Control System Based on Anode Offgas Recycle for Solid Oxide Fuel Cell System

Shuanghong Li, Chengjun Zhan, Yupu Yang
2018 Mathematical Problems in Engineering  
The conflicting operation objectives between rapid load following and the fuel depletion avoidance as well as the strong interactions between the thermal and electrical parameters make the SOFC system difficult to control. This study focuses on the design of the decoupling control for the thermal and electrical characteristics of the SOFC system through anode offgas recycling (AOR). The decoupling control system can independently manipulate the thermal and electrical parameters, which interact
more » ... rs, which interact with one another in most cases, such as stack temperatures, burner temperature, system current, and system power. Under the decoupling control scheme, the AOR is taken as a manipulation variable. The burner controller maintains the burner temperature without being affected by abrupt power change. The stack temperature controller properly coordinates with the burner temperature controller to independently modulate the stack thermal parameters. For the electrical problems, the decoupling control scheme shows its superiority over the conventional controller in alleviating rapid load following and fuel depletion avoidance. System-level simulation under a power-changing case is performed to validate the control freedom between the thermal and electrical characteristics as well as the stability, efficiency, and robustness of the novel system control scheme.
doi:10.1155/2018/4198954 fatcat:g4e4jegcpbcdtexgzysdontarm