Impact of diatomaceous biofilms on the frictional drag of fouling-release coatings

M. P. Schultz, J. M. Walker, C. N. Steppe, K. A. Flack
2015 Biofouling (Print)  
Skin-friction results are presented for fouling-release (FR) hull coatings in the unexposed, clean condition and after dynamic exposure to diatomaceous biofilms for 3 and 6 months. The experiments were conducted in a fully developed turbulent channel flow facility spanning a wide Reynolds number range. The results show that the clean FR coatings tested were hydraulically smooth over much of the Reynolds number range. Biofilms, however, resulted in an increase in skin-friction of up to 70%. The
more » ... oughness functions for the biofilm-covered surfaces did not display universal behavior, but instead varied with the percentage coverage by the biofilm. The effect of the biofilm was observed to scale with its mean thickness and the square root of the percentage coverage. A new effective roughness length scale (k eff ) for biofilms based on these parameters is proposed. Boundary layer similarity-law scaling is used to predict the impact of these biofilms on the required shaft power for a mid-sized naval surface combatant at cruising speed. The increase in power is estimated to be between 1.5% and 10.1% depending on the biofilm thickness and percentage coverage.
doi:10.1080/08927014.2015.1108407 pmid:26652667 fatcat:gyn7furlg5dppbuc3oi5bvi66y