مقایسه روش های طبقه بندی، شبکه عصبی مصنوعی و رگرسیون چندمتغیره در برآورد بازیابی فلز از بلوک کانسنگ

جواد غلام نژاد, رضا لطفیان, یوسف میرزائیان لرد کیوان
2020 Muhandisī-i manābi̒-i ma̒danī  
با توجه به نقش بازیابی در محاسبه ارزش اقتصادی بلوک کانسنگ و تأثیر مقدار این ارزش بر محاسبات طراحی و برنامه‌ریزی تولید معدن، تعیین بازیابی فلز از بلوک کانسنگ ارسالی به کارخانه فرآوری، از اهمیت بالایی برخوردار است. هدف از این پژوهش، بررسی قابلیت برآورد بازیابی بلوک کانسنگ به‌صورت کیفی و با روش‌های مبتنی بر طبقه‌بندی داده‌ها از مجموعه روش‌‌های داده‌کاوی و به‌صورت کمّی، با دو روش رگرسیون چندمتغیره و مدل هوشمند شبکه عصبی، بر اساس داده‌های آنالیز خوراک ورودی کارخانه است. برای نیل به این هدف، معدن مس
more » ... ه این هدف، معدن مس میدوک مورد مطالعه قرار گرفت و با استفاده از 58 نمونه آنالیزشده عیار خوراک کارخانه، شامل عیارهای Cu، CuOو CuS و میزان بازیابی عنصر Cu در محصول نهایی، فرآیند پیش‌بینی بازیابی کل ذخیره به‌صورت کیفی با روش‌های طبقه‌بندی درخت تصمیم، قانون بیز و الگوریتم نزدیک‌ترین همسایه انجام شد. برای برآورد کمّی میزان بازیابی ذخیره، مدل رگرسیون چندمتغیره و شبکه عصبی مصنوعی برای شاخص‌های عیاری مذکور و میزان بازیابی بین 47 نمونه از 58 نمونه برقرار شد و توسط 11 نمونه آنالیزشده آزمایشی، مدل‌های به‌دست‌آمده اعتبارسنجی شدند. معیارهای میانگین خطا و جذر میانگین مربعات خطا در مدل رگرسیونی به ترتیب 021702/0 و 024972/0 و در مدل شبکه عصبی مصنوعی به ترتیب 015753/0 و 021404/0 محاسبه شدند. بنابراین مدل شبکه عصبی مصنوعی به‌عنوان ابزار دقیق‌<span lang="AR-SA" dir="RTL" [...]
doi:10.30479/jmre.2019.10997.1284 doaj:12a6501df5ac4da1b72274ff5dfe2380 fatcat:jd5tff3ivvanzmcc7ggfoodzim