Better Understanding Hierarchical Visual Relationship for Image Caption [article]

Zheng-cong Fei
2019 arXiv   pre-print
The Convolutional Neural Network (CNN) has been the dominant image feature extractor in computer vision for years. However, it fails to get the relationship between images/objects and their hierarchical interactions which can be helpful for representing and describing an image. In this paper, we propose a new design for image caption under a general encoder-decoder framework. It takes into account the hierarchical interactions between different abstraction levels of visual information in the
more » ... ges and their bounding-boxes. Specifically, we present CNN plus Graph Convolutional Network (GCN) architecture that novelly integrates both semantic and spatial visual relationships into image encoder. The representations of regions in an image and the connections between images are refined by leveraging graph structure through GCN. With the learned multi-level features, our model capitalizes on the Transformer-based decoder for description generation. We conduct experiments on the COCO image captioning dataset. Evaluations show that our proposed model outperforms the previous state-of-the-art models in the task of image caption, leading to a better performance in terms of all evaluation metrics.
arXiv:1912.01881v1 fatcat:ja7cbiqv7vavdgcuqag665zkii