A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
A Comparative Study of Machine Learning Algorithms for EEG Signal Classification
2021
Signal & Image Processing An International Journal
In this paper, different machine learning algorithms such as Linear Discriminant Analysis, Support vector machine (SVM), Multi-layer perceptron, Random forest, K-nearest neighbour, and Autoencoder with SVM have been compared. This comparison was conducted to seek a robust method that would produce good classification accuracy. To this end, a robust method of classifying raw Electroencephalography (EEG) signals associated with imagined movement of the right hand and relaxation state, namely
doi:10.5121/sipij.2021.12603
fatcat:hcexzin36jb67c57puya2ot5y4