A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Irreversible thermodynamics of creep in crystalline solids
2013
Physical Review B
We develop an irreversible thermodynamics framework for the description of creep deformation in crystalline solids by mechanisms that involve vacancy diffusion and lattice site generation and annihilation. The material undergoing the creep deformation is treated as a non-hydrostatically stressed multi-component solid medium with non-conserved lattice sites and inhomogeneities handled by employing gradient thermodynamics. Phase fields describe microstructure evolution which gives rise to
doi:10.1103/physrevb.88.184303
fatcat:iaagdthlgzf3rksv3gokshsbme