An unsupervised approach to Geographical Knowledge Discovery using street level and street network images [article]

Stephen Law, Mateo Neira
2019 arXiv   pre-print
Recent researches have shown the increasing use of machine learn-ing methods in geography and urban analytics, primarily to extract features and patterns from spatial and temporal data using a supervised approach. Researches integrating geographical processes in machine learning models and the use of unsupervised approacheson geographical data for knowledge discovery had been sparse. This research contributes to the ladder, where we show how latent variables learned from unsupervised learning
more » ... thods on urbanimages can be used for geographic knowledge discovery. In particular, we propose a simple approach called Convolutional-PCA(ConvPCA) which are applied on both street level and street network images to find a set of uncorrelated and ordered visual latentcomponents. The approach allows for meaningful explanations using a combination of geographical and generative visualisations to explore the latent space, and to show how the learned representation can be used to predict urban characteristics such as streetquality and street network attributes. The research also finds that the visual components from the ConvPCA model achieves similaraccuracy when compared to less interpretable dimension reduction techniques.
arXiv:1906.11907v2 fatcat:rs6xpkyxqjbade4g3mli5im35a