Evaluation of Earth Systems Models and Atmospheric Inversions using Total Column CO2 Observations from GOSAT and OCO-2 [post]

Prabir K Patra, Tomohiro Hajima, Ryu Saito, Naveen Chandra, Yukio Yoshida, Kazuhito Ichii, Michio Kawamiya, Masayuki Kondo, Akihiko Ito, David Crisp
2020 unpublished
The measurements of one of the major greenhouse gases, carbon dioxide (CO 2 ), are being made using dedicated satellite remote sensing since the launch of the greenhouse gases observing satellite (GOSAT) by JAXA in 2009 and NASA's Orbiting Carbon Observatory-2 (OCO-2). In the past 10 years, estimation of CO 2 fluxes from land and ocean using the earth system models (ESMs) and inverse modelling of in situ atmospheric CO 2 data have also made significant progress. In this article, we attempt, for
more » ... the first time, to evaluate the CO 2 fluxes simulated by an earth system model (MIROC-ES2L) using GOSAT observations and the fluxes estimated by an inverse model (MIROC4-Inv) for the period 2009-2014. Further, we use the OCO-2 measurements for testing the consistency of inversion results for the period 2014-2018, along with the GOSAT data. Both MIROC-ES2L and MIROC4-Inv fluxes are used in the MIROC4-atmospheric chemistry transport model (referred to as ACTM_ES2LF and ACTM_InvF, respectively) for calculating CO 2 concentrations that are sampled at the time and location of the satellite measurements. Our results suggest the inverse model using in situ data are more consistent with the OCO-2 retrievals, compared to those of the GOSAT XCO 2 data, suggesting possible improvements in the present GOSAT retrieval system by better accounting for the degradation correction of the TANSO-FTS. The ACTM_ES2LF simulation shows a slightly weaker seasonal cycle for the meridional profiles of CO 2 fluxes, compared to that from the ACTM_InvF. This difference is revealed by greater ACTM_ES2LF vs GOSAT differences, compared to those of ACTM_InvF vs GOSAT. We also find that the simulated seasonal cycle amplitude of XCO 2 by ACTM_ES2LF are slightly weaker compared to those observed by GOSAT or ACTM_InvF. Using remote sensing based global products of leaf area index (LAI) and gross primary productivity (GPP) over land, we show a weaker sensitivity of MIROC-ES2L biospheric activities to the weather and climate in the tropical regions. Our results clearly suggest the usefulness of XCO 2 measurements by satellite remote sensing for evaluation of large-scale ESMs, which so far remained untested by the sparse in situ data.
doi:10.21203/rs.3.rs-53348/v1 fatcat:n63ov356lrfozpzhf5r2dvjgxu