A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
Detecting expert's eye using a multiple-kernel Relevance Vector Machine
Journal of Eye Movement Research
unpublished
Decoding mental states from the pattern of neural activity or overt behavior is an intensely pursued goal. Here we applied machine learning to detect expertise from the oculomotor behavior of novice and expert billiard players during free viewing of a filmed billiard match with no specific task, and in a dynamic trajectory prediction task involving ad-hoc, occluded billiard shots. We have adopted a ground framework for feature space fusion and a Bayesian sparse classifier, namely, a Relevance
fatcat:vbzfmxf3rvdbzkuhehltdid25y