Unsharp degrees of freedom and the generating of symmetries

Achim Kempf
2000 Physical Review D, Particles and fields  
In quantum theory, real degrees of freedom are usually described by operators which are self-adjoint. There are, however, exceptions to the rule. This is because, in infinite dimensional Hilbert spaces, an operator is not necessarily self-adjoint even if its expectation values are real. Instead, the operator may be merely symmetric. Such operators are not diagonalizable - and as a consequence they describe real degrees of freedom which display a form of "unsharpness" or "fuzzyness". For
more » ... there are indications that this type of operators could arise with the description of space-time at the string or at the Planck scale, where some form of unsharpness or fuzzyness has long been conjectured. A priori, however, a potential problem with merely symmetric operators is the fact that, unlike self-adjoint operators, they do not generate unitaries - at least not straightforwardly. Here, we show for a large class of these operators that they do generate unitaries in a well defined way, and that these operators even generate the entire unitary group of the Hilbert space. This shows that merely symmetric operators, in addition to describing unsharp physical entities, may indeed also play a rôle in the generation of symmetries, e.g. within a fundamental theory of quantum gravity.
doi:10.1103/physrevd.63.024017 fatcat:bkuygdmpkrd4vhcy4jwivhjziy