Bespoke Security for Resource Constrained Cyber-Physical Systems

Miguel Angel Arroyo
2020
Cyber-Physical Systems (CPSs) are critical to many aspects of our daily lives. Autonomous cars, life saving medical devices, drones for package delivery, and robots for manufacturing are all prime examples of CPSs. The dual cyber/physical operating nature and highly integrated feedback control loops of CPSs means that they inherit security problems from traditional computing systems (e.g., software vulnerabilities, hardware side-channels) and physical systems (e.g., theft, tampering), while
more » ... tionally introducing challenges of their own. The challenges to achieving security for CPSs stem not only from the interaction of the cyber and physical domains, but from the additional pressures of resource constraints imposed due to cost, limited energy budgets, and real-time nature of workloads. Due to the tight resource constraints of CPSs, there is often little headroom to devote for security. Thus, there is a need for low overhead deployable solutions to harden resource constrained CPSs. This dissertation shows that security can be effectively integrated into resource constrained cyber-physical system devices by leveraging fundamental physical properties, & tailoring and extending age-old abstractions in computing. To provide context on the state of security for CPSs, this document begins with the development of a unifying framework that can be used to identify threats and opportunities for enforcing security policies while providing a systematic survey of the field. This dissertation characterizes the properties of CPSs and typical components (e.g., sensors, actuators, computing devices) in addition to the software commonly used. We discuss available security primitives and their limitations for both hardware and software. In particular, we focus on software security threats targeting memory safety. The rest of the thesis focuses on the design and implementation of novel, deployable approaches to combat memory safety on resource constrained devices used by CPSs (e.g., 32-bit processors and microcontrollers). We [...]
doi:10.7916/d8-cgaj-mz52 fatcat:oagan66zandbtn65x2gsacmmtu