Spectral and dynamical properties in classes of sparse networks with mesoscopic inhomogeneities

Marija Mitrović, Bosiljka Tadić
2009 Physical Review E  
We study structure, eigenvalue spectra and diffusion dynamics in a wide class of networks with subgraphs (modules) at mesoscopic scale. The networks are grown within the model with three parameters controlling the number of modules, their internal structure as scale-free and correlated subgraphs, and the topology of connecting network. Within the exhaustive spectral analysis for both the adjacency matrix and the normalized Laplacian matrix we identify the spectral properties which characterize
more » ... he mesoscopic structure of sparse cyclic graphs and trees. The minimally connected nodes, clustering, and the average connectivity affect the central part of the spectrum. The number of distinct modules leads to an extra peak at the lower part of the Laplacian spectrum in cyclic graphs. Such a peak does not occur in the case of topologically distinct tree-subgraphs connected on a tree. Whereas the associated eigenvectors remain localized on the subgraphs both in trees and cyclic graphs. We also find a characteristic pattern of periodic localization along the chains on the tree for the eigenvector components associated with the largest eigenvalue equal 2 of the Laplacian. We corroborate the results with simulations of the random walk on several types of networks. Our results for the distribution of return-time of the walk to the origin (autocorrelator) agree well with recent analytical solution for trees, and it appear to be independent on their mesoscopic and global structure. For the cyclic graphs we find new results with twice larger stretching exponent of the tail of the distribution, which is virtually independent on the size of cycles. The modularity and clustering contribute to a power-law decay at short return times.
doi:10.1103/physreve.80.026123 pmid:19792216 fatcat:qwfc5mpchvgojhki6mn4i73x4m