A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Intracranial Hemorrhage Detection in Head CT Using Double-Branch Convolutional Neural Network, Support Vector Machine, and Random Forest
2020
Applied Sciences
Brain hemorrhage is a severe threat to human life, and its timely and correct diagnosis and treatment are of great importance. Multiple types of brain hemorrhage are distinguished depending on the location and character of bleeding. The main division covers five subtypes: subdural, epidural, intraventricular, intraparenchymal, and subarachnoid hemorrhage. This paper presents an approach to detect these intracranial hemorrhage types in computed tomography images of the head. The model trained
doi:10.3390/app10217577
fatcat:j4shrqmo3vewxghaidbizms46q