Numerical Simulations of the Impacts of the Saharan Air Layer on Atlantic Tropical Cyclone Development

Donglian Sun, W. K. M. Lau, Menas Kafatos, Zafer Boybeyi, Gregory Leptoukh, Chaiwei Yang, Ruixin Yang
2009 Journal of Climate  
In this study, the role of the Saharan air layer (SAL) is investigated in the development and intensification of tropical cyclones (TCs) via modifying environmental stability and moisture, using multisensor satellite data, long-term TC track and intensity records, dust data, and numerical simulations with a state-of-the-art Weather Research and Forecasting model (WRF). The long-term relationship between dust and Atlantic TC activity shows that dust aerosols are negatively associated with
more » ... ociated with hurricane activity in the Atlantic basin, especially with the major hurricanes in the western Atlantic region. Numerical simulations with the WRF for specific cases during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) experiment show that, when vertical temperature and humidity profiles from the Atmospheric Infrared Sounder (AIRS) were assimilated into the model, detailed features of the warm and dry SAL, including the entrainment of dry air wrapping around the developing vortex, are well simulated. Active tropical disturbances are found along the southern edge of the SAL. The simulations show an example where the dry and warm air of the SAL intruded into the core of a developing cyclone, suppressing convection and causing a spin down of the vortical circulation. The cyclone eventually weakened. To separate the contributions from the warm temperature and dry air associated with the SAL, two additional simulations were performed, one assimilating only AIRS temperature information (AIRST) and one assimilating only AIRS humidity information (AIRSH) while keeping all other conditions the same. The AIRST experiments show almost the same simulations as the full AIRS assimilation experiments, whereas the AIRSH is close to the non-AIRS simulation. This is likely due to the thermal structure of the SAL leading to low-level temperature inversion and increased stability and vertical wind shear. These analyses suggest that dry air entrainment and the enhanced vertical wind shear may play the direct roles in leading to the TC suppression. On the other hand, the warm SAL temperature may play the indirect effects by enhancing vertical wind shear; increasing evaporative cooling; and initiating mesoscale downdrafts, which bring dry air from the upper troposphere to the lower levels.
doi:10.1175/2009jcli2738.1 fatcat:2mnmjpnofrdxplq2cxmlu2yldu