Anti-Adipogenic Polyacetylene Glycosides from the Florets of Safflower (Carthamus tinctorius)

Su Cheol Baek, Sang Ah Yi, Bum Soo Lee, Jae Sik Yu, Jin-Chul Kim, Changhyun Pang, Tae Su Jang, Jaecheol Lee, Ki Hyun Kim
2021 Biomedicines  
Safflower (Carthamus tinctorius) is an annual herb belonging to the Compositae family; it has a history of use as a food colorant, dye, and medicine in oriental countries. LC-MS-UV-based chemical analysis of extract of the florets of C. tinctorius led to the isolation of two new C10-polyacetylene glycosides, (8Z)-decaene-4,6-diyne-1,10-diol-1-O-β-d-glucopyranoside (1) and (8S)-deca-4,6-diyne-1,8-diol-1-O-β-d-glucopyranoside (2), together with five known analogs (3–7). The structures of the new
more » ... ompounds were determined by using 1D and 2D NMR spectroscopic data and HR-MS data, as well as chemical transformations. Of compounds 1–7, compounds 2, 3, and 4 inhibited the adipogenesis of 3T3-L1 preadipocytes, whereas compounds 1 and 6 promoted adipogenesis. Compounds 2, 3, and 4 also prevented lipid accumulation through the suppression of the expression of lipogenic genes and the increase of the expression of lipolytic genes. Moreover, compounds 3 and 4 activated AMPK, which is known to facilitate lipid metabolism. Our findings provide a mechanistic rationale for the use of safflower-derived polyacetylene glycosides as potential therapeutic agents against obesity.
doi:10.3390/biomedicines9010091 pmid:33477919 fatcat:4lfsfemmargcnhjf3vbq3hu3ge