Oracles for Testing Software Timeliness with Uncertainty

Chunhui Wang, Fabrizio Pastore, Lionel Briand
2018 ACM Transactions on Software Engineering and Methodology  
Luxembourg Uncertainty in timing properties (e.g., detection time of external events) is a common occurrence in embedded software systems since these systems interact with complex physical environments. Such time uncertainty leads to non-determinism. For example, time-triggered operations may either generate different valid outputs across different executions, or experience failures (e.g., results not being generated in the expected time window) that occur only occasionally over many
more » ... For these reasons, time uncertainty makes the generation of effective test oracles for timing requirements a challenging task. To address the above challenge, we propose STUIOS (Stochastic Testing with Unique Input Output Sequences), an approach for the automated generation of stochastic oracles that verify the capability of a software system to fulfill timing constraints in the presence of time uncertainty. Such stochastic oracles entail the statistical analysis of repeated test case executions based on test output probabilities predicted by means of statistical model checking. Results from two industrial case studies in the automotive domain demonstrate that this approach improves the fault detection effectiveness of tests suites derived from timed automata, compared to traditional approaches.
doi:10.1145/3280987 fatcat:jxnaeihilbeezaahq7jtl3uete