Novel Analysis of the Multiwavelength Structure of the Relativistic Jet in Quasar 3C 273

Volodymyr Marchenko, D. E. Harris, Michał Ostrowski, Łukasz Stawarz, Artem Bohdan, Marek Jamrozy, Bohdan Hnatyk
2017 Astrophysical Journal  
We present a detailed analysis of the best-quality multi-wavelength data gathered for the large-scale jet in the core-dominated quasar 3C 273. We analyze all the archival observations of the target with the Chandra X-ray Observatory, the far-ultraviolet observations with the Hubble Space Telescope, and the 8.4 GHz map obtained with the Very Large Array. In our study we focus on investigating the morphology of the outflow at different frequencies, and therefore we apply various techniques for
more » ... image deconvolution, paying particular attention to a precise modeling of the Chandra and Hubble point spread functions. We find that the prominent brightness enhancements in the X-ray and far-ultraviolet jet of 3C 273 - the "knots" - are not point-like, and can be resolved transversely as extended features with sizes of about ≃ 0.5 kpc. Also, the radio outflow is wider than the deconvolved X-ray/ultraviolet jet. We have also found circumstantial evidence that the intensity peaks of the X-ray knots are located systematically upstream of the corresponding radio intensity peaks, with the projected spatial offsets along the jet ranging from ≲ 0.2 kpc up to ≃ 1 kpc. We discuss our findings in the wider context of multi-component models for the emission and structure of large-scale quasar jets, and speculate on the physical processes enabling an efficient acceleration of the emitting ultra-relativistic electrons along the entire jet length that exceeds 100 kpc.
doi:10.3847/1538-4357/aa755d fatcat:au2t2srl7jckbecbbc6nqehzia