Meanders and their applications in lower bounds arguments

Noga Alon, Wolfgang Maasst
<span title="">1988</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/p6ovb2qpkfenhmb7mcksobrcxq" style="color: black;">Journal of computer and system sciences (Print)</a> </i> &nbsp;
The notion of a meander is introduced and studied. Roughly speaking, a meander is a sequence of integers (drawn from the set N= {I, 2, . . . . n}) that wanders back and forth between various subsets of N a lot. Using Ramsey theoretic proof techniques we obtain sharp lower bounds on the minimum length of meanders that achieve various levels of wandering. We then apply these bounds to improve existing lower bounds on the length of constant width branching programs for various symmetric functions.
more &raquo; ... In particular, an Q (n log n) lower bound on the length of any such program for the majority function of n bits is proved. We further obtain optimal time-space' trade-offs for certain input oblivious branching programs and establish sharp lower bounds on the size of weak superconcentrators of depth 2. 0 1988
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0022-0000(88)90002-5">doi:10.1016/0022-0000(88)90002-5</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/c5gyqtmzurcctnugwnrql2n5ja">fatcat:c5gyqtmzurcctnugwnrql2n5ja</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20140817215559/http://wwwmath.tau.ac.il/~nogaa/PDFS/Publications2/Meanders%20and%20their%20applications%20in%20lower%20bounds%20arguments.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/55/4e/554e17e653b1f3667b292a29ee3ad568a039330d.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0022-0000(88)90002-5"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>