process
and provide some help to perform such a transition [Weiss and Lai 1999].

20.3.2 Tactical Approach
The tactical approach is usually driven by problems with conventional
engineering. For instance, these are problems with change management and
configuration management for multiple related products (Example 20-1).
Only specific sub-processes and methods are changed for introducing soft-
ware product line engineering partially. The tactical transition may start
informally. However, the product management sub-process and the planning
of the further development have to be performed after a short initial phase so
that the results can be made measurable and predictable. The tactical
approach is often used as the transition strategy when architects and engin-
eers drive the introduction of software product line engineering.

20.3.3 Pilot Project Strategy
A pilot project involves the development of a new product in one of several
alternative ways:

a) It is started as a potential first member of a software product line.

b) It is an extension of a series of related products.
Often the goal is that the related products are going to be incorporated
into the software product line.

Expert
group

Funding of
activities

Recommendation for
FAST process

Driven by technical
problems

Development
of a new product

20.3 Transition Strategies 397

c) It is realised as a toy product.
A toy-product project may be started when the risk or cost of creating a
new product completely with a new approach is too high. The product
of such a toy project must be sufficiently close to the organisation’s
products so that part of the results of the toy project can be reused when
software product line engineering is later introduced for the “real”
products.

d) It is realised by prototyping.
The engineering rules for prototyping are often less strict than for
standard products; for instance, engineers get sufficient time to analyse
and compare the new development approaches to their traditional ones.

The activities that are to be applied during the pilot project have to be
planned and the process has to be determined accordingly. Measures have to
be taken to find out if the pilot project is successful.

20.3.4 Big Bang Strategy
In the big bang strategy, software product line engineering is adopted for the
new products of the organisation at once, in one “big bang”. First, domain
engineering is performed completely and the platform is built. When the
platform assets are ready, application engineering starts and the applications
are derived from the platform.

Example 20-1: Tactical Approach

An organisation has a couple of individual home automation systems
on the market. Each of those systems realises a user authentication.
The applications use different techniques for identifying valid users,
such as passwords, fingerprints, or iris-scan-based identification.
Some of the applications even provide a combination of identification
mechanisms. Even if they use different identification techniques, the
applications share some commonalities, such as blocking the user
account in case of three invalid accesses and sending a notification to
the system operator, which have been implemented differently in each
application. Error correction and technology adaptations have even led
to more system versions. Configuration management gets more and
more complex. New adaptations are hard to integrate. Chaos is grow-
ing, so the organisation decides to adopt a product line engineering
approach. The development team creates a reference architecture that
specifies the common parts and separates the variable parts for each
possible identification technique. This results in a considerable reduc-
tion of the amount of work for the introduction of changes and of con-
figuration management.

Complete
platform first

398 20. Transition Process

20.4 Benefits and Drawbacks of the Transition Strategies

The incremental strategy has the following advantages:

The work on current products can go on as before since only a small
group or small part of the money is devoted to the transition.

The amount of money and time spent on the transition within any spe-
cific period is limited.

The transition can be changed or stopped at any time if the measure-
ment results determining the progress and the benefit of the activities
are not satisfactory.

The incremental transition strategy has the following drawbacks:

It takes a long time to build up the platform and introduce full product
line engineering.

The work on the current single products may change the conditions for
the platform or variability model. Therefore, continuous adaptation of
the artefacts built during the transition process is necessary.

In case the current products are to be included in the product line, arte-
facts of the products built during the transition have also to be reworked
for inclusion in the platform and for modelling variability.

It takes longer to make the full profit from the product line, than in the
big bang strategy.

The tactical strategy has the following advantages:

It concentrates on the most urgent needs of the organisation.

It can be started by a small group inside the organisation, e.g. by an
engineering group.

The cost of starting the transition is low.

The tactical strategy has the following drawbacks:

Without integration into an overall transition plan, the start of the transi-
tion in only a small group of the organisation is likely to fail.

The concentration on specific problems, for instance change and
configuration management (see Example 20-1), may lead the effort in
the wrong direction. Often the problems are caused at other places than
where they occur. In this example they may have been caused by inade-
quate requirements engineering; without improving that, the improve-
ment efforts will not be very effective.

Incremental
strategy

Tactical
strategy

20.4 Benefits and Drawbacks of the Transition Strategies 399

Without involving product management in the transition process, the
effect of the transition is rather limited.

This approach may start informally; however, product managers have to get
involved after a first starting phase, to plan the further development so that
the results can be made measurable and predictable.

The pilot project transition strategy has the following advantages:

The work on current products can go on as before.

A prototype or toy product is available to check development effort and
necessary process and technology changes before involving the rest of
the organisation.

The amount of money and time spent on the transition within any spe-
cific period is limited.

The transition can be changed or stopped after the pilot project if the
results are not satisfactory.

The pilot project transition strategy has the following drawbacks:

The amount of money and time spent is mostly higher than in the incre-
mental introduction.

The prototype and the core assets built during the pilot project may have
to be thrown away.

It takes longer to make the full profit from the product line than in the
big bang strategy.

The big bang strategy has the following advantages:

It uses a comprehensive, all-encompassing transition plan so that the
interdependencies between parts of the processes and the organisation
can be considered from the beginning.

The overall investment is lowest (until the full product line engineering
development process is installed).

The platform contains the right assets earlier than in the other strategies.

The big bang strategy has the following drawbacks:

The investment is concentrated over a smaller time frame than for the
other transition strategies. A large amount of money is needed at the
beginning as an up-front investment. This strategy is only feasible if the
organisation has enough money available during this time frame.

Pilot
project

Big bang
strategy

400 20. Transition Process

The organisation is very much occupied with the transition and cannot
work fully on the production of products. This may have a significant
impact and customers may switch to competitors.

If it turns out that product line engineering is not the right approach, it is
hard to undo the transition and the loss of money and effort is substan-
tial.

The big bang transition can be used in cases where the management of an
organisation is convinced of the advantages of a software product line engin-
eering approach and where it is essential for the business to achieve the
benefits of this approach in a particular time frame. This approach needs
significant investments and it takes some time for the first product to come
to the market (the time for full domain engineering plus application engin-
eering for it), but the succeeding products of the product line can be devel-
oped and brought to the market very fast.

To select the appropriate transition strategy, several factors have to be con-
sidered, the most important one being the ROI. The estimation of the ROI is
based on a cost model. The next section presents a cost model that can be
used to determine the ROI.

20.5 Cost Model

Cost models exist at various levels of detail. There is for instance the
COCOMO II model from B. Boehm [Boehm et al. 2000]. It is used to make
rather detailed cost estimations, but they take a lot of time. Other cost
models determine the cost and the ROI at an abstract level, as in [Boeckle et
al. 2004a] (see also [Cohen 2003]). Such models are less accurate but their
advantage is that results can be determined much faster than with COCOMO
II. They can be used to decide on the switching to software product line
engineering in a fast go/no-go decision. In addition, when the data for using
COCOMO II is not available, such models may still give results.

Our cost model (from [Boeckle et al. 2004a]) determines the general cost C
for establishing a software product line of n products pi according to the
following formula:

C =))()((
1

ireuse

n

i
iuniquecaborg pCpCCC

The cost model is based on a divide-and-conquer algorithm. The model
decomposes the problem into relatively simple components, enabling
experiments about cost scenarios. The constituents of the cost model are
depicted in Fig. 20-1 and explained below.

Management
commitment

Strategy selection
based on ROI

COCOMO

Central cost
formula

20.5 Cost Model 401

The cost constituents are:

Corg: This is the cost of adopting the software product line engineering
approach for an organisation (“org” stands for “organisation”). Such
costs include reorganisation, process improvement, training, and what-
ever other organisational actions are necessary. This cost depends on
the actual situation of the organisation: the cost for process improve-
ment depends on the process that is actually being used and the cost for
training depends on the number of people affected and their knowledge.
Example 20-2 illustrates how Corg can be determined.

Ccab: This is the cost to develop a core asset base for the software prod-
uct line (“cab” stands for “core asset base”). It includes costs for activ-
ities like the creation of the product portfolio for the product line,
commonality and variability analysis, building a reference architecture,
developing the common software and its supporting designs, documen-
tation, and test infrastructure. The cost depends on the transition strat-
egy chosen and the actual situation of the organisation, like the number
of people assigned for domain engineering, commonalities in existing
assets, etc. Case studies on software product lines or improved reuse
metrics [Wayne 1996; Poulin 1997] can be used to determine the actual

Cost for developing n applications with software product
line engineering: Four cost constituents

1. Adapt the
organisation

Domain Artefacts

2. Build the platform

3. Build
product-specific
parts

4. Re-use
common parts

Fig. 20-1: The four cost constituents of the cost model

Constituents of
the cost model

Four cost
constituents

Up-front investment
for the platform

402 20. Transition Process

values. Experienced architects are best suited to estimate this value
since they usually know how long it takes to perform these tasks.
Example 20-3 illustrates how Ccab can be determined.

Cunique: This is the cost of developing unique pieces of software that are
not based on the platform. This concerns those parts of the applications
that have to be built individually in the application engineering process.
Cunique is usually determined from the experience of the staff – this is
standard software development effort estimation. In addition,
COCOMO II may be applied here, see [Boehm et al. 2000].

Creuse: This is the cost of reusing core assets in a core asset base. This
includes the cost of locating and checking out a core asset, binding vari-
ants, tailoring the core asset for use in the intended application (if
necessary), and performing the extra integration and system tests asso-
ciated with reusing core assets.

The resulting sum is C, the cost of developing n applications with software
product line engineering.

Example 20-2: Determining Corg

The organisation makes an assessment to identify the process changes
that are necessary for a transition. Twenty people take part in this
assessment, for two hours each (including preparation). The assess-
ment cost is then C1 for the assessors plus the costs for 40 hours’ work
of the personnel. Then the 20 people need one week training courses
each, plus three days to get used to the new process and engineering
methods. Thus, Corg is C1 plus the cost for 1,320 person hours (5 plus
3 days, 8 hours per day for 20 persons, plus 40 hours).

20.6 Application of the Cost Model to the Transition
Strategies

We apply the cost model to the transition strategies by creating scenarios
that help determine the constituents of the formula. For the tactical approach
there is usually no ROI determined at the beginning, but as soon as product
managers and upper-level managers become involved, the same kind of cal-
culation has to be performed as for the incremental introduction. So, this
case is not considered separately here.

20.6.1 Cost and ROI for the Incremental Transition Strategy
We assume that the organisation has a set of n products in the marketplace
that were developed more or less independently. Moreover, we assume that

Costs for application-
specific artefacts

Costs for reusing
domain artefacts

ROI for tactical
approach

Scenario

20.6 Application of the Cost Model to the Transition Strategies 403

the core asset base is built on the basis of these products and that s of these
products are rebuilt from the core asset base, using a software product line
engineering approach. We determine first how much it costs to create the
whole asset base and build the s old products anew, using the core asset
base. Our cost formula gives the cost as:

C1 =)()(
11

s

i
ireuse

s

i
iuniquecaborg pCpCCC

Corg comprises mostly the cost to set up the group for domain engineering
and to define and synchronise the increments of the incremental transition
(including the cost for training the personnel added in the increments). Cunique
depends on the amount of unique parts that can be reused from the s old
products. Creuse is the cost of reusing the core assets (Section 20.5).

Example 20-3: Determining Ccab

A group of product managers and requirements engineers is assigned
to build a new product portfolio and enhance the existing requirements
documentation. This needs four people working for six weeks, alto-
gether 960 hours. Harmonizing the terminology requires the setup of a
common glossary, needing another two person weeks (80 hours). A
team of architects and other specialists (a requirements engineer and a
designer) is set up to determine the new reference architecture. On
average, five people work for four weeks to create the new reference
architecture and link it to the requirements and components. Alto-
gether this takes 800 hours. The setup of new design rules (“texture”)
and testing rules takes another 80 hours; the creation of the new sys-
tem test specification (based on the existing ones) requires a test
engineer to work for three weeks (120 hours). No new components are
built for the platform, but existing ones are made reusable as domain
assets. The overhead for creating a component so that it can be reused
as a domain asset is, according to experience in companies, between
50% and 200%. So it takes between 1.5 and 3 times as long to create a
domain component than a single-use component. We assume that
designers involved in writing the original components are assigned to
the job and need the same time for making the components reusable as
they did for the original development of these components.
Altogether, the development of the domain artefacts takes 960+80+
800+80+120=2040 person hours plus the time that was needed to
create the original assets that will belong to the platform.

Cost for asset
base and rebuild

404 20. Transition Process

We assume that the organisation brings k other products to the market, based
on the asset base developed so far. For this, the application of our cost model
gives the cost C2 as:

C2 =)()(
11

k

i
ireuse

k

i
iuniquecaborg pCpCCC

Corg is mostly the cost for training the personnel added in the increments.
Ccab is mostly zero; it may be greater than zero if new assets are added to the
platform when the k new products are built. Creuse is the same as before, the
cost to reuse the core assets.

The complete cost is C = C1 + C2. The effect of the scenario above is that we
have a core asset base, s old products built anew, and k new products built
from the core asset base.

For building the k new products in the conventional way we have a cost of:

Cconv = k × Cunique

The ROI is then the cost to build the k new products in the conventional way
minus the cost C of doing it with product line engineering, divided by the
investment C:

ROI = (Cconv – C)/C

Boeckle et al. show how the ROI is created and for what values of k we actu-
ally get a positive ROI [Boeckle et al. 2004a]. For increments where the s
products are rebuilt, the management needs to know what kinds of incre-
ments will bring the highest ROI. To determine that, we vary the value of s.
The first step, creating the core asset base, is done incrementally in m steps
with si products in each step, so that s1 + s2 + … + sm = n, for our n products
that the organisation already has on the market. Several scenarios with
varying values for si must be determined and compared to select the best
increments.

20.6.2 Cost and ROI for the Pilot Project Transition Strategy
The cost involved is determined in the same way as for the incremental
introduction. We assume a scenario where, first, the core asset base is built
from existing products and, next, a prototype is built from the core asset
base. Again, we separate the total cost into two parts, C1 and C2; these are
not the same as for the previous strategy. The application of our cost model
delivers the cost C1 to build the initial core asset base and the prototype p:

C1 = Corg + Ccab + Cunique(p) + Creuse(p)

Cost for new
products

Total
cost

Single-system
development cost

Return on investment

Scenario

Cost for asset base
and prototype

20.6 Application of the Cost Model to the Transition Strategies 405

Corg is rather small because only a small group is set up for the pilot project.
Ccab determines the cost of setting up an initial core asset base that is suffi-
cient for the pilot project. Cunique is the cost of creating the product-specific
parts of the product created during the pilot project and Creuse the cost of
reusing parts from the asset base for this product.

We assume that the organisation decides to introduce software product line
engineering for rebuilding other k1 products, using the initial asset base and
building k2 new products. The application of our cost model delivers the cost
C2 for that:

C2 =)()(
2121

11

kk

i
ireuse

kk

i
iuniquecaborg pCpCCC

Here, Corg is the cost to adopt a product line organisation structure for the
rest of the organisation. Ccab is the cost of increasing the core asset base for
the additional k1 + k2 products. The value of k1 is 0 if no existing products
are rebuilt. The pilot or toy product p may be thrown away or extended to a
real product. Then it is included in these k2 new products.

The full cost of this scenario is then:

C = C1 + C2

For building the k2 new products the conventional way we have a cost of

Cconv = k2 × Cunique

The ROI is then, as before, the cost of creating the k2 new products in the
conventional way minus the investment C (the cost of introducing product
line engineering plus creating the platform and k1+k2 products in the product
line), divided by the investment C:

ROI = (Cconv – C)/C

20.6.3 Cost and ROI for the Big Bang Transition Strategy
In this strategy, software product line engineering is adopted for the new
products of the organisation at once, in one “big bang”. The scenario for this
case assumes that the asset base is first built completely and that the applica-
tions are then derived from it.

The cost for doing this, assuming that k applications are built, is:

C =)()(
11

k

i
ireuse

k

i
iuniquecaborg pCpCCC

Cost for rebuilding
old plus building new
products

Total
cost

Single-system
development cost

Return on investment

Scenario

Total cost

406 20. Transition Process

Here, Corg is the cost to set up the organisation for software product line
engineering completely and Ccab is the cost of building the full core asset
base from scratch.

For building the k new products in the conventional way we have a cost of:

Cconv = k × Cunique

The ROI is then:

ROI = (Cconv – C)/C

With these formulae, the ROI for the different strategies can be determined
and used to choose the best strategy for the situation of the organisation. ROI
is just one of the factors for selecting a strategy – other factors are market
pressure to deliver products to customers, for instance, which determines the
number of people that can be assigned for the transition, and the available
money for the investment.

20.7 Major Steps of a Transition Process

In this section, we examine the transition process itself. Many different
aspects (e.g. business, architecture, technology, process, and organisation)
have to be considered, and many changes have to be performed for such a
transition. A description of a transition can be found in [Boeckle et al. 2002].

The major steps of the transition process are:

1. Identifying relevant stakeholders.
2. Determining the stakeholders’ goals.
3. Creating business cases for all stakeholders.
4. Creating an adoption plan.
5. Launching and institutionalising software product line engineering.

20.7.1 Step 1: Identifying Stakeholders
For this transition process step, all roles in the current development process
have to be considered as input and those roles that are affected by the transi-
tion and the new development process are identified as output.

The most important stakeholders to be considered are those from the organi-
sation’s projects that are to be included in the new product line and potential
pilot customers, namely:

Product managers
Managers

Single-system
development cost

Return on investment

Five major
steps

Project staff and
pilot customers

20.7 Major Steps of a Transition Process 407

Project managers
Architects
Engineers
Quality assurance people
Pilot customers

Some organisations may include only part of these stakeholders. Organisa-
tions who know their customers personally may inform some of them about
the transition and ask for their opinions. But usually, the transition is not
communicated to customers before it is completed.

20.7.2 Step 2: Determining the Stakeholders’ Goals
As input for this transition process step the stakeholder roles from the previ-
ous step and the role descriptions of the development process are used. The
output is a list of goals for each stakeholder role.

The goals of product managers encompass increasing revenue, profit, and
market coverage, higher quality, as well as decreasing time to market. They
define product strategy and product portfolio. Often they are involved in the
assignment of budgets and the definition of organisation strategy. Their
interest is in marketing, customer analysis, and product definition.

The goals of managers are reducing cost and increasing efficiency; they also
have to care for their staff and motivate them. They decide on budgeting and
staffing. The goals of project managers are to get marketable products on
time. Their tasks encompass project planning, measuring progress, and risk
analysis. Managers will ask for their opinion about the approach.

Architects’ and engineers’ goals are in developing the products according to
the requirements and with reasonable effort. These people must be con-
vinced that the approach is technologically feasible and that it can make their
work more efficient. Managers and project managers will ask for their opin-
ion about the approach.

Quality assurance staff have the goal to reach the necessary quality as speci-
fied by the requirements and general rules. They, too, may be asked by man-
agement for their opinion about the approach.

20.7.3 Step 3: Creating Business Cases
The input to this transition process step comprises the output of the two pre-
vious steps, stakeholder roles and their goals. The cost model from Section
20.4 and its application to transition strategies from Section 20.6 are used,
too. The output is a set of business cases.

Product
managers

Managers and
project managers

Architects and
engineers

Quality
assurance staff

408 20. Transition Process

For each of the stakeholder roles a business case has to be developed that
shows how software product line engineering helps them to achieve their
goals. The business case comprises the adoption plan. It also contains met-
rics that are relevant for the stakeholders addressed in the business case to
achieve their goals. These metrics measure how the goals described above
for the stakeholder roles are reached, such as revenues and profits, costs and
ROI. The metrics compare product development as single systems with
software product line engineering, targeted to the envisaged markets.

We do not go into details of business cases here; more information can be
found in [Business Case 2004; PL-Framework 2004]. Some examples of
business cases for switching to software product line engineering are pre-
sented in [Clements and Northrop 2001].

20.7.4 Step 4: Creating an Adoption Plan
The input to this transition process step comprises information about the
state of the organisation, including its development process and its structure.
The output is the adoption plan, as described below.

The persons creating the adoption plan are mostly product managers and
architects. The structure of the adoption plan shows three major parts:

Characterisation of the current state.
Characterisation of the desired state.
Strategies, objectives, and activities to get from the current to the
desired state.

The adoption plan describes the change in process and organisation structure
and is thus part of standard change management.

The state of the organisation is characterised by its process, the staff and
their expertise, the organisation structure, the project management methods,
the engineering methods, and many other business parameters. To characte-
rise the current state, the maturity of the organisation has to be analysed and
described. Such an assessment may be similar to a CMMI assessment; how-
ever, its purpose is not to obtain a number to compare the organisation with
other organisations (as is often the case for CMMI levels). This assessment
determines the strengths and weaknesses of the organisation for software
product line engineering and the points where special care has to be taken for
the adoption.

To determine the desired state, each of the topics listed in the preceding
paragraph has to be considered and its desired state has to be defined. This is
specific to the process and the organisation structure chosen for software

Goal achievement
metrics

Who does it

Three major
parts

Current
state

Desired
state

20.7 Major Steps of a Transition Process 409

product line engineering. The process chosen will mostly be based on a core
process like our software product line engineering framework.

The third step in the adoption plan is to determine a strategy for getting from
the current state to the desired state. These strategies have been described in
Section 20.3. The adoption plan has to characterise and prioritise them, and
suggest the best-suited strategy for the transition to software product line
engineering. The prioritisation depends on the values of the metrics for each
strategy (like ROI), but also on the people involved.

Whatever the strategy for the adoption, it is always necessary to introduce
review points in the transition process where the current state of the adoption
is evaluated and the results of the new approach are compared to the con-
ventional approach. This requires introducing measurements during the tran-
sition process that can be used for the evaluations. These reviews have to
adjust the transition process – they may even lead to a change in the adop-
tion strategy. For the selected strategy, the adoption plan has to include a list
of the risks that are involved, together with risk mitigation strategies.

20.7.5 Step 5: Launching and Institutionalising the Transition
When the adoption plan with the three parts (current state, desired state,
strategy to get from the current to the desired state) is ready, the best-suited
strategy is chosen, depending on the estimations of the metrics described in
the business cases. After that, the software product line engineering
approach can be launched. Whatever strategy is chosen, as part of the launch
the following must be specified:

The stakeholders, their interests, needs, biases, culture, and motivation.
This includes the original list of stakeholders and their goals, plus new
roles that are defined in the adoption plan.
The new organisation structure.
The tasks and responsibilities of the new roles.
A migration path from the old organisation structure to the new one.
A software product line engineering process for the organisation,
considering the products, skills, environment, etc. Our software product
line engineering framework can be used as a basis for such a process.
The production process (this includes packaging, for example).
Plans for funding.
Plans for staffing, including consultants and providers.
Champions and angels for important activities.

Path from current
to desired state

Measuring
progress

Specifying
the launch

410 20. Transition Process

Champions are staff members who are convinced of a new idea like soft-
ware product line engineering and are able to convince other staff members.
They support others in applying the approach, present practical tips and sup-
port proliferation of the idea. Angels are members of management or senior
engineers who have influence due to their role in the hierarchy or due to
their experience and expertise. They give the necessary weight to the launch
of software product line engineering.

Just launching software product line engineering is not sufficient. It has to be
institutionalised by senior management and process managers so that the
involved managers and staff consider it as part of their working culture.

An organisation unit that develops a product and sells it to customers will be
funded eventually by selling its products. But a domain engineering unit that
develops the platform for software product line engineering requires an up-
front investment that needs to be financed somehow, and therefore a funding
strategy is necessary. Several strategies may be used for funding the domain
engineering activities. For instance, the money may come from a kind of tax
imposed on all affected application engineering units or from a corporate
fund that may be assigned to these activities. When the products of a soft-
ware product line are sold in the market, a certain percentage of the money
paid by the customers may be assigned to domain engineering.

Besides the transition from developing single systems, there are also other
changes in the process and engineering approach in the context of software
product line engineering. One scenario that has to be considered is an
organisation having several product lines that overlap. Does it make sense to
merge them or is it better to drop one of them completely? The cost model
can help to determine the costs involved, see [Boeckle et al. 2004a]. For the
start of a new product line in this scenario, it has to be considered if the
software product line should be based on the existing ones or if it is better to
build a new platform and develop a new, independent product line.

20.8 Summary

For software product line engineering to be successful, both engineering
aspects and business aspects have to be considered thoroughly. The tran-
sition process for achieving fully working software product line engineering
has to be planned and performed carefully. It should be based on metrics
(such as ROI) and estimations, and use common process change manage-
ment methods. The strategy for such a transition needs to be selected care-
fully, depending on the situation of the organisation.

Champion
and angels

Funding
strategies

Merging and splitting
product lines

Planning of
transition process

Part VI

Experience and
Future Research

21
Experiences with
Software Product
Line Engineering

This chapter:

o Summarises 15 cases of applying the software product line engineering para-
digm in industry.

o Reports on examples of cost reduction, shorter development times, and quality
improvement achieved by introducing the software product line engineering
paradigm in industry.

o Provides annotated references for further reading about the success stories,
obstacles faced, and experience gained.

Christian Dinnus
Klaus Pohl

414 21. Experiences with Software Product Line Engineering

21.1 ABB

Company background: Asea Brown Boveri (ABB) is a leading global tech-
nology company and has two main business areas, the power and automation
technology for utility and industry customers [ABB 2004].

Products: ABB’s power technology comprises, for instance, high- and
medium-voltage products, transformers, and utility automation products. The
automation technology branch comprises products such as control systems
and robotics [ABB 2004].

Platform: ABB gained plenty of experience with different software product
lines. The first example is the ABB Gas Turbine Family, which covers the
power range of 35 to 270 MW with five basic turbine types varying in size,
combustion technologies, and equipment [Ganz and Layes 1998]. The
second example is the Semantic Graphics Framework. It supports the devel-
opment of graphical applications that realise special requirements in the
engineering domain [Rösel 1998]. The third example is ABB’s train control
product line which is an embedded real-time software system for controlling
train movement [Eixelsberger and Beckman 2000].

Experience: The experiences of ABB with the software product line
approach are positive. The Semantic Graphics Framework has been in use
for several years in different business units. More than ten industrial appli-
cations have been derived from it [Rösel 1998]. The reference architecture of
the turbine control system for the ABB Gas Turbine Family led to shorter
development time, higher code quality, and eased the exchange of modules
[Ganz and Layes 1998]. For the train control product line, ABB expected
significant quality improvements and savings when developing additional
product line members [Eixelsberger and Beckman 2000].

Annotated References
C. Ganz and M. Layes; “Modular Turbine Control Software: A Control Software Architecture
for the ABB Gas Turbine Family”, In: Proceedings of the Second International ESPRIT ARES
Workshop, Las Palmas de Gran Canaria, Springer LNCS 1429, 1998, pp. 32–38.

This paper describes the object-oriented design principles of the control
architecture of the gas turbine software product line. These principles are
for example the use of object hierarchies and data encapsulation.

A. Rösel; “Experiences with the Evolution of an Application Family Architecture”, In:
Proceedings of the Second International ESPRIT ARES Workshop, Las Palmas de Gran
Canaria, Springer LNCS 1429, 1998, pp. 39–48.

This paper shows the evolution of the Semantic Graphics Framework
from a prototype to a software product line for different industrial appli-

Power and
automation
technology

Several year
 of use

Shorter
development time

Quality
improvements

21.2 Boeing Company 415

cations. Three different perspectives are covered: architecture, docu-
mentation, and organisational issues.

W. Eixelsberger and H. Beckman; “The TCS Experience with the Recovery of Family
Architecture”, In: M. Jazayeri, A. Ran, and F. van der Linden (eds.), Software Architecture
for Product Families – Principles and Practice, Addison-Wesley, 2000, pp. 209–231.

This report explains the experience with the development of a reference
architecture based on the architectures of several existing train control
systems. It describes the methods used for the architectural recovery in
detail, such as the analysis of different views of the input architecture or
the recovery itself.

21.2 Boeing Company

Company background: The Boeing Company is one of the leading manu-
facturers of commercial jetliners, military aircraft, satellites, missile defence,
human space flight, and launch systems [Boeing 2004].

Products: The Bold Stroke software product line was originally initiated in
1995 at McDonnell-Douglas which, in the meantime, merged with the
Boeing Company. The purpose of the product line was to avail reuse poten-
tials in the operational flight program (OFP) software across multiple fighter
aircraft platforms [Sharp 2000]. OFPs are mission-critical, distributed, real-
time embedded applications supporting the avionics as well as the cockpit
functions for the pilot [Hall of Fame 2004].

Platform: The first step of introducing Bold Stroke included the definition
and of a reference architecture and its proof of concept, including hardware,
software, standards, and practices. The main challenge when defining the
reference architecture was to harmonise the differences in the avionics
subsystems, mission computing hardware, and system requirements [Doerr
and Sharp 2000]. The software architecture consists of reusable components.
Hardware independence is achieved by layering and the use of a medium-
grained abstraction level [Sharp 2000].

Experience: The success of the Bold Stroke software product line is based on
the reduction of dependencies between components and the dependency on
platform-specific hardware. The software design facilitates the modification
of components and maximises the reuse in different OFPs [Doerr and Sharp
2000]. The Bold Stroke software product line was flight tested successfully
on several different aircraft platforms hosted on different hardware configur-
ations [Sharp 2000]. It is the foundation for different production and
research programmes, e.g. performed by the Defense Advanced Research
Projects Agency (DARPA) [Hall of Fame 2004].

Operational flight
program software

OFP reference
architecture

416 21. Experiences with Software Product Line Engineering

Annotated References
B.S. Doerr and D.C. Sharp; “Freeing Product Line Architectures from Execution
Dependencies”, In: Proceedings of the First Software Product Lines Conference (SPLC-1),
Denver, Kluwer, 2000, pp. 313–329.

This paper shows different ways of designing physical architectures for a
software product line without introducing volatility into the application
architecture, e.g. to remove platform-specific hardware dependencies.

D.C. Sharp; “Component Based Product Line Development of Avionics Software”, In:
Proceedings of the First Software Product Lines Conference (SPLC-1), Denver, Kluwer,
2000, pp. 353–369.

This paper presents the Bold Stroke software product line architecture,
which results from an object-oriented analysis and consists of reusable
software components. Due to layering and the use of medium-grained
abstraction levels the architecture is independent of the hardware.

SPLC2 – Product Line Hall of Fame, 2004, www.sei.cmu.edu/SPLC2/SPLC2_hof.html

The Hall of Fame website contains an abstract of the software product
line experiences at the Boeing Company and presents some technical
issues, e.g. about the reference architecture.

21.3 CelsiusTech Systems AB

Company background: CelsiusTech Systems AB originally was a depart-
ment of Philips, later became an independent company, and finally became
an affiliated company of the Saab Group, Sweden, operating under
SaabTech AB. SaabTech AB is a leading supplier of avionics and electronic
warfare systems [SaabTech 2004].

Products: In the mid 1980s, CelsiusTech simultaneously obtained two con-
tracts to build naval control systems. The systems had to be hard real time,
fault tolerant, and highly distributed. They had to interface with radars and
other sensors, missile and torpedo launchers.

Platform: Due to its prior experiences CelsiusTech could estimate the com-
plexity and came to the conclusion that it could not realise these contracts by
two separate teams. CelsiusTech recognised that the two systems had more
similarities than differences, even though they had to serve ships of different
classes in different navies. With its extensive background in the domain,
CelsiusTech started one of the first software product lines, which is still run-
ning today, under the name ShipSystem 2000 [Clements and Northrop 2001;
Brownsword and Clements 1996].

Naval control
software

21.4 Cummins Inc. 417

Experience: The ability to react quickly to customer needs in a hard-fought
market, with strong competitors and only a few customers, gives a strong
competitive advantage. CelsiusTech could quickly enter the new market of
avionic systems because it reused 40% of its code directly from Ship System
2000. The general reuse rate is about 80% in the normal naval scope of the
product line. CelsiusTech has also inverted its software/hardware costs ratio
from 65:35 to 20:80 [Clements and Northrop 2001; Brownsword and
Clements 1996].

Annotated References
P. Clements and L. Northrop; Software Product Lines – Practices and Patterns, Addison-
Wesley, 2001.

The example of CelsiusTech Systems AB is used several times in this
book because the software product line at CelsiusTech was one of the
first case studies in successful software product line engineering.

L. Brownsword and P. Clements; “A Case Study in Successful Product Line Development”,
Technical Report no. CMU/SEI-96-TR-016, Carnegie–Mellon Software Engineering Institute,
1996.

This paper describes in detail the changes that CelsiusTech had to make
to its software, organisation, and process structures due to the software
product line engineering paradigm, e.g. that marketers have to negotiate
the desired product features based on the possibilities of the software
product line.

SPLC2 – Product Line Hall of Fame, 2004, www.sei.cmu.edu/SPLC2/SPLC2_hof.html

The Hall of Fame website describes briefly the success and complexity
of the software product line at CelsiusTech, e.g. that the system com-
prises 1–1.5 Million SLOC (Source Lines of Code) in Ada and that
more than 50 applications have been derived from the software product
line.

21.4 Cummins Inc.

Company background: Cummins Inc. is a global leader in developing, dis-
tributing, and servicing engines and related technologies, including fuel sys-
tems, controls, air handling, filtration, emission solutions, and electrical
power generation systems [Cummins 2004].

Products: Software is becoming ever more important for controlling the
operation of an engine, e.g. electronics control the ignition and the fuel
delivery. The software must be robust and highly reliable. In late 1993 six

Reuse rate
of 80%

Engine control
software

418 21. Experiences with Software Product Line Engineering

critical engine software projects were underway, with another twelve
planned [Dager 2000].

Platform: Every developer team worked autonomously and with different
standards; for example, there was no common programming language and no
reference architecture defined. Being anxious about the quality of the
resulting applications, the project leader stopped all projects and established
a focus group to develop core assets that all the applications could use. Fur-
thermore, he defined common software development processes [Clements
and Northrop 2001]. The first software product line at Cummins Inc. was
therefore born.

Experience: The experience of Cummins Inc. with the software product line
approach is consistently positive. Cummins Inc. is able to build over 1000
different products based on the software product line. A wide variety of dif-
ferent functionality is integrated into the software product line: nine basic
engine types ranging over 4–18 cylinders and 4–164 litres of displacement,
with 12 kinds of electronic control modules, 5 kinds of processors, and 10
kinds of fuel systems. Cummins estimated that it would take more than 360
software engineers to produce these software systems separately instead of
the 100 software engineers actually needed due to the software product line
approach. This is an estimated productivity improvement of 3.6. Cummins
also estimated an ROI (Return On Investment) of 10:1. Furthermore,
Cummins can quickly access new markets, from rock crushers to ski lifts
[Clements and Northrop 2001; Hall of Fame 2004].

Annotated References
P. Clements and L. Northrop; Software Product Lines – Practices and Patterns, Addison-
Wesley, 2001, pp. 417–442.

This report deals with the experience gained at Cummins Inc. with intro-
ducing the engine control software product line. The initial problem
situation is drafted and the way to launch the software product line is
described including the necessary organisational restructuring.

J.C. Dager; “Cummins’s Experience in Developing a Software Product Line Architecture for
Real-time Embedded Diesel Engine Controls”, In: Proceedings of the First Software Product
Lines Conference (SPLC-1), Denver, Kluwer, 2000, pp. 23–46.

This paper reports on the experience of introducing the engine control
software product line, especially domain analysis and architectural
views, as well as the architectural development process and the organ-
isational challenges.

Productivity
improvement of 3.6

ROI of 10:1

21.5 Hewlett-Packard 419

SPLC2 – Product Line Hall of Fame, 2004, www.sei.cmu.edu/SPLC2/SPLC2_hof.html

The Hall of Fame website contains different qualitative statements about
the success of the software product line at Cummins Inc., e.g. that 20
basic software builds have been parlayed into well over 1000 separate
products.

21.5 Hewlett-Packard

Company background: HP is one of the world’s leading IT companies with
many different business areas, reaching from consumer handheld devices to
powerful supercomputer installations [Hewlett-Packard 2004].

Products: One important business area is the manufacturing of printing tech-
nology. HP must maintain a wide range of different firmware of different
products for printing, copying, scanning, and faxing [Hall of Fame 2004].

Platform: HP initiated the Owen Firmware Cooperative to install a software
product line approach. Several product teams build a community to provide
the product line in a cooperative way. Every product team adopts ownership
of newly produced or significantly changed core assets, so everyone feels
responsible for the quality of the platform. A small platform team ensures
the robustness of the core assets and guides the product teams in using the
core assets [Toft et al. 2000].

Experience: The software product line approach yields a reuse rate of about
70% for new products. About 20% of the application assets are based on
slightly modified core assets and only 10% require writing new code. The
reuse of the core assets leads to significant business advantages. Compared
with the development of earlier products, the development of new firmware
takes only 25% of the staff resources. In spite of the reduction of staff, the
development takes only 33% of the time. This productivity improvement
goes hand in hand with a qualitative advancement. The software product line
approach leads to 96% fewer defects compared with earlier products [Hall of
Fame 2004; SoftwareProductLines 2004].

Annotated References
P. Toft, D. Coleman, and J. Ohta; “A Cooperative Model for Cross-Divisional Product
Development for a Software Product Line”, In: Proceedings of the First Software Product
Lines Conference (SPLC-1), Denver, Kluwer, 2000, pp. 111–132.

This paper describes the model of the cooperative organisation at HP for
introducing and extending the software product line for printing devices,
e.g. how product teams are organised and which key roles are necessary.

Firmware for
printing, scanning,
etc.

Development time
reduced by 67%

96% fewer
defects

420 21. Experiences with Software Product Line Engineering

Another aspect is a short description of the component-based architec-
ture.

D. Fafchamps; “Organizational Factors and Reuse”, IEEE Software, vol. 11, no. 5, 1994, pp.
31–41.

This article presents the results of an empirical study conducted at
Hewlett-Packard. The goal of this study was to find out why people
sometimes resist reuse and which organisational models encourage reuse
more than others. The experience of subsequent reuse programs showed
that the relationship between producers and consumers of reuse compo-
nents and services is a crucial factor. Based on the experiences gained in
the study the article identifies and evaluates four different organisational
models of producer–consumer relationships.

S. Douma and H. Schreuder; Economic Approaches to Organizations, 3rd edition, Prentice
Hall, 2002.

The box on p. 43 briefly describes Hewlett-Packard’s business princi-
ples, known as the “HP way”. It also summarises the past strategic deci-
sions that were necessary to retain the company’s success, such as the
introduction of a service-centred culture.

SPLC2 – Product Line Hall of Fame, 2004, www.sei.cmu.edu/SPLC2/SPLC2_hof.html

The Hall of Fame website briefly describes the cooperative organisation
model of the software product line for printing devices at HP. Some
qualitative statements about the success of the software product line are
given, like the reduction of staff resources for developing new firmware
up to 75%.

Software Product Lines, 2004, www.softwareproductlines.com

A report of the experience gained at HP with the software product line
for printing devices can be found on this website. Three key success
factors are given: the firmware architecture, the development approach,
and the cooperative organisation.

21.6 LG Industrial Systems Co., Ltd.

Company background: LG Industrial Systems Co., Ltd (LGIS) is a Korean
manufacturer of electric power equipment including industrial electric
equipment, distribution, automation, and control systems [LGIS 2004].

Products: A business area of LGIS is the development of elevator control
systems (ECS). This embedded control software has a high diversity of cus-
tomer needs and therefore rapidly changing market requirements. The com-

Elevator control
software

21.7 Lucent Technologies 421

petitive market of ECS demands a high flexibility in the products to retain a
significant market share [Lee et al. 2000].

Platform: Doing it the old way, LGIS developed all its ECS separately, so
LGIS had to modify the software frequently. Changes were often unmanaged
and the software became error-prone. To improve the situation, LGIS
decided to start a software product line for ECS. The product line engineer-
ing process was separated into two parts, namely domain and application
engineering. Several phases ware passed through during domain engineer-
ing, e.g. the context analysis to set the scope of the domain or feature
modelling to detect the commonalities and differences in the domain. The
application engineering dealt with the configuration process of the software
product line at LGIS, e.g. with the selection of features [Lee et al. 2000].

Experience: A result of the software product line is the decreasing complex-
ity of the core assets. In the old version the system consisted of 51 modules
with 603 functions, which were in part redundant. The re-engineered core
assets for the software product line have a reduced size and complexity of 48
modules with 295 functions. One example of the reduced complexity is the
number of functions, which had to be modified because of changes to a
serial port. In the old system, 20 functions had to be modified and in the
reengineered core assets only 8. The reduction of complexity also led to
reduced maintenance costs [Lee et al. 2000].

Annotated References
K. Lee, K.C. Kang, E. Koh, W. Chae, B. Kim, and B.W. Choi; “Domain-Oriented Engineering
of Elevator Control Software”, In: Proceedings of the First Software Product Lines
Conference (SPLC-1), Denver, Kluwer, 2000, pp. 3–22.

This paper describes the way from domain analysis to the component-
based reference architecture for the elevator control. Several modelling
techniques such as feature modelling and message sequence charts are
used to model different architecture views.

21.7 Lucent Technologies

Company background: Lucent Technologies designs and delivers the sys-
tems, services, and software that drive next-generation communications net-
works, like telephony or data communication [Lucent 2004].

Products: Most of the telephone connections in the USA are established by
the 5ESS switch from Lucent. The 5ESS switch has been in use since 1982.
It has been advanced to accommodate emerging requirements, e.g. the Inter-
net [Hall of Fame 2004; Ardis et al. 2000].

Complexity
reduced by 50%

422 21. Experiences with Software Product Line Engineering

Platform: In 1994 Lucent launched the Domain Engineered Configuration
Control (DECC) project to standardise the configuration control software
and to establish a software product line. The configuration control software
monitors the run-time configuration of hardware components and maintains
their status. For example, before removing one of the hardware components,
the configuration control software has to check if there is a backup compo-
nent. Furthermore the DECC developed a configuration process and tool for
generating new software based on the core assets. The idea was to translate
new specifications automatically into working code driven by a tool with a
graphical user interface [Ardis et al. 2000].

Experience: In 1996 the DECC team started a trial use in comparison to a
traditional project. The software product line had comparable run-time per-
formances. Because of this experience, the DECC team invested a small
amount of reengineering effort and started the first successful real project
only a few months later [Ardis et al. 2000]. The switch maintenance domain
showed productivity improvements by factors of 3 to 5 as a result of intro-
ducing product line engineering [Hall of Fame 2004].

Annotated References
M. Ardis, P. Dudak, L. Dor, W.-J. Leu, L. Nakatani, B. Olsen, and P. Pontrelli; “Domain-
Engineered Configuration Control”, In: Proceedings of the First Software Product Lines
Conference (SPLC-1), Denver, Kluwer, 2000, pp. 479–493.

This paper deals with the experiences of reengineering the configuration
control software for the 5ESS switch according to the software product
line engineering paradigm. The reengineering project was accomplished
in three phases: discovery, design, and deployment.

SPLC2 – Product Line Hall of Fame, 2004, www.sei.cmu.edu/SPLC2/SPLC2_hof.html

The Hall of Fame website describes the complexity of the software
product line for the 5ESS switch by the statement, that any particular
switch in the product line is operated by approximately 10 MLOC
(Millions Lines Of Code). The transfer of the 5ESS switch control soft-
ware to a software product line is one of the first applications of domain
engineering to a large, complex system.

21.8 MARKET MAKER Software AG

Company background: MARKET MAKER Software AG develops and pro-
vides Europe’s most popular stock market software that helps private and
professional users to keep track of the stock market [Market Maker 2004].

Telephone switching
configuration

software

Productivity improved
by factors 3 to 5

21.8 MARKET MAKER Software AG 423

Products: In 1999 MARKET MAKER decided to enter the new market of
Internet services. The small development team was faced with different
customer needs. Different operating platforms had to integrate different
databases and content-producing software. The product had to be able to
serve different requirements, such as showing different information in dif-
ferent representation formats based on different customer needs [Hall of
Fame 2004].

Platform: The variety in the online version of the product led to the decision
to apply the software product line engineering paradigm. By reusing the
desktop version of the stock information system as a common core, a small
team of six developers realised the additional software product line require-
ments for the online market in 36 person months. An additional requirement,
for example, was that products of the software product line had to be inte-
grated into different customer environments, which was achieved by sepa-
rating the data and the application layers [Clements and Northrop 2001].

Experience: Each instance of the software product line must be built in
accordance with customer requirements, installed, and tested on the cus-
tomer’s own platform. This takes as little as three days [Clements and
Northrop 2001]. During the boom time of the New Economy in the late
1990s, MARKET MAKER could realise a short time to market as a major
advantage over its competitors. After the end of the boom time, MARKET
MAKER survived because of its small, efficient team required for main-
taining the running systems [Hall of Fame 2004]. The development time for
creating a new product is reduced by more than 50% and costs are reduced
by roughly 70% [SoftwareProductLines 2004].

Annotated References
P. Clements and L. Northrop; Software Product Lines – Practices and Patterns, Addison-
Wesley, 2001, pp. 485–512.

The detailed report of the case study at MARKET MAKER describes
the experience of introducing a software product line into a small-sized
company, beginning with the history of the company and a detailed
problem statement. The different practices, like architecture definition or
component development, for setting up the software product line are
given.

K. Schmid; “A Comprehensive Product Line Scoping Approach and Its Validation”, In:
Proceedings of the 24th International Conference on Software Engineering (ICSE 2002),
Orlando, Florida, ACM Press, 2002, pp. 593–603.

This paper deals with aspects of scoping in the context of software prod-
uct lines. Scoping means to set the focus of reuse on the functionality
that promises an optimal return on investment. The chosen scoping

Stock tracking
software

Three days to set
up a new system

Cost reduction
of 70%

424 21. Experiences with Software Product Line Engineering

approach Pulse-Eco V2.0 is validated by the case study at MARKET
MAKER.

O. Flege and T. Kiesgen; “Börseninformationssysteme bei der Market Maker AG” (in
German), In: G. Böckle, P. Knauber, K. Pohl, and K. Schmid (eds.), Software-
Produktfamilien – Methoden, Einführung und Praxis, dpunkt, 2004, pp. 207–220.

The architecture of the software product line is presented from different
views, e.g. the logical view, the data structure, the component model,
and the process view. XML files are used to configure the component-
based architecture.

SPLC2 – Product Line Hall of Fame, 2004, www.sei.cmu.edu/SPLC2/SPLC2_hof.html

The Hall of Fame website describes the complexity of the software
product line at MARKET MAKER. Every product has to be tailored to
the customer’s requirements which are, for example, the integration of
the customer’s database or enabling the operation on the customer’s
computing platform.

Software Product Lines, 2004, www.softwareproductlines.com

This online experience report explains the major points in introducing a
software product line at a small-sized company like MARKET MAKER.
Thinking into the future, paying attention to quality, taking care with the
architecture, building an efficient team, and focusing on a domain are
the keystones.

21.9 Philips

Company background: Royal Philips Electronics of the Netherlands is one of
the world’s biggest electronics companies and the largest in Europe. Its
products vary from professional medical systems to lighting, consumer elec-
tronics, and domestic appliances [Philips 2004].

Products: Philips provides several product lines, mainly for consumer elec-
tronics and for medical systems. Furthermore, Philips is one of the leading
commercial European researchers in the field of software product lines. The
software product lines of consumer electronics and medical imaging systems
are only some of the successful examples.

21.9.1 Philips Consumer Electronics
Company background: Philips’ portfolio of consumer electronics systems
includes audio–video equipment, like TV-sets, radio receivers, CD and DVD
players and recorders, as well as set-top boxes [Philips 2004].

21.9 Philips 425

Products: Philips Consumer Electronics provides software product lines for
audio–video equipment, such as TV sets [V. Ommering et al. 2000]. The
customers have high demands with respect to performance. Because of the
mass-market nature, the cheapest memory and processor chips are used. The
products have to be very reliable as they are offered in the mass market.
Hence, repairing them after delivery is very costly.

Platform: Philips Consumer Electronics has chosen to use a composition
paradigm in the production of the product lines. The methodology is named
Koala [V. Ommering 2002]. This means that the architecture has enough
flexibility to allow many different configurations of the same basic compo-
nents. The whole set of products is referred to as product populations, with
many differences and many commonalities, but few commonalities that
spread over all products. Components are combined to build more complex
components. Interfaces that do not match are connected through glue code.
Certain pieces of glue code are standard, and only need some parameters to
instantiate.

Experience: By 2002, all mid- and high-range TV sets, and many other
products as well, were produced in the population [V. Ommering 2004].
Surprisingly, the architecture did not need many adaptations after its first
conception in 1996. For some experiences with interactive set-top boxes, see
[De Lange and Jansen 2001].

21.9.2 Philips Medical Systems
Company background: Philips’ portfolio of medical systems includes prod-
ucts like X-ray, ultrasonic or computed tomography and services like train-
ing, business consultancy, or financial services [Philips 2004].

Products: Philips Medical Systems provides a software product line for
medical imaging systems, which is motivated by an increasing complexity
and diversity in this domain [Wijnstra 2002]. The customers have high
demands on safety and reliability as the products may have a crucial impact
on the health of the patients, e.g. the produced radiation can be dangerous
[America and Van Wijgerden 2000].

Platform: Philips Medical Systems has decided to employ a sophisticated
software product line approach. A medical middleware platform serves as
the basis for other software product lines in the company. Thus the platform
is a software product line in itself, which leads to additional variability
requirements for the platform. The component-based reference architecture
reuses existing software components that are transformed step by step into
domain artefacts [SoftwareProductLines 2004].

Consumer
electronics

Stable reference
architecture

Medical
systems

426 21. Experiences with Software Product Line Engineering

Experience: Since 2001, the number of products that use the platform has
increased. Today, ten product groups are based on the platform. A product
group is responsible for creating products and for maintaining several pro-
duct lines. It takes about 1.6 times as many people to build a platform com-
ponent as was necessary to do it the old way. Yet every product group that
uses the platform saves significant time as most of the components do not
have to be developed again [SoftwareProductLines 2004].

Annotated References
F.J. van der Linden and J.K. Müller; “Creating Architectures with Building Blocks” IEEE
Software, November 1995, pp. 51–60.

For Philips, this was a report on the first successes of applying product
line technology in industry. It reported on a product line for telecommu-
nication switches in a niche market. These experiences have formed the
basis for all work on product lines within Philips ever since. The basic
ideas are used almost unchanged in all successful product lines.

R. van Ommering; Building Product Populations with Software Components, Ph.D. Thesis,
University of Groningen, December 2004.

This Ph.D. thesis gives an overview of all work on Koala in the con-
sumer electronics domain. It explains the compositional approach and
how dedicated tools keep variability selection local and at the same time
keep the resource consumption low.

F. de Lange and T. Jansen; “The Philips-OpenTV product family architecture for interactive
set-top boxes”, In: Proceedings of the 4th International Product Family Engineering
Workshop (PFE-4), Bilbao, Springer LNCS 2290, 2001, pp. 187–206.

This paper describes the Philips-OpenTV product line architecture,
which is used by different set-top box products. The design principles of
the architecture are explained, such as separation of concerns, layering,
and strict interfaces.

J.G. Wijnstra; “Component Frameworks for a Medical Imaging Product Family”, In:
Proceedings of Software Architectures for Product Families (IW-SAPF-3), Las Palmas de
Gran Canaria, Springer LNCS 1951, 2000, pp. 4–18.

This paper describes the experiences of Philips Medical Systems with
product line architectures in the medical imaging domain. Two different
component frameworks build the architecture. The first component
framework is the high-level product line architecture, which groups
components to subsystems and defines their interfaces. The second com-
ponent framework defines the different services of the components that
are provided via an interface.

Increasing number of
products based on the

platform

21.10 Robert Bosch GmbH 427

P. America and J. van Wijgerden; “Requirements Modeling for Families of Complex
Systems”, In: Proceedings of Software Architectures for Product Families (IW-SAPF-3), Las
Palmas de Gran Canaria, Springer LNCS 1951, 2000, pp. 199–209.

This paper deals with the specification of a software product line for
medical imaging systems using use cases and a requirements object
model expressed in the UML. A process is presented for this approach,
which has been validated in the medical imaging domain.

Software Product Lines, 2004, www.softwareproductlines.com

This report deals with the experience gained with the middleware plat-
form for the medical imaging domain. The motivation for applying the
software product line engineering paradigm is stated as well as technical
details, e.g. of the component-based architecture. Furthermore, some
qualitative statements about the success of the medical middleware plat-
form are given, like its successful use in ten different product groups.

SPLC2 – Product Line Hall of Fame, 2004, www.sei.cmu.edu/SPLC2/SPLC2_hof.html

This report briefly describes the telecom case, which constitutes Philips’
original experience with software product lines.

21.10 Robert Bosch GmbH

Company background: Robert Bosch GmbH is a leading supplier of the
automotive industry and produces many different systems, such as micro-
electronic sensor and control devices [Bosch 2004].

Products: This case study covers the example of driver assistance systems,
which supervise the periphery of a car to assist the driver. A parking pilot is
a typical example of a driver assistance system [Hein et al. 2000].

Platform: The automotive domain is characterised by only a few car manu-
facturers, whose market power forces the suppliers to deliver systems ad-
justed to the individual needs of the car manufacturer with high quality at
low prices. The concept of software product lines helps to attain these
requirements [Hein et al. 2004]. Robert Bosch GmbH has dealt with devel-
opment methods for software product lines in the automotive domain in the
ITEA-Project CAFÉ [CAFÉ 2004]. The main goal of Robert Bosch GmbH
was to establish a reference architecture for driver assistance systems, which
had to be configurable, integratable, and highly performing [Hein et al.
2004].

Experience: Robert Bosch GmbH has reached the goals for its architecture.
The architecture is configurable due to a reduction of the dependencies be-
tween different components. Integratability is reached by using the automo-
tive standard CAN for the system interfaces. High performance is achieved

Driver assistance
systems

Reusable high-
performance
architecture

428 21. Experiences with Software Product Line Engineering

by parallel data processing. Therefore the software product line for driver
assistance systems can be used in different contexts for different car manu-
facturers [Hein et al. 2004].

Annotated References
A. Hein, T. Fischer, and S. Thiel; “Fahrerassistenzsysteme bei der Robert Bosch GmbH” (in
German), In: G. Böckle, P. Knauber, K. Pohl, and K. Schmid (eds.), Software-
Produktfamilien – Methoden, Einführung und Praxis, dpunkt, 2004, pp. 193–205.

This report presents the experience gained in developing a reference
architecture of a software product line for the driver assistance domain.
The different steps for introducing the software product line are pre-
sented in detail, like the explicit modelling of variability or the product
configuration, which consists of the feature and architecture configura-
tions.

A. Hein, M. Schlick, and R. Vinga-Martins; “Applying Feature Models in Industrial
Settings”, In: Proceedings of the First Software Product Lines Conference (SPLC-1), Denver,
Kluwer, 2000, pp. 47–70.

This paper presents an approach to model the variability of a software
product line with feature-oriented domain analysis (FODA), which was
validated in the car periphery supervision domain. An extension is intro-
duced to enable FODA to model cross-links between features.

S. Thiel and A. Hein; “Systematic Integration of Variability into Product Line Architecture
Design”, In: Proceedings of the 2nd International Conference on Software Product Lines
(SPLC-2), San Diego, USA, Springer LNCS 2379, 2002, pp. 130–153.

This paper deals with the systematic integration of variability into the
reference architecture of a software product line. The architecture design
framework “QUASAR” is presented, which is applied successfully in
the car periphery supervision product line.

CAFÉ – From Concept to Application in System-Family Engineering, 2004,
www.esi.es/en/Projects/Cafe/cafe.html

This website presents an overview of the purpose, partners and tasks of
CAFÉ, which means “From Concept to Application in System-Family
Engineering”. The purpose of the CAFÉ project is the development of
practices and methods for the application of software product lines in the
development of software-intensive systems.

21.11 Salion Inc.

Company background: Salion Inc. is a software company specialising in
software solutions for Supplier Customer Relationship Management

21.11 Salion Inc. 429

(sCRM). The software is used by suppliers such as the automotive supplier
industry which serves only a handful of global customers [Salion 2004].

Products: Salion implemented a system intended to serve the target customer
base with an effort of 190 engineer months. The product implements typical
requirements of the supplier domain, e.g. the process of acceptance of a bid.
As Salion approached the market, the need for a software product line
became clear because of different customer needs [Buhrdorf et al. 2003].

Platform: A small company like Salion Inc. could not afford to implement a
software product line from scratch (proactive approach), for which an effort
of up to 570 engineer months was estimated. So, Salion decided to take the
first product as the asset base (reactive approach) and invested two engineer
months to establish a new configuration management tool and techniques to
allow multiple product variations. Since the product line has been in use,
Salion has enhanced and reengineered the asset base in reaction to new
requirements [Buhrdorf et al. 2003].

Experience: The reactive approach significantly reduced the up-front
investment for the platform from an estimated 570 engineer months to 2
engineer months. The continuous enhancement of the platform enables
Salion to adapt its software product line to serve new customers. The effort
for implementing new product variants ranges from 5% to 10% of the effort
required for the baseline product. This is a productivity improvement of 10
to 20 [Krueger 2002].

Annotated References
R. Buhrdorf, D. Churchett, and C.W. Krueger; “Salion’s Experience with a Reactive Software
Product Line Approach”, In: Proceedings of the 5th International Workshop on Software
Product-Family Engineering (PFE-5), Siena, Italy, Springer LNCS 3014, 2003, pp. 317–322.

This paper explains the initial situation at Salion Inc. before initiating the
software product line, i.e. being a software start-up with no experience in
building software in the target domain. The motivation for initiating a
software product line with the reactive approach is explained: Salion Inc.
cannot afford a long time to market because of its limited financial
strength.

P. Clements and L.M. Northrop; Salion, Inc.: “A Software Product Line Case Study”,
Technical Report no. CMU/SEI-2002-TR-038, Carnegie–Mellon Software Engineering
Institute, 2002.

This report tells the story of introducing software product line engineer-
ing at Salion Inc. The main part explains how Salion built the platform
assets and presents details like the process or architecture definition.

Supplier CRM
software

Productivity improved
by factors 10 to 20

430 21. Experiences with Software Product Line Engineering

C.W. Krueger; “Data from Salion’s Software Product Line Initiative”, Technical Report no.
2002-07-08-1, BigLever Software, Inc., 2002.

This report presents a well-founded statistical analysis of the resulting
benefits of introducing the software product line at Salion Inc., e.g. the
calculation of the ROI.

Software Product Lines, 2004, www.softwareproductlines.com

This website deals with the motivation for selecting the reactive
approach for initialising the software product line at Salion Inc., e.g. the
reactive approach promises the shortest path to an operational software
product line. Furthermore, several benefits achieved by the software
product line approach are presented, e.g. a productivity improvement of
10 to 20.

21.12 Siemens AG Medical Solutions HS IM

Company background: Siemens Medical Solutions provides hospital appli-
cations from X-ray tubes and magnetic resonance and CT scanners to com-
plete infrastructure support in hardware and software for hospitals and all
other medical practitioners [Siemens 2004].

Products: One of the business areas of Siemens Medical Solutions is the
development of software for the radiology domain that supports the process
of radiology. The task of the radiologist starts with patient registration and
ends after several activities with reporting and archiving of the images in the
report repository.

Platform: The software product line at Siemens Medical Solutions provides
qualitative variability, such as support for high-end and low-end hardware,
as well as functional variability, e.g. different features during image post-
processing. The system test of the different resulting products requires a
systematic procedure. Siemens Medical Solutions uses the ScenTED method
for testing the software product line. The ScenTED method was developed
by the Software Systems Engineering group at the University of Duisburg-
Essen. The ScenTED method supports the creation of domain test cases
based on use cases that contain variability and the reuse of domain test cases
in application testing (see e.g. [Reuys et al. 2004b; Reuys et al. 2005]).

Experience: The adaptation of the ScenTED method led to two major
improvements in the test process at Siemens Medical Solutions. The first
improvement is a reuse of test cases with a ratio of 57%, realised by enrich-
ing use case scenarios with variable and invariable scenario steps. The reuse
led to a cost reduction for testing different products derived from the soft-
ware product line. The second improvement from introducing the ScenTED

Radiology
software

57% reuse
of test cases

21.13 Testo AG 431

method is a better traceability achieved by a systematic derivation of test
cases. The results have been affirmed by a survey at Siemens Medical
Solutions [Reuys et al. 2004b].

Annotated References
A. Reuys, H. Götz, J. Neumann, and J. Weingärtner; “Medizintechnik bei Siemens AG
Medical Solutions HS IM” (in German), In: G. Böckle, P. Knauber, K. Pohl, and K. Schmid
(eds.), Software-Produktfamilien – Methoden, Einführung und Praxis, dpunkt, 2004, pp. 247–
259.

This report presents the experience gained in testing a software product
line with the ScenTED method at Siemens Medical Solutions. The sur-
vey provides the results conducted at Siemens Medical Solutions, which
affirm, for example, that the ScenTED method improves test case reuse
and traceability.

E. Kamsties, K. Pohl, S. Reis, and A. Reuys; “Testing Variabilities in Use Case Model”, In:
Proceedings of the 5th International Workshop on Software Product-Family Engineering
(PFE-5), Siena, Italy, Springer LNCS 3014, 2003, pp. 6–18.

Details of the ScenTED method for software product line testing can be
found in this paper. To avoid a combinatorial explosion of the number of
test cases, the variability of the product line is included in domain test
cases. Segmentation and fragmentation techniques are proposed to pre-
serve the variability of use cases. Furthermore, the different possibilities
for variability to occur in use case scenarios are mapped to the UML
sequence diagram.

21.13 Testo AG

Company background: Testo AG is one of the leading suppliers of portable
electronic measuring instruments, e.g. for the measurement of temperature,
pressure or humidity [Testo 2004].

Products: The market conditions for portable measuring instruments demand
short time to market, so the development of new products took only about
half a year to one-and-a-half years. Testo AG practised only opportunistic
reuse; therefore the products have been redeveloped nearly completely,
including hardware and software [Schmid et al. 2004a].

Platform: In 2001, the completion of an ambitious product development
suggested that there was potential for reuse as essential commonalities in
different products were recognised. Testo AG initiated a project to analyse
the possible benefits of introducing a software product line in 2001. This
project identified several tasks, such as the training of employees, the defini-
tion of a common reference architecture, the support of different views, a

Portable
measurement
instruments

432 21. Experiences with Software Product Line Engineering

configuration management concept, and the development of the core assets
[Schmid et al. 2004a].

Experience: Testo AG has taken these steps and expanded established prac-
tices only to some degree in order not to overstrain its employees. For
example, the development tools already in use were retained. The common
reference architecture for the software product line is based on the architec-
ture of already existing products [Schmid et al. 2004a]. It was necessary to
introduce a new process for developing new products based on the software
product line, so the developers had to use the architecture and the predefined
interfaces. An example of the implemented variability is a printing compo-
nent that includes 20 variation points [Schmid et al. 2004b]. The first prod-
ucts of the software product line were expected at the end of 2004 [Schmid
et al. 2004a].

Annotated References
K. Schmid, I. John, R. Kolb, and G. Meier; “Eingebettete Systeme bei der Testo AG” (in
German), In: G. Böckle, P. Knauber, K. Pohl, and K. Schmid (eds.), Software-
Produktfamilien – Methoden, Einführung und Praxis, dpunkt, 2004, pp. 221–231.

In this report, the experience of introducing a software product line at
Testo AG is presented. The stepwise development of the reference
architecture is explained in detail, e.g. the documentation of the already
existing architectures, the design of the reference architecture or the
evaluation of the reference architecture.

K. Schmid, I. John, R. Kolb, and G. Meier; “Introducing the PuLSE Approach to an
Embedded System Population at Testo AG”, Technical Report no. 015.04/E, Fraunhofer
IESE, 2004.

This technical report describes the application of the PuLSE approach at
Testo AG. The PuLSE approach supports the development of a product
line in a systematic way and focuses on technical and economic aspects.

21.14 The National Reconnaissance Office

Institution Background: The National Reconnaissance Office (NRO)
designs, builds, and operates reconnaissance satellites for US governmental
institutions such as the Central Intelligence Agency (CIA) or the Department
of Defense (DoD) [NRO 2004].

Products: The NRO plays a leading role in achieving information superiority
for the US Government and armed forces. The satellites are used to guide
weapons, pinpoint the enemy, navigate, communicate, and eavesdrop.
Because of shrinking budgets, the NRO began to look for further customers
and explored partnerships with industry [Clements and Northrop 2001].

Changed practices
due to reference

architecture

Satellite control
software

21.15 The Naval Undersea Warfare Center 433

Platform: The NRO decided to develop a software platform for its ground-
based spacecraft command and control software as the applications in this
domain have a large amount of commonality. The resulting software product
line was named Control Channel Toolkit (CCT). Several assets have been
produced during the engineering of the core assets. These were, for example,
the CCT Domain Definition to define the system boundaries and the
Generalized Requirements Specification to capture common capabilities of
the CCT software product line. Further examples are the CCT System Test
Architecture to describe a test system architecture used to verify CCT func-
tionality or the CCT Reuse Guide to describe the steps necessary to build a
product line application from the CCT core assets. The CCT Reuse Guide is
of special importance as the CCT crosses organisational boundaries: the
NRO delivers the platform, and the users of the platform build the needed
products on their own [Clements and Northrop 2001].

Experience: In December 1999, the CCT was completed on schedule and
within budget. During the development period, the costs were consequently
higher than developing a single system. But the additional investments are
expected to be compensated due to large-scale reuse. The development sav-
ings are anticipated at 18.2%. The first product of CCT could realise 50%
reduction in overall cost and schedule, and nearly ten-fold reductions in
development personnel and defects [Clements and Northrop 2001].

Annotated References
P. Clements and L. Northrop; Software Product Lines – Practices and Patterns, Addison-
Wesley, 2001.

This study describes the whole story of introducing a software product
line at the NRO. It begins with the institution background and the motiv-
ation for introducing a software product line. Technical details are
shown as well as the management effort of the software product line.
Finally the benefits of the software product line are presented.

21.15 The Naval Undersea Warfare Center

Institution Background: The Naval Undersea Warfare Center (NUWC) is the
US Navy’s research, development, test and evaluation, engineering, and fleet
support centre for undersea warfare technology [NUWC 2004].

Products: The NUWC develops and supports different range facilities,
including those to test and evaluate systems for the military forces of the
USA. The facilities can be used as well for maximising force readiness by
training ranges. A range is composed of a set of resources and the physical

50% reduction in
overall costs

Range
facilities

434 21. Experiences with Software Product Line Engineering

assets required to conduct a specific test or training exercise [Cohen et al.
2002].

Platform: In the past, these range facilities were built for specific categories
of weapon systems and missions, but these systems have become more and
more complex. Nevertheless the systems share some commonalities, e.g.
sensors are needed to acquire data, which must be logged and presented in
various ways. The NUWC started a software product line called RangeWare
to manage the commonality and complexity of the range facilities. The
RangeWare software product line is structured by a reference architecture
intended to cover the complete set of range operations. Using the reference
architecture for building range systems, some assets have to be tailored for
range-unique capabilities [Cohen et al. 2002].

Experience: In the year 2004, the software product line included seven sys-
tems already installed, with five to six new projects per year [Cohen et al.
2004]. The cost of producing new software for ranges is at least 50% lower
using RangeWare. The development time has been reduced from years to
months. At the same time, staff resources are cut by up to 75%. The
increasing customer satisfaction and flexibility in starting new projects as
well as the high reliability and predictability yield significant competitive
benefits [Cohen et al. 2002].

Annotated References
S. Cohen, E. Dunn, and A. Soule; “Successful Product Line Development and Sustainment: A
DoD Case Study”, Technical Report no. CMU/SEI-2002-TN-018, Carnegie–Mellon Software
Engineering Institute, 2002.

This report presents the motivation of the NUWC for initiating a soft-
ware product line and technical details for implementing the asset base.
Different product line practice areas are explained, such as structuring
the organisation or software system integration.

S. Cohen, D. Zubrow, and E. Dunn; “Case Study: A Measurement Program for Product
Lines”, Technical Report CMU/SEI-2004-TN-023, Carnegie–Mellon Software Engineering
Institute, 2004.

This report shows the experience of the NUWC in controlling the soft-
ware product line effort and reaching defined goals. The measurement
programme is explained in detail. For example, the arrangement of the
measurement team, the goals of the measurement programme, and the
final results, as well as the next steps, are shown.

Five to six new
platform applications

per year

22
Future

Research

In this chapter we briefly outline the key challenges for future research.

Günter Böckle
Klaus Pohl
Frank van der Linden

436 22. Future Research

22.1 Domain Specialisation

This book extensively introduced a comprehensive framework for software
product line engineering. A major challenge for future research is to spe-
cialise this framework for a given application domain such as automotive
systems or medical systems. Amongst others, such a specialisation would
result in a set of well-defined types for modelling domain-specific variation
points, variants, variability dependencies, and constraint dependencies. Such
a specialisation will increase the semantics of the models – an essential
foundation for offering improved tool support and for handling the enormous
complexity of the variability more effectively. For example, standardised
levels of abstraction and mechanisms for mapping the concepts and the vari-
ability defined at one level to another level in a consistent manner should be
the results of a domain specialisation. To gain the full benefit of a domain
specialisation, it should – or better, must – include the definition of domain-
specific modelling languages for defining the software development arte-
facts.

22.2 Quality Assurance

We introduced a technique for defining and adapting system test cases in
software product line engineering. There are, of course, other test techniques
than system testing as well as other quality assurance techniques which have
proven to improve significantly the quality of the software if used appro-
priately during software development.

A key challenge in this area is the adaptation of integration test techniques
and regression test techniques to the specifics of software product line
engineering, i.e. the effective consideration of variability in integration and
regression test techniques as well as their seamless integration in the domain
and application testing processes.

Another key challenge is the adaptation of inspections, reviews, and walk-
through techniques for their use in domain and application engineering. For
example, the results of inspections, reviews, and walkthroughs, obtained in
domain engineering, should be effectively reused in application engineering.

22.3 Model-Driven Development

Due to the separation of domain and application engineering, software prod-
uct line engineering is an ideal candidate for employing model-driven devel-
opment. There are attempts to introduce model-driven development in soft-

Standardised
abstractions

Integration and
regression tests

Review techniques

Coherent model-
driven technique

22.6 Tool Support 437

ware product line engineering, especially to support the model-driven deriv-
ation of product line applications. However, establishing a coherent,
effective, and easy to use model-driven development technique for software
product line engineering is still a key research challenge.

22.4 Evolution

Even in the case of the development of single software systems, managing
the evolution of the development artefacts is a challenge. In software product
line engineering developers are faced not only with the evolution over time,
but also with the existence of different variants at the same time (variability
in space). Managing the evolution of software product line artefacts over
time and ensuring the consistent integration of the changes in all affected
product line applications are thus key research challenges. Developing and
validating a comprehensive technique that supports both the management of
the evolution of product line artefacts over time and the management of the
variability within the artefacts is also an open research issue.

22.5 Multiple Product Lines

In several domains the need to manage variability across different product
lines arises. Solutions for defining and managing variability across different
product lines and across all software development artefacts are still imma-
ture. Managing variability across product lines is even more challenging if
the product lines are owned by different companies.

22.6 Tool Support

The engineering of high-quality software in an industrial setting needs ade-
quate tool support. However, for most of the aspects of software product line
engineering, sufficient tool support is missing. For example, tool support
offered today for managing variability across all development artefacts, or
for managing the interrelations between the product line applications and the
domain artefacts, is very weak. Establishing seamless tool support for mana-
ging variability and the development artefacts in the domain and the appli-
cation engineering processes is a key challenge for future research (see e.g.
[PRIME 2005]).

Managing variability
and evolution

Variability across
product lines

Managing
traceability

438 22. Future Research

22.7 Process Improvement and Assessment

There are investigations and results for establishing process improvement
frameworks and assessment methods for software product line engineering.
Further research is, however, needed to fully adapt existing software matu-
rity models such as CMMI as well as software development assessment tech-
niques to software product line engineering. For example, adaptations are
needed for assessing the specifics of the two development processes as well
as for synchronising the activities between them. In addition, significant
validation effort is required to prove that the adaptations have the desired
effects.

22.8 Economics

Predictive economic models, which help us to answer questions like “when
should I invest in a product line?” or “when does the investment in a product
line pay off?” have been proposed. Yet, they must be extended to include
factors like maintenance costs, time to market, product quality, or customer
satisfaction, in the prediction of economic impact.

ROI (Return On Investment) models are needed that operate on a more
detailed level. For example, ROI models are needed that predict the ROI of a
certain feature or even the ROI of a certain variant within a feature.

Adaptation of
assessments

Prediction of
economic impact

Detailed models for
ROI

The Authors

The Authors 441

Prof. Dr. Klaus Pohl holds a full professorship at the University of Duisburg-
Essen and leads the Software Systems Engineering research group. He received
his Ph.D. and his habilitation in computer science from RWTH Aachen,
Germany. He is involved in various technology transfer projects as well as major
research projects which focus on different aspects of software product line engin-
eering. Klaus Pohl is (co-)author of over 90 refereed publications. He has served
as programme chair for several international and national conferences, such as
the IEEE International Requirements Engineering Conference (RE’02), the
Experience Track of the 27th International Conference on Software Engineering
(ICSE 2005), the German Software Engineering Conference (SE 2005), the 9th
International Software Product Line Conference (SPCL Europe 2005), and the
18th International Conference on Advanced Information Systems Engineering
(CAiSE 2006).
Contact: pohl@sse.uni-essen.de

Dr. Günter Böckle works at Siemens Corporate Technology as a project
manager. He received his Ph.D. in mathematics in 1976 from the University of
Stuttgart. Since 1999 he has led several projects on software product line
engineering. Before that he worked in the fields of simulation, modelling, system
evaluation, processor architecture and design, parallelisation, software engin-
eering, and systems engineering. He has published several papers and books and
is a member of INCOSE (International Council on Systems Engineering).
Contact: guenter.boeckle@siemens.com

Dr. Frank van der Linden has worked at Philips Medical Systems since 1999.
He is project manager for the series of ITEA projects ESAPS, CAFÉ, and
FAMILIES. Before this he was involved in the EU ESPRIT project ARES, which
provided basic architectural knowledge for product line engineering. Frank van
der Linden received his Ph.D. in mathematics in 1984 from the University of
Amsterdam. He worked at Philips Research between 1984 and 1999 on several
topics in the field of software engineering, including component based software
architecture. He was program chair of a series of five workshops on product line
engineering (PFE) and is a member of the steering committee of the SPLC
conferences.
Contact: frank.van.der.linden@philips.com

442 The Authors

Stan Bühne is a research assistant in the Software Systems Engineering group at
the University of Duisburg-Essen. He received his diploma in business informa-
tion technology in 2002 from the University of Essen. He has experience in prod-
uct line engineering from research projects and industrial projects with the
automotive industry. His research interests are variability management and
requirements engineering for software product lines.

Christian Dinnus is a research assistant in the Software Systems Engineering
group at the University of Duisburg-Essen. Prior to this, he worked for four years
as an independent software engineer. He received his diploma in business infor-
mation technology in 2004. In his thesis, he analysed the variability of use case
scenarios in the context of software product lines. His research interest is
requirements engineering for software product lines.

Günter Halmans is a research assistant in the Software Systems Engineering
group at the University of Duisburg-Essen. His research area includes require-
ments engineering for software product lines. Before joining the University of
Duisburg-Essen, Günter Halmans worked for more than eight years as a product
manager and requirements engineer in industry. He received a degree in
computer science from the University of Dortmund in 1992.

Kim Lauenroth is a research assistant in the Software Systems Engineering
group at the University of Duisburg-Essen. He received his diploma in computer
science in 2003 from the University of Dortmund. He has experience in software
product lines and variability management from several industrial collaborations.
His research interests are the definition and management of variability.

Elisabeth Niehaus has been a research assistant in the Software Systems
Engineering group at the University of Duisburg-Essen since 2003. She received
a diploma in computer science in 2003 and a diploma in economics in 2001 from
the University of Oldenburg. Her research focuses on economic models for soft-
ware product line engineering.

The Authors 443

Andreas Reuys is a research assistant in the Software Systems Engineering
group at the University of Duisburg-Essen. He received his diploma in computer
science in 1998 from the University of Dortmund. He has been involved in prod-
uct line development projects since 1999. His research interest is the definition of
methods for system test in product line engineering and their application in
industry.

Ernst Sikora is a research assistant in the Software Systems Engineering group
at the University of Duisburg-Essen. He received his diploma in applied
computer science from the University of Dortmund. His research focuses on
goal- and scenario-based requirements engineering for embedded systems.
Amongst others, he has been involved in industrial projects in the automotive
supplier industry.

Nelufar Ulfat-Bunyadi is a research assistant in the Software Systems
Engineering group at the University of Duisburg-Essen. She received her diploma
in business information technology in 2003. Her research areas include methods
for COTS component selection and the extension of CMMI for software product
line engineering.

Thorsten Weyer received his diploma with distinction in applied computer
science from the University of Koblenz. He is a research assistant in the Software
Systems Engineering Group at the University of Duisburg-Essen. Prior to this, he
worked for several years as a consultant for national and international companies.
His current research focuses on requirements engineering for software product
lines and on variability management.

References

[ABB 2004] ABB Group; 2004, www.abb.com

[Akao 1990] Y. Akao; Quality Function Deployment, Productivity Press, Portland, Oregon, 1990.

[Alexander and Stevens 2003] I. Alexander and R. Stevens; Writing Better Requirements, Addison-Wesley, Reading,
Massachusetts, 2002.

[Alur et al. 2003] D. Alur, D. Malks, and J. Crupi; Core J2EE Patterns: Best Practices and Design Strategies, 2nd
edition, Prentice Hall, Englewood Cliffs, New Jersey, 2003.

[America and Van Wijgerden 2000] P. America and J. van Wijgerden; “Requirements Modeling for Families of
Complex Systems”, In: Proceedings of Software Architectures for Product Families, IW-SAPF-3, Las Palmas
de Gran Canaria, Springer, Berlin Heidelberg New York, LNCS 1951, 2000, pp. 199–209.

[Ardis and Weiss 1997] M.A. Ardis and D.M. Weiss; “Defining Families: The Commonality Analysis”, In:
Proceedings of the 19th International Conference on Software Engineering (ICSE ’97), Boston, Massachusetts,
7–23 May, 1997.

[Ardis et al. 2000] M. Ardis, P. Dudak, L. Dor, W.-J. Leu, L. Nakatani, B. Olsen, and P. Pontrelli; “Domain-Engineered
Configuration Control”, In: Proceedings of the 1st Software Product Line Conference (SPLC-1), Denver,
Colorado, August 28–31, Kluwer, Dordrecht, 2000, pp. 479–493.

[Atkinson 2001] C. Atkinson; Component-based Product Line Engineering with UML, Addison-Wesley, Reading,
Massachusetts, 2001.

[Bachmann et al. 2003] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B. Ramesh, and A. Vilbig; “A Meta-
Model for Representing Variability in Product Family Development”, In: Proceedings of the 5th International
Workshop on Product Family Engineering (PFE-5), Siena, Italy, 2003, pp. 66–80.

[Baeten et al. 1990] J.C.M. Baeten, W.P. Weijland, and C.J van Rijsbergen; Process Algebra, Cambridge University
Press, 1990.

[Barnard 1938] C. Barnard; The Function of the Executive, 1938; 30th Anniversary edition, Harvard University Press,
Cambridge, Massachusetts, 1968.

[Batory et al. 2004] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin; “The GenVoca Model of
Software-System Generators”, IEEE Software, vol. 11, no. 5, September, 1994, pp. 89–94.

[Belina et al. 1991] F. Belina, D. Hogrefe, and A. Sarma; SDL with Applications from Protocol Specification, The BCS
Practitioner Series, Prentice Hall, Harlow, Essex, 1991.

[Bergstra and Klop 1984] J.A. Bergstra and J.W. Klop; “Process Algebra for Synchronous Communication”,
Information & Control, vol. 60, no. 1/3, 1984, pp. 109–137.

446 References

[Binder 1999] R.V. Binder; Testing Object-Oriented Systems – Models, Patterns, and Tools, Addison-Wesley, Reading,
Massachusetts, 1999.

[Bluetooth 2004] The Official Bluetooth Website, 2004, www.bluetooth.com/

[Boeckle et al. 2002] G. Boeckle, J. Bermejo, P. Knauber, C. Krueger, J. Leite, F. van der Linden, L. Northrop, M.
Stark, and D. Weiss; “Adopting and Institutionalizing a Product Line Culture“, In: Proceedings of the 2nd
International Conference on Software Product Lines (SPLC-2), San Diego, USA, Springer, Berlin Heidelberg
New York, LNCS 2379, 2002, pp. 48–59.

[Boeckle et al. 2004a] G. Boeckle, P. Clements, J. D. McGregor, D. Muthig, and K. Schmid; “Calculating ROI for
Software Product Lines”, IEEE Software, vol. 21, no. 3, 2004.

[Boeckle et al. 2004b] G. Boeckle, P. Knauber, K. Pohl, and K. Schmid (eds.); Software-Produktlinien – Methoden,
Einführung und Praxis (in German), dpunkt, Heidelberg, 2004.

[Boehm 1988] B. Boehm; A Spiral Model of Software Development and Enhancement, IEEE Computer, vol. 21, no. 5,
May, 1988, pp .61–72.

[Boehm et al. 2000] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. Clark, B. Steece, A.W. Brown, S. Chulani, and
C. Abts; Software Cost Estimation with Cocomo II, Prentice Hall, Englewood Cliffs, New Jersey, 2000.

[Boeing 2004] The Boeing Company Website, 2004, www.boeing.com

[Booch et al. 1999] G. Booch, J. Rumbaugh, and I. Jacobson; The Unified Modelling Language User Guide, Addison-
Wesley, Reading, Massachusetts, 1999.

[Bosch 2000a] J. Bosch; “Organizing for Software Product Lines”, In: Proceedings of the 3rd International Workshop
on Software Architectures for Product Families (IWSAPF-3), Las Palmas de Gran Canaria, Spain, March 15–
17, Springer, Berlin Heidelberg New York, LNCS 1951, 2000.

[Bosch 2000b] J. Bosch; Design and Use of Software Architectures: Adopting and Evolving a Product-Line Approach,
Addison-Wesley, Reading, Massachusetts, 2000.

[Bosch 2004] Robert Bosch GmbH Website, 2004, www.bosch.com

[Bosch et al. 2002] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H. Obbink, and K. Pohl; “Variability Issues in
Software Product Lines” In: Proceedings of the 4th International Workshop on Product Family Engineering
(PFE-4), Bilbao, Spain, October 3–5, 2001, Springer, Berlin Heidelberg New York, LNCS 2290, 2002, pp. 13–
21.

[Bræk and Haugen 1993] R. Bræk and Ø. Haugen; Engineering Real Time Systems, BCS Practitioner Series, Prentice
Hall, Harlow, Essex, 1993.

[Brinksma 1988] E. Brinksma; On the Design of Extended LOTOS – A Specification Language for Open Distributed
Systems, PhD thesis, University of Twente, 1988.

[British Standards 1998] British Standards; Software Testing, Part 2: Software Component Testing, Standard 7925-2,
1998.

[Brockhoff 1999] K. Brockhoff; Produktpolitik (in German), 4th edition, Lucius & Lucius, Stuttgart, 1999.

[Brownsword and Clements 1996] L. Brownsword and P. Clements; “A Case Study in Successful Product Line
Development”, Technical Report no. CMU/SEI-96-TR-016, Carnegie–Mellon Software Engineering Institute,
1996.

[Bühne et al. 2003] S. Bühne, G. Halmans, and K. Pohl; “Modeling Dependencies between Variation Points in Use
Case Diagrams”, In: Proceedings of the 9th International Workshop on Requirements Engineering –
Foundation for Software Quality (REFSQ’03), Klagenfurt/Velden, Österreich, June, 2003.

References 447

[Bühne et al. 2004a] S. Bühne, G. Halmans, K. Pohl, M. Weber, H. Kleinwechter, and T. Wierczoch; “Defining
Requirements at Different Levels of Abstraction”, In: Proceedings of the International Requirements
Engineering Conference 2004 (RE’04), Kyoto, Japan, IEEE Computer Society, 2004.

[Bühne et al. 2004b] S. Bühne, K. Lauenroth, and K. Pohl; “Why is it not Sufficient to Model Requirements Variability
with Feature Models?”, In: Proceedings of the Workshop: Automotive Requirements Engineering (AURE’04),
co-located at RE’04, Nagoya, Japan, 2004.

[Bühne et al. 2004c] S. Bühne, K. Lauenroth, K. Pohl, and M. Weber; Modelling Features for Multi-Criteria Product-
Lines in the Automotive Industry. In: Proceedings of the Workshop on Software Engineering for Automotive
Systems (SEAS), co-located at ICSE 2004, Edinburgh, UK, 2004.

[Bühne et al. 2005] S. Bühne, K. Lauenroth, and K. Pohl; “Modelling Requirements Variability across Product Lines”,
In: Proceedings of the 13th IEEE International Conference on Requirements Engineering (RE’05), Paris, IEEE
Computer Society, 2005.

[Buhrdorf et al. 2003] R. Buhrdorf, D. Churchett, and C.W. Krueger; “Salion’s Experience with a Reactive Software
Product Line Approach”, In: Proceedings of the 5th International Workshop on Software Product-Family
Engineering (PFE-5), Siena, Italy, Springer, Berlin Heidelberg New York, LNCS 3014, 2003, pp. 317–322.

[Burnstein 2002] I. Burnstein; Practical Software Testing: A Process-oriented Approach, Springer, Berlin Heidelberg
New York, 2002.

[Buschmann et al. 1996] F. Buschman, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal; Pattern-oriented Software
Architecture – A System of Patterns, Wiley, Chichester, 1996.

[Business Case 2004] The Business Case Web Site, 2004, at www.solutionmatrix.com/

[CAFÉ 2004] CAFÉ – From Concepts to Application in System-Family Engineering, The Official Homepage of the
CAFÉ Project, 2004, www.esi.es/Cafe/

[Carroll 1995] J.M. Carroll; Scenario-Based Design: Envisioning Work and Technology in System Development, Wiley,
New York, 1995.

[Carroll 2000] J.M. Carroll; Making Use: Scenario-Based Design of Human-Computer Interactions, MIT Press,
Cambridge, Massachusetts, 2000.

[Chen 1976] P. Chen; “The Entity-Relationship Model – Towards a Unified View of Data”, ACM Transactions on
Database Systems, vol. 1, no. 1, March 1976. pp. 9–36.

[Clark and Wheelwright 1995] K. Clark and S. Wheelwright; Leading Product Development, Free Press, New York,
1995.

[Clements and Northrop 2001] P. Clements and L. Northrop; Software Product Lines: Practices and Patterns, Addison-
Wesley, Reading, Massachusetts, 2001.

[Cockburn 2000] A. Cockburn; Writing Effective Use Cases, Addison-Wesley, Boston, Massachusetts, 2000.

[Cohen 2003] S. Cohen; Predicting When Product Line Investment Pays, SEI Technical Note no. CMU/SEI-2003-TN-
017, 2003.

[Cohen et al. 2002] S. Cohen, E. Dunn, and A. Soule; Successful Product Line Development and Sustainment: A DoD
Case Study, Technical Report no. CMU/SEI-2002-TN-018, Carnegie–Mellon Software Engineering Institute,
2002.

[Cohen et al. 2004] S. Cohen, D. Zubrow, and E. Dunn; Case Study: A Measurement Program for Product Lines,
Technical Report no. CMU/SEI-2004-TN-023, Carnegie–Mellon Software Engineering Institute, 2004.

[Condon 2002] D. Condon; Software Product Management, Aspatore, Boston, Massachusetts, 2002.

[Cooper 2001] R. Cooper; Winning at new products, 3rd edition, Perseus Publishing, Philadelphia, 2001.

448 References

[Cooper et al. 2001] R. Cooper, S. Edgett, and E. Kleinschmidt; Portfolio Management for new Products, 2nd edition,
Perseus Publishing, Philadelphia, 2001.

[Coplien 1998] J. Coplien; Multi-Paradigm Design for C++, Addison-Wesley, Boston, Massachusetts, 1998.

[Coplien et al. 1998] J. Coplien, D. Hoffmann, and D. Weiss; “Commonality and Variability in Software Engineering”,
IEEE Software, vol. 15, no. 6, 1998, pp. 37–45.

[Cummins 2004] Cummins Inc. Website, 2004, www.cummins.com

[Cusumano and Nobeoka 1998] M.A. Cusumano and K. Nobeoka; Thinking Beyond Lean – How Multi-Project
Management is Transforming Product Development at Toyota and Other Companies, Free Press, New York,
1998.

[Cusumano and Selby 1998] M.A. Cusumano and R. Selby; Microsoft Secrets, Touchstone, New York, 1998.

[Cyert and March 1963] R.M. Cyert and J.G. March; A Behavioral Theory of the Firm, Prentice Hall, Englewood Cliffs,
New Jersey, 1963.

[Czarnecki and Eisenecker 2000] K. Czarnecki and U.W. Eisenecker; Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, Reading, Massachusetts, 2000.

[Dager 2000] J.C. Dager; “Cummins’s Experience in Developing a Software Product Line Architecture for Real-time
Embedded Diesel Engine Controls”, In: Proceedings of the 1st Software Product Line Conference (SPLC-1),
Denver, Kluwer, Dordrecht, 2000, pp. 23–46.

[Davis 1987] S.M. Davis; Future Perfect, Addison-Wesley, Boston, Massachusetts, 1987.

[Davis 1993] A.M. Davis; Software Requirements: Objects, Functions, & States, 2nd edition, Prentice Hall, Englewood
Cliffs, New Jersey, 1993.

[DeBaud and Schmid 1999] J. DeBaud and K. Schmid; “A Systematic Approach to Derive the Scope of Software
Product Lines”, In: Proceedings of the 21st International Conference on Software Engineering (ICSE’99), Los
Angeles, California, May 16–22, IEEE Computer Society Press, Los Alamitos, 1999, pp. 34–43.

[De Lange and Jansen 2001] F. de Lange and T. Jansen; “The Philips-OpenTV Product Family Architecture for
Interactive Set-Top Boxes”, In: Proceedings of the 4th International Product Family Engineering Workshop
(PFE-4), Bilbao, Springer, Berlin Heidelberg New York, LNCS 2290, 2001, pp. 187–206.

[DeMarco 1979] T. DeMarco; Structured Analysis and System Specification, Prentice Hall, Englewood Cliffs, New
Jersey, 1979.

[Dijkstra 1972] E. Dijkstra; “Notes on Structured Programming“, In: O. Dahl, E. Dijkstra, and C. Hoare (eds.);
Structured Programming, Academic Press, New York, 1972.

[Doerr and Sharp 2000] B.S. Doerr and D.C. Sharp; “Freeing Product Line Architectures from Execution
Dependencies”, In: Proceedings of the 1st Software Product Line Conference (SPLC-1), Denver, Kluwer,
Dordrecht, 2000, pp. 313–329.

[Douma and Schreuder 2002] S. Douma and H. Schreuder; Economic Approaches to Organizations, 3rd edition,
Prentice Hall, Englewood Cliffs, New Jersey, 2002.

[Dröschel and Wiemers 2000] W. Dröschel and M. Wiemers; Das V-Modell 97 (in German), Oldenbourg, München,
2000.

[Echelon 1999] Echelon Corporation; Introduction to the LonWorks System, 1999, www.echelon.com

[EIBA 2004] European Installation Bus Association, 2004, www.eiba.com

[Eixelsberger and Beckman 2000] W. Eixelsberger and H. Beckman; “The TCS Experience with the Recovery of
Family Architecture”, In: M. Jazayeri, A. Ran, and F. van der Linden (eds.), Software Architecture for Product
Families – Principles and Practice, Addison-Wesley, Reading, Massachusetts, 2000, pp. 209–231.

References 449

[Erichson 2000] B. Erichson; “Prüfung von Produktideen und –konzepten” (in German), In: S. Albers and A. Herrmann
(eds.), Handbuch Produktmanagement, Gabler, Wiesbaden, 2000, pp. 385–410.

[Fafchamps 1994] D. Fafchamps; “Organizational Factors and Reuse”, IEEE Software, vol. 11, no. 5, 1994, pp. 31–41.

[Fagan 1976] M.E. Fagan; “Design and Code Inspections to Reduce Errors in Program Development”, IBM Systems
Journal, vol. 15, no. 3, 1976, pp 182–211.

[Fagan 1986] M.E. Fagan; “Advances in Software Inspections”, IEEE Transactions on Software Engineering, vol. 12,
no. 7, 1986, pp. 744–751.

[Fantechi et al. 2003] A. Fantechi, S. Gnesi, I. John, G. Lami, and J. Dörr; “Elicitation of Use Cases for Product Lines”,
In: Proceedings of the 5th International Workshop on Software Product-Family Engineering (PFE-5), Siena,
Italy, Springer, Berlin Heidelberg New York, LNCS 3014, 2003, pp. 152–167.

[Fayol 1916] H. Fayol; Administration Industrielle et Generale (in French), Paris, 1916.

[Feijs et al. 1994] L.M.G Feijs, H.B.M. Jonkers, and C.A. Middelburg; Notations for Software Design, FACIT series,
Springer, Berlin Heidelberg New York, 1994.

[Fey et al. 2002] D. Fey, R. Fajta, and A. Boros; “Feature Modeling - A Meta-Model to Enhance Usability and
Usefulness”; In: Proceedings of the 2nd International Conference on Software Product Lines (SPLC-2), San
Diego, USA, Springer, Berlin Heidelberg New York, LNCS 2379, 2002, pp. 198–216.

[Firesmith 1994] D.G. Firesmith; “Inheritance Diagrams: Which Way is Up?”, Journal of Object-Oriented
Programming, vol. 7, no. 1, 1994, pp. 10–16.

[Freedman and Weinberg 1990] D.P. Freedman and G.M. Weinberg; Handbook of Walkthroughs, Inspections, and
Technical Reviews: Evaluating Programs, Projects, and Products, 3rd edition, Dorset House, New York, 1990.

[Gamma et al. 1995] E. Gamma, R. Helm, R. Johnson, and J. Vlissides; Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, Reading, Massachusetts, 1995.

[Ganz and Layes 1998] C. Ganz and M. Layes; “Modular Turbine Control Software: A Control Software Architecture
for the ABB Gas Turbine Family”, In: Proceedings of the 2nd International ESPRIT ARES Workshop, Las
Palmas de Gran Canaria, Springer, Berlin Heidelberg New York, LNCS 1429, 1998, pp. 32–38.

[Geyer and Becker 2002] L. Geyer and M. Becker; “On the Influence of Variabilities on the Application-Engineering
Process of a Product Family”, In: Proceedings of the 2nd International Conference on Software Lines (SPLC-2),
San Diego, USA, Springer, Berlin Heidelberg New York, LNCS 2379, 2002, pp. 1–14.

[Gilb and Graham 1993] T. Gilb and D. Graham, Software Inspection, 5th edition, Addison-Wesley, Boston,
Massachusetts, 1993.

[Gougen and Linde 1993] J.A. Gougen and C. Linde; “Techniques for Requirements Elicitation”, In: Proceedings of the
IEEE International Symposium on Requirements Engineering, January 4–6, 1993, San Diego, California, IEEE
Computer Society Press, Silver Spring, Maryland, 1993, pp. 152–164.

[Greenfield et al. 2004] J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupi; Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools, Wiley, New York, 2004.

[Griffin and Hauser 1993] A. Griffin and J.R. Hauser; “The Voice of the Customer”, Marketing Science, vol. 12, no. 1,
1993, pp. 1–27.

[Hackman and Oldham 1975] J.R. Hackman and G.R. Oldham; “Development of the Job Diagnostic Survey”, Journal
of Applied Psychology, vol. 60, 1975, pp. 150–170.

[Hackman and Oldham 1976] J.R. Hackman and G.R. Oldham; “Motivation through the Design of Work: Test of a
Theory”; Organizational Behavior and Human Performance, vol. 16, 1976, pp. 250–279.

[Hackman and Oldham 1980] J.R. Hackman and G.R. Oldham; Work Redesign, Addison-Wesley, Reading,
Massachusetts, 1980.

450 References

[Hackman et al. 1978] J.R. Hackman, J.L. Pearce, and J.C. Wolfe; “Effects of Changes in Job Characteristics on Work
Attitudes and Behaviors: A Naturally Occurring Quasi Experiment”; OBHPD, vol. 21, 1978, pp. 289–304.

[Hall of Fame 2004] SPLC2 – Product Line Hall of Fame, 2004, http://www.sei.cmu.edu/SPLC2 /SPLC2_hof.html

[Halmans and Pohl 2001] G. Halmans and K. Pohl; “Considering Product Family Assets when Defining Customer
Requirements”, In: Proceedings of the International Workshop on Product Line Engineering – The Early Steps
– Planning, Modeling and Managing (PLEE’01), Erfurt, Fraunhofer IESE, 2001, pp. 37–42.

[Halmans and Pohl 2002] G. Halmans and K. Pohl; “Software Product Family Variability: Essential Capabilities and
Realization Aspects”, In: Proceedings of ICSE 2002 Workshop – 3rd International Workshop on Software
Product Lines – Economics, Architectures, and Implications, 2002.

[Halmans and Pohl 2003] G. Halmans and K. Pohl; “Communicating the Variability of a Software Product Family to
Customers”, Software and Systems Modeling, vol. 2, no. 1, March 2003, pp. 15–36.

[Harel 1987] D. Harel; “A Visual Formalism for Complex Systems”, Science of Computer Programming, vol. 8, 1987,
pp. 231–274.

[Haumer et al. 1999] P. Haumer, P. Heymans, M. Jarke, and K. Pohl; “Bridging the Gap Between Past and Future in
Requirements Engineering – A Scenario-Based Approach”, In: Proceedings of 4th IEEE International
Symposium on Requirements Engineering (RE'99), Los Alamitos, IEEE Computer Society Press, 1999.

[Hay and v. Halle 2002] D. Hay and B. von Halle; Requirements Analysis, Prentice Hall, Harlow, Essex, 2002.

[Hein et al. 2000] A. Hein, M. Schlick, and R. Vinga-Martins; “Applying Feature Models in Industrial Settings”, In:
Proceedings of the 1st Software Product Line Conference (SPLC-1), Denver, P. Donohoe (ed.), Kluwer,
Dordrecht, 2000, pp. 47–70.

[Hein et al. 2004] A. Hein, T. Fischer, and S. Thiel; “Fahrerassistenzsysteme bei der Robert Bosch GmbH” (in
German), In: G. Böckle, P. Knauber, K. Pohl, and K. Schmid (eds.), Software-Produktfamilien – Methoden,
Einführung und Praxis, dpunkt, Heidelberg, 2004, pp. 193–205.

[Herrmann 1998] A. Hermann; Produktmanagement (in German), Vahlen, München, 1998.

[Herrmann and Seilheimer 2000] A. Herrmann and C. Seilheimer; “Variantenmanagement” (in German), In: S. Albers
and A. Herrmann (eds.), Handbuch Produktmanagement, Gabler, Wiesbaden, 2000, pp. 607–637.

[Hewlett-Packard 2004] Hewlett-Packard Website, 2004, www.hp.com

[Hill et al. 1992] W. Hill, R. Fehlbaum, and P. Ulrich; Organisationslehre 2 – Theoretische Ansätze und praktische
Methoden der Organisation sozialer Systeme (in German), 4th edition, Paul Haupt, Berne, 1992.

[Hoare 1985] C.A.R. Hoare; Communicating Sequential Processes, Prentice Hall, Harlow, Essex, 1985.

[Huber and Kopsch 2000] F. Huber and A. Kopsch; “Produktbündelung”, In: S. Albers and A. Herrmann (eds.),
Handbuch Produktmanagement (in German), Gabler, Wiesbaden, 2000, p. 575–606.

[Hull et al. 2002] E. Hull, K. Jackson, and J. Dick; Requirements Engineering, Springer, Berlin Heidelberg New York,
2002.

[IEEE 1990] IEEE; IEEE Standard Glossary of Software Engineering Terminology (IEEE Std 610.12-1990), IEEE
Computer Society, 1990.

[IEEE 1998] IEEE Computer Society; IEEE Standard for Software Test Documentation, IEEE STD 829-1998, IEEE
Press, IEEE Computer Society, Los Alamitos, 1998.

[InHouse 2004] Innovation Center Intelligent House Duisburg, 2004, www.inhaus-duisburg.de

[Jacobson et al. 1997] I. Jacobson, M. Griss, and P. Jonsson; Software Reuse: Architecture, Process and Organisation
for Business Success, Addison-Wesley, Reading, Massachusetts, 1997.

References 451

[Jazayeri et al. 2000] M. Jazayeri, A. Ran, and F.J. van der Linden; Software Architecture for Product Families,
Addison-Wesley, Reading, Massachusetts, 2000.

[John and Muthig 2002] I. John and D. Muthig; “Modeling Variability with Use Cases”, Technical Report no. 063.02/E,
IESE, Kaiserslautern, 2002.

[Kamsties et al. 2003a] E. Kamsties, K. Pohl, S. Reis, and A. Reuys; “Testing Variabilities in Use Case Models”, In:
Proceedings of 5th International Workshop on Software Product-Family Engineering (PFE-5), Siena, Italy,
Springer, Berlin Heidelberg New York, LNCS 3014, 2003, pp. 6–18.

[Kamsties et al. 2003b] E. Kamsties, K. Pohl, and A. Reuys; “Supporting Test Case Derivation in Domain
Engineering”, In: Proceedings of 7th World Conference on Integrated Design and Process Technology (IDPT
2003), Austin, USA, December 2003.

[Kang et al. 1990] K. Kang, S. Cohen, J.A. Hess, W.E. Novak, and S.A. Peterson; Feature-Oriented Domain Analysis
(FODA) Feasibility Study, Technical Report, Software Engineering Institute, Carnegie–Mellon University,
1990.

[Kang et al. 2002] K. Kang, J. Lee, and P. Donohoe; “Feature-Oriented Product Line Engineering”, IEEE Software, vol.
19, no. 4, 2002, pp. 58–65.

[Kano 1984] N. Kano; “Attractive Quality and Must-be Quality”, Hinshitsu: The Journal of the Japanese Society for
Quality Control, vol. 14, no. 2, 1984, pp. 39–48.

[Kano et al. 1996] N. Kano, N. Seraku, F. Takahashi, and S. Tsuji; “Attractive Quality and Must-be Quality”, In: J.D.
Hromi (ed.), The Best on Quality, vol. 7, Quality Press, Milwaukee, Wisconsin, 1996.

[Kay and Houser 2001] E. Key and A. Houser; XML Weekend Crash Course, Wiley, New York, 2001.

[Kazman et al. 2000] R. Kazman, M. Klein, and P. Clements; “ATAM: Method for Architecture Evaluation”, Technical
Report CMU/SEI-2000-TR-004, Software Engineering Institute, Carnegie–Mellon University, 2000.

[Kiczales et al. 1997] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin;
“Aspect-Oriented Programming”, In: Proceedings European Conference on Object-Oriented Programming,
Springer, Berlin Heidelberg New York, LNCS 1241, 1997, pp. 220–242.

[Kleinaltenkamp and Plinke 1999] M. Kleinaltenkamp and W. Plinke; Markt und Produktmanagement- Die Instrumente
des technischen Vertriebs (in German), Springer, Berlin Heidelberg New York, 1999.

[Kleppe et al. 2003] A. Kleppe, J. Warmer, and W. Bast; MDA Explained: The Model Driven Architecture – Practice
and Promise, Addison-Wesley, Reading, Massachusetts, 2003.

[Kolb and Muthig 2003] R. Kolb and D. Muthig; “Challenges in Testing Software Product Lines” (in German), In:
Arbeitskreis Software-Qualität Franken e.V.: CONQUEST 2003, 7th Conference on Quality Engineering in
Software Technology, Proceedings: EuroMotive 2003, Automotive Software Technology, Nürnberg, 2003,
pp.103–113.

[Kovitz 1999] B.L. Kovitz; Practical Software Requirements: A Manual of Content and Style, Manning, 1999.

[Kruchten 1995] P.B. Kruchten; “The 4+1 View Model of Architecture”, IEEE Software, November 1995, pp. 42–50.

[Kruchten 2000] P. Kruchten; The Rational Unified Process, Addison-Wesley, Reading, Massachusetts, 2000.

[Krueger 2002] C.W. Krueger; “Data from Salion’s Software Product Line Initiative”, Technical Report no. 2002-07-
08-1, BigLever Software, 2002.

[Kulak and Guiney 2003] D. Kulak and E. Guiney; Use Cases: Requirements in Context, 2nd edition, Addison-Wesley,
Reading, Massachusetts, 2003.

[Larman 2002] C. Larman; Applying UML and Patterns – An Introduction to Object-Oriented Analysis and Design and
the Unified Process, Prentice Hall, Englewood Cliffs, New Jersey, 2002.

[Laurent and Cerami 1999] S.S. Laurent and E. Cerami; Building XML Applications, McGraw-Hill, New York, 1999.

452 References

[Lee et al. 2000] K. Lee, K.C. Kang, E. Koh, W. Chae, B. Kim, and B.W. Choi; “Domain-Oriented Engineering of
Elevator Control Software”, In: Proceedings of the 1st Software Product Line Conference (SPLC-1), Denver,
Patrick Donohoe (ed.), Kluwer, Dordrecht, 2000, pp. 3–22.

[LGIS 2004] LG Industrial Systems Co., Ltd Website, 2004, www.lgis.com

[LonMark 2004] LonMark Interoperability Association, 2004, www.lonmark.org

[Lucent 2004] Lucent Technologies Website, 2004, www.lucent.com

[Market Maker 2004] Market Maker Software AG Website, 2004, www.market-maker.de

[McClure 1995] C. McClure; Experiences in Organizing for Software Reuse, Extended Intelligence, Inc., 1995.

[McCord and Eppinger 1993] K.R. McCord and S.D. Eppinger; “Managing the Integration Problem in Concurrent
Engineering”, MIT, Sloan School of Management, Report no. 10-48-93, 1993.

[McGregor and Sykes 2001] J.D. McGregor and D.A. Sykes; A Practical Guide to Testing Object Oriented Software,
Addison-Wesley, Reading, Massachusetts, 2001.

[McGregor et al. 2002] J.D. McGregor, S. Jarrad, L.M. Northrop, and K. Pohl; “Initiating Software Product Lines”,
IEEE Software, vol. 19, no. 4, July 2002, pp.24–27.

[McMenamin and Palmer 1984] S.M. McMenamin and J.F. Palmer; Essential Systems Analysis, Yourdon Press, Upper
Saddle River, New Jersey, 1984.

[Meyer and Lehnerd 1997] M. Meyer and A. Lehnerd; The Power of Product Platforms, Free Press, New York, 1997.

[Milner 1980] R. Milner; A Calculus of Communicating Systems, Springer, Berlin Heidelberg New York, LNCS 92,
1980.

[Morabito et al. 1999] J. Morabito, I. Sack, and A. Bhate; Organization Modeling - Innovative Architectures for the 21st
Century, Prentice Hall, Englewood Cliffs, New Jersey, 1999.

[Muthig and Atkinson 2002] D. Muthig and C. Atkinson; “Model-Driven Product Line Architectures”, In: Proceedings
of the 2nd International Conference on Software Product Lines (SPLC-2), San Diego, USA, Springer, Berlin
Heidelberg New York, LNCS 2379, 2002, pp. 110–129.

[Muthig and Patzke 2003] D. Muthig and T. Patzke; “Generic Implementation of Product Line Components”, In:
Objects, Components, Architectures, Services, and Applications for a Networked World, International
Conference NetObjectDays (NODe 2002), Erfurt, Germany, Springer, Berlin Heidelberg New York, LNCS
2591, 2003, pp. 313–329.

[NRO 2004] The National Reconnaissance Office Website, 2004, www.nro.gov

[Nuseibeh 2001] B. Nuseibeh; Weaving the Software Development Process Between Requirements and Architecture,
In: From Software Requirements to Architectures (STRAW '01), 23rd International Conference on Software
Engineering (ICSE 2001), Toronto, Ontario, Canada, 12–19 May, 2001.

[NUWC 2004] The Naval Undersea Warfare Center Website, 2004, www.nuwc.navy.mil

[Obbink et al. 2000] J.H. Obbink, J. Müller, P. America, R. van Ommering, G. Muller, W. van der Sterren, and J.G.
Wijnstra; COPA: A Component-Oriented Platform Architecting Method for Families of Software-Intensive
Electronic Products, Tutorial at SPLC-1, Denver, August, 2000, www.extra.research.philips.com/SAE/COPA
/COPA_Tutorial.pdf

[OMG 2003] Object Management Group; Unified Modeling Language Specification, Version 2.0 (Final Adopted
Specification, ptc/03-02-08), 2003, www.omg.org/cgi-bin/doc?ptc/2003-08-02

[OSGi 2003] The Open Services Gateway Initiative; OSGi Service Platform Release 3, March 2003, www.osgi.org

[Parnas 1976] D. Parnas; “On the Design and Development of Program Families”, Transactions on Software
Engineering, vol. SE-2, no. 1, March 1976, pp. 1–9.

References 453

[Pepels 2003] W. Pepels; Produktmanagement (in German), 4th edition, Oldenbourg, München, 2003.

[Perrow 1970] C. Perrow; Organizational Analysis: A Sociological View, Wadsworth, Monterey, California, 1970.

[Perrow 1972] C. Perrow; Complex Organizations: A Critical Essay, 1st edition 1972, 3rd edition, Random House, New
York, 1986.

[Peterson 1981] J.L. Peterson; Petri Net Theory and the Modeling of Systems, Prentice Hall, Harlow, Essex, 1981.

[Philips 2004] Philips Website, 2004, www.philips.com

[PL-Framework 2004] SEI; A Framework for Software Product Line Practice, 2004, http://www.sei.cmu.edu
/plp/framework.html

[Plinke 2002] W. Plinke; “Unternehmensstrategie” (in German), In: M. Kleinaltenkamp and W. Plinke (eds.),
Strategisches Business-to-business-Marketing, 2nd edition, Springer, Berlin Heidelberg New York, 2002, pp. 1–
55.

[Pohl 1994] K. Pohl; “The Three Dimensions of Requirements Engineering: A Framework and its Applications”,
Information Systems, Special Issue on Computer Supported Information System Development, vol. 19, no. 3,
1994.

[Pohl 1996] K. Pohl; Process-Centered Requirements Engineering, Research Studies Press, Wiley, Taunton, Somerset,
1996.

[Pohl 1997] K. Pohl; “Requirements Engineering”, In: A. Kent, J. Williams, and C.M. Hall (eds.), Encyclopedia of
Computer Science and Technology, M. Dekker, New York, vol. 36, 1997, pp. 345–386.

[Pohl and Haumer 1997] K. Pohl, and P. Haumer; “Modelling Contextual Information about Scenarios”, In:
Proceedings of the 3rd International Workshop on Requirements Engineering – Foundation for Software
Quality (REFSQ’97), Barcelona, Spain, University Press Namur, Namur, 1997, pp. 187–204.

[Pohl and Reuys 2001] K. Pohl and A. Reuys; “Considering Variabilities during Component Selection in Product
Family Development”, In: Proceedings 4th International Workshop on Product Family Engineering (PFE-4),
Bilbao, 2001.

[Pohl and Sikora 2005] K. Pohl and E. Sikora; “Requirements Engineering für eingebettete Software” (in German), In:
P. Liggesmeyer and D. Rombach (eds.), Software Engineering eingebetteter Systeme: Grundlagen – Methodik –
Anwendungen, Elsevier, Heidelberg, 2005, pp. 101–140.

[Pohl et al. 2001a] K. Pohl, M. Brandenburg, and A. Gülich; “Scenario-based Change Integration in Product Family
Development”, In: Proceedings of the 2nd ICSE Workshop on Software Product Lines – Economics,
Architectures, and Implications, Toronto, Canada, Fraunhofer IESE, 2001.

[Pohl et al. 2001b] K. Pohl, G. Böckle, P. Clements, H. Obbink, and D. Rombach (eds.); Proceedings Dagstuhl Seminar
Product Family Development, University of Essen, Germany, 2001.

[Poulin 1997] J. Poulin; Measuring Software Reuse, Addison-Wesley, Reading, Massachusetts, 1997.

[PRIME 2005] PRIME – Process Integrated Modelling Environments, SEGOS-VM Tool Website, 2005,
www.software-productline.com/SEGOS-VM-Tool/

[PRTM 2004] PRTM Management Consultants, 2004, www.prtm.com/pressreleases/2000/08.21.asp

[Reisig 1985] W. Reisig; Petri Nets – An Introduction, EATCS Monographs on Theoretical Computer Science 4,
Springer, Berlin Heidelberg New York, 1985.

[Reuys et al. 2003] A. Reuys, S. Reis, E. Kamsties, K. Pohl; “Derivation of Domain Test Scenarios from Activity
Diagrams”, In: Proceedings of the International Workshop on Product Line Engineering – The Early Steps –
Planning, Modeling and Managing (PLEES’03), Fraunhofer IESE, Erfurt, September, 2003.

454 References

[Reuys et al. 2004a] A. Reuys, E. Kamsties, K. Pohl, H. Götz, J. Neumann, and J. Weingärtner; “Testen von Software-
Produktvarianten – Ein Erfahrungsbericht” (in German), In: Tagungsband zur Multikonferenz
Wirtschaftsinformatik (MKWI), Akademische Verlagsgesellschaft, Mannheim, 2004, pp. 244–259.

[Reuys et al. 2004b] A. Reuys, H. Götz, J. Neumann, and J. Weingärtner; “Medizintechnik bei Siemens AG Medical
Solutions HS IM” (in German), In: G. Böckle, P. Knauber, K. Pohl, and K. Schmid (eds.), Software-
Produktfamilien – Methoden, Einführung und Praxis, dpunkt, Heidelberg, 2004, pp. 247–259.

[Reuys et al. 2005] A. Reuys, E. Kamsties, K. Pohl, S. Reis; “Model-based System Testing of Software Product
Families”, In: Proceedings of the 17th Conference on Advanced Information Systems Engineering (CAiSE'05).
Porto, Portugal, June, 2005, pp. 519–534.

[Robertson and Ulrich 1999] D. Robertson and K. Ulrich; “Produktplattformen: Was sie leisten, was sie erfordern” (in
German), Harvard Business Manager, 4/1999, pp. 75-85.

[Roever 1994] M. Roever; “Fokussierte Produkt- und Programmgestaltung zur Komplexitätsreduzierung” (in German),
In: H. Corsten (ed.), Handbuch Produktionsmanagement, Gabler, Wiesbaden, 1994, pp. 115–129.

[Rolland et al. 1998] C. Rolland, C. Souveyet, and C. Ben Achour; “Guiding Goal Modeling Using Scenarios”, IEEE
Transactions on Software Engineering, vol. 24, no. 12, December, 1998, pp. 1055–1071.

[Rösel 1998] A. Rösel; “Experiences with the Evolution of an Application Family Architecture”, In: Proceedings of
Development and Evolution of Software Architectures for Product Families, 2nd International ESPRIT ARES
Workshop, Las Palmas de Gran Canaria, Springer, Berlin Heidelberg New York, LNCS 1429, 1998, pp. 39–48.

[Rumbaugh et al. 2003] J. Rumbaugh, I. Jacobson, and G. Booch; The Unified Modeling Language Reference Manual,
2nd edition, Addison-Wesley, Reading, Massachusetts, 2003.

[SaabTech 2004] SaabTech Website, 2004, www.saabtech.se

[Saaty 1990] T.L. Saaty; “How to Make a Decision: The Analytic Hierarchy Process”, European Journal of
Operational Research, vol. 48, no. 1, 1990, pp. 9–26.

[Sabisch 1996] H. Sabisch; “Produkte und Produktgestaltung” (in German), In: W. Kern, H.-H. Schröder, and J. Weber
(eds.), Handwörterbuch der Produktionswirtschaft, Schäffer-Poeschel, Stuttgart, 1996, pp. 1439–1450.

[Salion 2004] Salion Inc. Website, 2004, www.salion.com

[Sauerwein 2000] E. Sauerwein; Das Kano-Modell der Kundenzufriedenheit (in German), Deutscher Universitäts-
Verlag, Wiesbaden, 2000.

[Schewe 2000] G. Schewe; “Produktimitation” (in German), In: S. Albers and A. Herrmann (eds.), Handbuch
Produktmanagement, Gabler, Wiesbaden, 2000, pp. 55–74.

[Schmid 2002] K. Schmid; “A Comprehensive Product Line Scoping Approach and Its Validation”, In: Proceedings of
the 24th International Conference on Software Engineering (ICSE 2002), Orlando, Florida, ACM Press, 2002,
pp. 593–603.

[Schmid et al. 2004a] K. Schmid, I. John, R. Kolb, and G. Meier; “Eingebettete Systeme bei der Testo AG” (in
German), In: G. Böckle, P. Knauber, K. Pohl, and K. Schmid (eds.), Software-Produktfamilien – Methoden,
Einführung und Praxis, dpunkt, Heidelberg, 2004, pp. 221–231.

[Schmid et al. 2004b] K. Schmid, I. John, R. Kolb, and G. Meier; “Introducing the PuLSE Approach to an Embedded
System Population at Testo AG”, Technical Report no. 015.04/E, Fraunhofer IESE, 2004.

[Schmidt 1999] D.C. Schmidt; “Why Software Reuse has Failed and How to Make It Work for You”, C++ Report,
SIGS, vol. 11, no. 1, January, 1999.

[Schneider and Winters 2001] G. Schneider and J.P. Winters; Applying Use Cases: A Practical Guide, 2nd edition,
Addison-Wesley, Reading, Massachusetts, 2001.

References 455

[Schröder and Zenz 1996] H.-H. Schröder and A. Zenz; “QFD” (in German), In: W. Kern, H.-H. Schröder, and J.
Weber (eds.), Handwörterbuch der Produktionswirtschaft, 2nd edition, Schäffer-Poeschel, Stuttgart, 1996, col.
1697–1711.

[Senge 1990] P.M. Senge; The Fifth Discipline. The art and practice of the learning organization, Random House, New
York, 1990.

[Sharp 2000] D.C. Sharp; “Component Based Product Line Development of Avionics Software”, In: Proceedings of the
1st Software Product Line Conference (SPLC-1), Denver, Kluwer, Dordrecht, 2000, pp. 353–369.

[Shaw and Garlan 1996] M. Shaw and D. Garlan; Software Architecture: Perspectives on an Emerging Discipline,
Prentice Hall, Englewood Cliffs, New Jersey, 1996.

[Siemens 2004] Siemens AG Medical Solutions, 2004, www.smed.com

[SoftwareProductLines 2004] Software Product Lines Website, 2004, www.softwareproductlines.com

[Sommerville and Sawyer 1997] I. Sommerville and P. Sawyer; Requirements Engineering, Wiley, Chichester, 1997.

[Soni et al. 1995] D. Soni, R. Nord, and C. Hofmeister; “Software Architecture in Industrial Applications”, In:
Proceedings ICSE’95, 1995, pp. 196–207.

[Spillner and Linz 2004] A. Spillner and T. Linz; Basiswissen Softwaretest (in German), 2nd edition, dpunkt,
Heidelberg, 2004.

[Standish Group 1995] The Standish Group; The CHAOS Report, 1995, www.standishgroup.com/sample_research
/chaos_1994_1.php

[Svahnberg et al. 2001] M. Svahnberg, J. v. Gurp, and Jan Bosch; “On the Notion of Variability in Software Product
Lines”, In: Proceedings of the Working IEEE/IFIP Conference on Software Architecture (WICSA 2001),
Amsterdam, The Netherlands, 2001, pp. 45–55.

[Szyperski 1997] C. Szyperski; Component Software – Beyond Object-oriented Programming, Addison-Wesley,
Reading, Massachusetts, 1997.

[Taylor 1911] F.W. Taylor; The Principles of Scientific Management, New York, 1911; New edition: Dover, New
York, 1998.

[TechTarget 2004] TechTarget – SearchCIO.com Definitions, 2004, whatis.techtarget.com

[Testo 2004] Testo AG Website, 2004, www.testo.com

[Thayer and Dorfman 1997] R.H. Thayer and M. Dorfman; Software Requirements Engineering, IEEE Press,
Piscataway, New Jersey, 2000.

[Toft et al. 2000] P. Toft, D. Coleman, and J. Ohta; “A Cooperative Model for Cross-Divisional Product Development
for a Software Product Line”, In: Proceedings of the 1st Software Product Line Conference (SPLC-1), Denver,
Kluwer, Dordrecht, 2000, pp. 111–132.

[Tomczak et al. 2000] T. Tomczak, S. Reinecke, and P. Kaetzke; “Konzept zur Gestaltung und zum Controlling
existierender Leistungen” (in German), In: S. Albers and A. Herrmann (eds.), Handbuch Produktmanagement,
Gabler, Wiesbaden, 2000, pp. 443–459.

[Ulfat-Bunyadi et al. 2005] N. Ulfat-Bunyadi, E. Kamsties, and K. Pohl “Considering Variability in a System Family’s
Architecture during COTS Evaluation”, In: Proceedings of the 4th International Conference on COTS-Based
Software Systems (ICCBSS 2005), Bilbao, Spain, Springer, Berlin Heidelberg New York, LNCS 3412, 2005.

[V. Lamsweerde 2001] A. van Lamsweerde; “Goal-Oriented Requirements Engineering: A Guided Tour”, In:
Proceedings of the 5th International Symposium on Requirements Engineering, Toronto, August, 2001, pp.
249–263.

456 References

[V. Ommering 2002] R. van Ommering; “Building Product Populations with Software Components”, In: Proceedings
of the 24th International Conference on Software Engineering (ICSE 2002), Orlando, Florida, ACM Press,
2002, pp. 255–265.

[V. Ommering 2004] R. van Ommering; Building Product Populations with Software Components, PhD. Thesis,
University of Groningen, 2004.

[V. Ommering et al. 2000] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee; “The Koala Component
Model for Consumer Electronics Software”, IEEE Computer, March 2000, pp. 78–85.

[V.d. Linden 2002] F. van der Linden; “Software Product Families in Europe: The ESAPS and CAFÉ Projects”, IEEE
Software, vol. 19, no. 4, July/August 2002, pp. 41–49.

[V.d. Linden and Müller 1995] F. van der Linden and J.K. Müller; “Creating Architectures with Building Blocks”,
IEEE Software, vol. 12, no. 6, November 1995, pp. 51–60.

[V.d. Maßen and Lichter 2002] T. von der Maßen and H. Lichter; “Modeling Variability by UML Use Case Diagrams”,
In: Proceedings of the International Workshop on Requirements Engineering for Product Lines (REPL’02),
2002, pp. 19–25.

[V-Model 1997] V-Model, Development Standard for IT Systems of the Federal Republic of Germany, 1997,
www.v-modell.iabg.de

[V-Model XT] V-Model XT, Federal Republic of Germany, 2004, www.v-modell-xt.de

[Wayne 1996] L. Wayne; “Reuse Economics: A Comparison of Seventeen Models and Directions for Future Research”,
In: Proceedings of the 4th International Conference on Software Reuse (ICSR), IEEE Computer Society Press,
Silver Spring, Maryland, 1996, pp. 41–50.

[Weber 1922] M. Weber; Wirtschaft und Gesellschaft (in German), Tübingen, 1921/1922

[Weidenhaupt et al. 1998] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer; “Scenarios in System Development –
Current Practice”, IEEE Software, vol. 15, no. 2, 1998, pp. 34–45.

[Weinberg 1988] G. Weinberg; Rethinking Systems Analysis and Design, Dorset House, New York, 1988.

[Weiss 1998] D. Weiss; “Commonality Analysis: A Systematic Process for Defining Families”, In: Proceedings
Development and Evolution of Software Architectures for Product Families, 2nd International ESPRIT ARES
Workshop, Las Palmas de Gran Canaria, Springer, Berlin Heidelberg New York, LNCS 1429, 1998, pp. 214–
222.

[Weiss and Lai 1999] D.M. Weiss and C.T.R. Lai; Software Product-Line Engineering – A Family-Based Software
Development Process, Addison-Wesley, Reading, Massachusetts, 1999.

[Welge and Al-Laham 1999] M. Welge and A. Al-Laham; Strategisches Management (in German), 2nd edition, Gabler,
Wiesbaden, 1999.

[Wiegers 1999] K.E. Wiegers; Software Requirements, Microsoft Press, 1999.

[Wieringa 1996] R.J. Wieringa; Requirements Engineering: Frameworks for Understanding, Wiley, New York, 1996.

[Wijnstra 2002] J.G. Wijnstra; “Component Frameworks for a Medical Imaging Product Family”, In: Proceedings of
Software Architectures for Product Families (IW-SAPF-3), Las Palmas de Gran Canaria, Springer, Berlin
Heidelberg New York, LNCS 1951, 2000, pp. 4–18.

[Woodward 1965] J. Woodward; Industrial Organisation: Theory and Practice, Oxford University Press, New York,
1965.

[Yourdon 1989] E. Yourdon, Structured Walkthroughs, 4th edition, Yourdon Press, Upper Saddle River, New Jersey,
1989.

Glossary

Application Artefacts are the development artefacts of specific product line applications (Definition 2-5
on p. 23).

Application Design is the sub-process of application engineering where the reference architecture is
specialised into the application architecture.

Application Engineering is the process of software product line engineering in which the applications of
the product line are built by reusing domain artefacts and exploiting the product line variability
(Definition 2-2 on p. 21).

Application Realisation is the sub-process of application engineering where a single application is real-
ised according to the application architecture by reusing domain realisation artefacts.

Application Requirements Engineering is the sub-process of application engineering dealing with the
elicitation of stakeholder requirements, the creation of the application requirements specification, and
the management of application requirements.

Application Testing is the sub-process of application engineering where domain test artefacts are reused
to uncover evidence of defects in the application.

Architecture, see software architecture.

Architectural Structure is the decomposition of a software system into parts and relationships
(Definition 6-1 on p. 117).

Architectural Texture is the collection of common development rules for realising the applications of a
software product line (Definition 6-2 on p. 117).

Asset, see development artefact.

Component is a unit of composition with contractually specified component interfaces and explicit con-
text dependencies only; it can be deployed independently and is subject to composition by third
parties.

Component Framework is a structure of components, or object classes, where plug-in components or
object classes may be added at specified plug-in locations. To fit, each plug-in has to obey rules
defined by the framework (Definition 6-8 on p. 128).

Component Interface provides a connector between components. A required interface of a component
has to be connected to a provided interface of another one.

458 Glossary

COTS is the acronym of “Commercial Off-The-Shelf”. This term subsumes components from different
sources with different degrees of modification possibilities. Sources may vary from in-house, through
nuances of non-developmental, to commercial.

Development Artefact is the output of a sub-process of domain or application engineering. Develop-
ment artefacts encompass requirements, architecture, components, and tests (Definition 2-3 on p. 23).

Domain is an area of process or knowledge driven by business requirements and characterised by a set of
concepts and terminology understood by stakeholders in that area. The problem domain and the solu-
tion domain are two kinds of domains.

Domain Artefacts are reusable development artefacts created in the sub-processes of domain engineer-
ing. A synonym is product line artefacts (Definition 2-4 on p. 23).

Domain Design is the sub-process of domain engineering where a reference architecture for the entire
software product line is developed.

Domain Engineering is the process of software product line engineering in which the commonality and
the variability of the product line are defined and realised (Definition 2-1 on p. 21).

Domain Realisation is the sub-process of domain engineering where the set of reusable components and
interfaces of the product line is developed.

Domain Requirements Engineering is the sub-process of domain engineering where the common and
variable requirements of the product line are defined, documented in reusable requirements artefacts,
and continuously managed.

Domain Testing is the sub-process of domain engineering where evidence of defects in domain artefacts
is uncovered and where reusable test artefacts for application testing are created.

External Variability is the variability of domain artefacts that is visible to customers; see also internal
variability (Definition 4-7 on p. 68).

Feature is an end-user visible characteristic of a system (Definition 5-4 on p. 92).

Goal is an objective the system under consideration should achieve (Definition 5-3 on p. 92).

Internal Variability is variability of domain artefacts that is hidden from customers; see also external
variability (Definition 4-8 on p. 68).

Mass Customisation is the large-scale production of goods tailored to individual customers’ needs
(Definition 1-1 on p. 4).

Orthogonal Variability Model is a model that defines the variability of a software product line. It re-
lates the variability defined to other software development models such as feature models, use case
models, design models, component models, and test models (Definition 4-9 on p. 75).

Platform, see software platform.

Product Line Artefacts, see domain artefacts.

Product Line Engineering, see software product line engineering.

Product Management is the process of controlling the development, production, and marketing of the
software product line and its applications (Definition 9-3 on p. 167).

Glossary 459

Reference Architecture is a core software architecture that captures the high-level design of a software
product line.

Requirement is (1) a condition or capability needed by a user to solve a problem or achieve an objective.
(2) A condition or capability that must be met or possessed by a system or system component to
satisfy a contract, standard, specification, or other formally imposed document. (3) A documented
representation of a condition or capability as in (1) or (2) (IEEE Std 610.12-1990) (Definition 5-1 on
p. 91).

Requirements Artefacts are products of the requirements engineering process specified using natural
language and/or requirements models (Definition 5-2 on p. 92).

Scenario is a concrete description of system usage, which provides a clear benefit for the actor of the
system (Definition 5-5 on p. 93).

Software Architecture is the set of the main guiding development principles for one or more software
applications. The principles are the solution of one or more architectural concerns dealing with qual-
ity. There are other, more instrumental, definitions in the literature.

Software Platform is a set of software subsystems and interfaces that form a common structure from
which a set of derivative products can be efficiently developed and produced (Definition 1-4 on p.
15).

Software Product Line Engineering is a paradigm to develop software applications (software-
intensive systems and software products) using software platforms and mass customisation
(Definition 1-3 on p. 14).

Software Product Line Engineering Framework is an abstract representation of the two core pro-
cesses for software product line engineering and the assets produced.

Test Artefacts are products of the test process containing plans, specifications, and test results (Definition
8-1 on p. 151).

Use Case is a description of system behaviour in terms of scenarios illustrating different ways to succeed
or fail in attaining one or more goals (Definition 5-6 on p. 94).

Variability in Space is the existence of an artefact in different shapes at the same time (Definition 4-6 on
p. 66).

Variability in Time is the existence of different versions of an artefact that are valid at different times
(Definition 4-5 on p. 65).

Variability Object is a particular instance of a variability subject (Definition 4-2 on p. 60).

Variability Subject is a variable item of the real world or a variable property of such an item (Definition
4-1 on p. 60).

Variant is a representation of a variability object within domain artefacts (Definition 4-4 on p. 62).

Variation Point is a representation of a variability subject within domain artefacts enriched by contextual
information (Definition 4-3 on p. 62).

Index

A
absent variant 259, 270
abstraction 17, 18, 88, 91, 220, 335, 436
access interface 130
activity diagram 122
adaptable scenario 154
agreement dimension 198
algorithm variability 140
alternative choice 78, 85, 214, 319, 320, 322
alternative feature 100
ambiguity

in a feature tree 101
in textual requirements 96
of natural language 91

application architecture 35, 332, 333, 334, 336,
342, 346, 416
adding a variant in 336
as input for testing 357
realisation effort of 341
validation of 236

application categories 309
application dependency test 363
application design 32, 332
application engineering

definition of 21
goals of 30
sub-processes of 31

application realisation 33, 346
application requirements engineering 31, 308

activities 312
application testing 33, 266, 356

activities 367

application variability model 35, 36, 311, 315,
327, 357

application-specific plug-in, use of 234
architectural adaptation effort, categories of 323
architectural artefacts 117
architectural structure

definition of 117
for home automation 118
variability in 124

architectural texture
definition of 117
for home automation 118, 236
implications for design 235

architecturally significant requirement 117, 221
architecture

of an application see application architecture
of the domain see reference architecture

architecture evaluation 221, 224
architecture validation 236
architecture view 119
artefact

application artefact 23, 34
domain artefact 23, 28

artefact dependency 125
aspect, use of 234
aspect-oriented programming 251
automatic code generation 251

B
basic requirement 181, 203
BCG matrix 172
big bang strategy 397, 399, 405
binding time 59, 222, 250, 289, 297

462 Index

binding variability 21, 31, 34, 59, 71, 328, 336,
349, 359, 402

Bold Stroke product line 415
break-even point of a product line 9
building the application 351
business types in IT industry 169

C
CAFÉ project 21, 427
causes of variability 52, 60, 69, 70
CHAOS report 17
checklist-based commonality analysis 204
checklist-based variability analysis 206
class diagram 120

variability in 108, 145
classic computer platform 15
CMMI 17, 408, 438
code view

definition of 123
variability in 132

common feature 64
common look and feel 13
commonality analysis 199, 201, 210
commonality in features 64
communication diagram 122
complexity, reduction of 12, 70, 87, 93, 121,

177, 220, 266
component diagram 120, 126
component framework 348

definition of 128
for basic functionality 128
for home automation 128
use of 232

component parameter 348
component registration 253
component screening 291
component technology 16
component variability 139, 145, 245
conditional compilation 252
configuration 128, 138, 299, 338
configuration file 253
configuration independence 254
configuration management 17, 65, 255
configuration mechanism 251
configuration parameter 253, 349
configuration variability 142
connecting components 138

consciousness of variability 60
conservation of product potentials 186
constraint dependency 79, 209, 214

variant to variant 80
variant to variation point 81, 214
variation point to variation point 82

context of a system 93
Control Channel Toolkit 433
cost estimation 12, 400
cost model 400
cost of variants 175, 341
COTS

evaluation 288
evaluation criteria 293
high-level component 286
integration in reference architecture 288
low-level component 286
selection 286, 300

CoVAR 288
cross-functional team 389
customer requirement 310
customer, benefits for 13

D
data dictionary 247
data flow diagram

variability in 106
DECC project 422
decomposition 124, 126
defect 263
defining

common and variable features 190
common requirements 199
variability 59, 60, 63, 71, 97, 100, 206
variable requirements 200
variation points and variants 206, 213

delighter 182
deployment diagram 123, 133
design

for evolvability 223
for flexibility 121, 125, 128, 222
for maintainability 224
for variability 221
of a product portfolio 174
of components 137, 245, 249
of interfaces 137, 244

design activities 220
design variability 116, 123, 225, 229

Index 463

detailed design 116, 137, 146, 147, 242
variability in 136

detailed test case 152, 282
development artefact 23
development department 379
development process, separation of 20
development view 120, 124, 134, 146
diagram 92
documentation of requirements 197, 314
documenting variability

in class diagrams 108, 145
in code view 132
in component diagrams 126
in data flow diagrams 106
in features 99
in package diagrams 125
in process view 131
in requirements 96, 99
in scenarios 103
in sequence diagrams 104
in state machine diagrams 109
in test artefacts 152
in use cases 103, 104
with XML tags 98

domain design 26, 218
domain engineering

as functional unit 385
as project group 386
as separate unit 387
centralised 382
definition of 21
distributed 380
goals of 23
several units for 383
sub-processes of 24

domain expertise 17
domain realisation 27, 242
domain requirements engineering 25, 194
domain specialisation 436
domain testing 27, 258, 266

activities 281
domain variability model 29
domain-specific framework 233

E
early validation 271
elicitation of requirements 197
elimination

of a product 187

of a product line 190
embedded system software 12, 14
ESAPS project 21
evaluation copy 290
evaluation scenario 295, 298
evolution 11, 66, 437
evolvability of architecture 222
excludes dependency 79
external pressure 394
external variability 68

definition of 68
influence on design 125

external variation point 75

F
FAMILIES project 21
FAST process 23, 396
feature 92

definition of 92
of a product 177
similarity between goal and feature 92

feature tree
ambiguity in 101
definition of 100
of a home security system 102
with provided features 295, 297
with required features 293

flexibility 7, 8
constraints for 8
of architecture 222

formal method 123
functional analysis 95

G
generic interface 143
generic scenario 104
generic test plan 152
goal

definition of 92
similarity between goal and feature 92

graphical notation for variability 84
grouping

of features 101
of variants 77

464 Index

H
high-level design 116
home automation 40

I
imitation strategy 179
implementation 250

of components 245
of interfaces 245
of reusable software assets 242

implementation of variability 136
implementation technology 16
increase of variability 71
incremental transition strategy 395, 398, 402
indifferent requirement 182
individual and standard software 4
initialisation interface 144
innovation strategy 177
instance scenario 104
integrated variability modelling

approaches of 74
shortcomings of 74

integration test 238, 261, 265, 268, 357, 363,
364, 436

interaction overview diagram 122
interface

aspect-related 235, 248
design of 140
elements of 246
level of abstraction 134, 246, 254
level of detail 246, 254
of a variable component 139
provided see provided interface
provided by many components 143
realisation of 352
required see required interface
role of 127
variable vs. invariant 245

internal pressure 394
internal variability 26, 30, 68, 69, 72, 125, 131,

222, 249
internal variation point 75
IT business types 169

K
Kano classification 181, 190, 203
Koala method 425
KobrA method 251

L
late-binding technique 16, 224
layer

representation of 121
variability in 125

layered architecture 226
level of detail of an interface 248
logical test case 152, 282
logical view 120, 124, 424
low-level design 116

M
maintainability of architecture 224
maintenance effort 11, 249
makefile 252
managed variability 14, 59
managing variability across product lines 437
mandatory variability dependency 77
mapping between requirements and design 227
mass customisation 4, 5, 7, 8, 14, 16, 20, 128,

177, 222, 336, 395
preparing for 7

matrix organisation 384, 386, 387, 388
matrix-based commonality analysis 202
matrix-based variability analysis 205
middleware 17
model 91
model-based requirement 91
model-driven development 251, 436
modular structure of a product 176
motivation

for product variants 175
for software product line engineering 9, 394
of personnel 378

multiple product lines 387, 437

N
negotiation of requirements 197

Index 465

O
object diagram 120
optional feature 100
optional variability dependency 77
organisation structure 376

hierarchical 378
matrix 384
properties of 376
reorganisation of 9

organisation theory 389
orthogonal variability model 29, 85

adding a variant to 318
adding a variation point to 320
dealing with complexity in 87
definition of 75
graphical notation of 84
meta model of 75, 78, 79, 83
refinement of 30
required information in 73
use of 116, 146, 150, 315

Owen project 382, 419

P
package diagram 120, 124
pilot project strategy 396, 399, 404
planning for reuse 20
platform 5, 15

as product 190
combined with mass customisation 7
creation of 7
definition of 6
shared between product lines 8
strategic relevance of 190

platform strategy 6
plug-in component 128, 130, 232

application-specific 234
plug-in location 128
portfolio analysis 172, 189
portfolio management 168, 186
pre-compiler macro 252
predictive economic model 438
priority-based commonality analysis 203
priority-based variability analysis 205
proactive approach 429
process improvement and assessment 438
process table 131
process view

definition of 121
documentation of 121, 146
variability in 131

product 167
product business 169
product idea, assessment of 179
product interdependence 174
product life cycle 170
product line 8
product line test strategy see test strategy
product line variability 8, 61, 64
product management 164

activities 167
definition of 167
sub-process 24

product population 425
product portfolio

balance of 172
definition of 168
extension of 177
for home automation 189

product roadmap 28, 164, 191, 195
product variant 13, 175, 189
provided interface 138, 249, 254

Q
QFD 186
quality assurance 10, 28, 221, 224, 239, 262,

407, 436
quality requirements of architecture 221

R
range of permissible variants 78, 146
RangeWare 434
reactive approach 429
realisation

activities 244
of a configuration 348
of application-specific components 350
of component variability 145, 249
of configurability 253
of interfaces 245
of variability 16, 139, 250
of variable components 248

realisation artefact
of an application 35
of the domain 30

466 Index

reducing the amount of variability 202
reduction of development cost 9
reference architecture 29, 124, 134, 138, 218,

227, 231, 238, 334, 342, 401, 414, 415, 427,
431

refinement of variability 58, 69
registration interface 130
registry 253
regression test 267
representation dimension 198
required interface 138, 254
requirement

adding a variant 322
communication of 309, 316
IEEE definition of 91
of an application 35, 312, 314
of the domain 29

requirements artefact 92
requirements delta 309, 311, 312, 318
requirements elicitation 313
requirements engineering activities 197
requirements management 197
requirements prioritisation 226
requirements source 201
requirements specification 25, 31, 165, 197, 311,

326, 332, 357
requirements variability 71, 90, 105, 109, 199,

204, 225, 227
requires dependency 79
resource variability 141
restriction of adaptations 15
return on investment 394, 404, 405, 406
robustness of a component 248

S
satisfier 181
scenario

definition of 93
of a test case 152
three kinds of 93
variability in 154

ScenTED method 430
scoping 25, 188, 423
scoring model 180
separation of concerns 223, 426
sequence diagram 104, 122
service component business 170

ShipSystem 2000 416
software platform 15, 433
software process

maturity of 17
software product line engineering

combination with existing methods 23
definition of 14
demand for 14
economical justification 9
framework for 20
key differences to single-system development 36
prerequisites for 16

software test process 281
software testing 262
software-intensive system 14
solution business 170
specification dimension 198
stability of the domain 18
stakeholder requirement 20, 312, 318, 325
standardisation 9

of design 119
of products 175

state machine diagram 122
definition of 96
variability in 109

strategic commonality 203
subsystem

internal design 121
representation of 121
variability in 125, 126

system business 170
system test 265, 268, 363, 365
system-wide aspect 143

T
tactical transition strategy 396, 398
technology life cycle 172
test artefact

definition of 151
for different configurations 157
of an application 36
of the domain 30
variability in 150, 152

test artefact reuse 277, 359
test case 151, 264, 282

scenario 152, 154, 269
scenario step 152, 155
variability in 153, 260

Index 467

test coverage 365
test dependency model 264
test execution 283, 369
test item 151, 264
test level 263, 266, 267, 270, 364
test plan 151, 152
test planning 281, 367
test reference 264
test specification 282, 368
test strategy

brute force strategy 272
commonality and reuse strategy 277
criteria for 270
pure application strategy 273
sample application strategy 275
selection of 280

test summary report 152, 157
tests related to variability 362
textual requirement 91
time to create test artefacts 270
time to market, reduction of 10
timing diagram 122
tool support 437
traceability 28, 34, 82, 93, 105, 109, 110, 198,

228, 283, 313, 315, 327, 336, 360
trade-off decision 311, 325, 333
traditional requirements model 95
transition process, major steps of 406
transition strategy 395
twin peaks model 196

U
UML 17, 95
unit test 264, 267, 363, 364
unstable requirement 229
use case

definition of 94
documentation of 103
variability in 103

use case diagram 94, 104
use case model 95

variability in 113
use case template 94, 103

V
validation and verification

of development artefacts 271
of requirements 197
of reusable components 27

variability
as first-class subject 88
at different levels of abstraction 58, 71
binding of see binding variability
communication of 315
defining see defining variability
effects on interface design 140
explicit documentation of 73
in a home automation system 50
in components see component variability
in design see design variability
in identification mechanisms 61
in payment methods 60
in requirements see requirements variability
in test artefacts see test artefact, variability in
in the user interface 65
of a product line see product line variability

variability analysis 199, 204, 213
variability constraint 79
variability dependency 76, 207, 214, 294
variability in space 66
variability in time 65
variability model

of an application see application variability model
of the domain see domain variability model
orthogonal see orthogonal variability model

variability model delta 314, 318
variability object 60
variability pyramid 71
variability subject 60
variable subsystems 125
variant

definition of 62
referring to 86

variant absence test 362
variation point 75

contextual information of 61
definition of 62
referring to 86

V-model 267

