Exploration-exploitation tradeoff in interactive relevance feedback

Maryam Karimzadehgan, ChengXiang Zhai
2010 Proceedings of the 19th ACM international conference on Information and knowledge management - CIKM '10  
We study an interesting optimization problem in interactive feedback that aims at optimizing the tradeoff between presenting search results with the highest immediate utility to a user (but not necessarily most useful for collecting feedback information) and presenting search results with the best potential for collecting useful feedback information (but not necessarily the most useful documents from a user's perspective). Optimizing such an exploration-exploitation tradeoff is key to the
more » ... zation of the overall utility of relevance feedback to a user in the entire session of relevance feedback. We frame this tradeoff as a problem of optimizing the diversification of search results. We propose a machine learning approach to adaptively optimizing the diversification of search results for each query so as to optimize the overall utility in an entire session. Experiment results show that the proposed learning approach can effectively optimize the exploration-exploitation tradeoff and outperforms the traditional relevance feedback approach which only does exploitation without exploration.
doi:10.1145/1871437.1871631 dblp:conf/cikm/KarimzadehganZ10 fatcat:et67cgnmfzfw3ccszpcepiy64u