The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology

Lin Shui, Haoyu Ren, Xi Yang, Jian Li, Ziwei Chen, Cheng Yi, Hong Zhu, Pixian Shui
<span title="2021-01-26">2021</span> <i title="Frontiers Media SA"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/mefn5t5kjndavkrqau5bzfpaoe" style="color: black;">Frontiers in Oncology</a> </i> &nbsp;
With the rapid development of new technologies, including artificial intelligence and genome sequencing, radiogenomics has emerged as a state-of-the-art science in the field of individualized medicine. Radiogenomics combines a large volume of quantitative data extracted from medical images with individual genomic phenotypes and constructs a prediction model through deep learning to stratify patients, guide therapeutic strategies, and evaluate clinical outcomes. Recent studies of various types
more &raquo; ... tumors demonstrate the predictive value of radiogenomics. And some of the issues in the radiogenomic analysis and the solutions from prior works are presented. Although the workflow criteria and international agreed guidelines for statistical methods need to be confirmed, radiogenomics represents a repeatable and cost-effective approach for the detection of continuous changes and is a promising surrogate for invasive interventions. Therefore, radiogenomics could facilitate computer-aided diagnosis, treatment, and prediction of the prognosis in patients with tumors in the routine clinical setting. Here, we summarize the integrated process of radiogenomics and introduce the crucial strategies and statistical algorithms involved in current studies.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3389/fonc.2020.570465">doi:10.3389/fonc.2020.570465</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/33575207">pmid:33575207</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC7870863/">pmcid:PMC7870863</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/skgv7ttfeffojft2o7fl63lgzy">fatcat:skgv7ttfeffojft2o7fl63lgzy</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210224165055/https://fjfsdata01prod.blob.core.windows.net/articles/files/570465/pubmed-zip/.versions/1/.package-entries/fonc-10-570465.pdf?sv=2018-03-28&amp;sr=b&amp;sig=yciuAcuxGP2ilAqwTbwObM85xoW17rACAJj%2Bs6q9Pmk%3D&amp;se=2021-02-24T16%3A51%3A24Z&amp;sp=r&amp;rscd=attachment%3B%20filename%2A%3DUTF-8%27%27fonc-10-570465.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/f2/b5/f2b5d9a167617b1d48ffd0028457f838bce6e72b.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3389/fonc.2020.570465"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> frontiersin.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870863" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>