The Suitability of Remote Sensing Images at Different Resolutions for Mapping of Gullies in the Black Soil Region, Northeast China

Biwei Wang, Zengxiang Zhang, Xiao Wang, Xiaoli Zhao, Ling Yi, Shunguang Hu
2021 Remote Sensing  
Remote sensing images with different spatial resolutions have different performance capabilities for gully extraction, so it is very important to study the suitability of different spatial resolutions for this purpose. In this study, part of the black soil area in Northeast China with serious gully erosion was taken as the study area, and Google Earth images with seven spatial resolutions ranging from 0.51 to 32.64 m, commonly used in gully erosion research, were selected as data sources.
more » ... ed with auxiliary data, gullies were extracted by visual interpretation. The interpretation results of images of different spatial resolutions were analyzed qualitatively and quantitatively, and the interpretation suitability of images of different spatial resolutions for different types of gullies under different classification systems was emphatically explored. The results indicate that the image with a spatial resolution of 1.02 m has the best performance when not considering the types of gullies. However, the image with a spatial resolution of 2.04 m is the most cost-effective and, therefore, the most suitable for general research. When it is necessary to distinguish the type of gully, the image with a spatial resolution of 0.51 m can be adapted for all situations. However, research on ephemeral gullies is of little practical significance. Therefore, the image with a spatial resolution of 1.02 m is the most universally useful image, being cheaper and easier to obtain. When the spatial resolution is 2.04 m or lower, it is necessary to select the spatial resolution according to the gully type required for practical application. When the spatial resolution is 8.16 or lower, the interpretation of gullies becomes very difficult or even impossible.
doi:10.3390/rs13122367 fatcat:uizaxauynrfi7i56x5ckkek6ui