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Abstract
Mitochondria play central roles in energy homeostasis, metabolism,
signaling, and apoptosis. Accordingly, the abundance, morphology, and
functional properties of mitochondria are finely tuned to meet cell-
specific energetic, metabolic, and signaling demands. This tuning is
largely achieved at the level of transcriptional regulation. A highly in-
terconnected network of transcription factors regulates a broad set of
nuclear genes encoding mitochondrial proteins, including those that
control replication and transcription of the mitochondrial genome. The
same transcriptional network senses cues relaying cellular energy status,
nutrient availability, and the physiological state of the organism and en-
ables short- and long-term adaptive responses, resulting in adjustments
to mitochondrial function and mitochondrial biogenesis. Mitochondrial
dysfunction is associated with many human diseases. Characterization of
the transcriptional mechanisms that regulate mitochondrial biogenesis
and function can offer insights into possible therapeutic interventions
aimed at modulating mitochondrial function.
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Oxidative
phosphorylation
(OxPhos): the
process of ATP
generation by five
inner mitochondrial
membrane complexes
that oxidize NADH
and FADH2—
transferring electrons
to molecular oxygen
and pumping protons
across the
membrane—
and use the ensuing
electrochemical
gradient to
phosphorylate ADP

Mitochondrial
transcription factor
A (TFAM) and
transcription factor
B1/B2,
mitochondrial
(TFB1M/TFB2M):
mitochondrial
DNA–binding
proteins that are
encoded by the nuclear
genome and that
control transcription
and replication of the
mitochondrial genome

Nuclear respiratory
factor-1 (NRF-1) and
GA-binding protein
(GABP or NRF-2):
nuclear DNA–binding
factors that regulate
transcription of
OxPhos and
mitochondrial
transcription/import
genes

Peroxisome
proliferator–
activated receptors
(PPARα, PPARδ,
and PPARγ): nuclear
receptors that regulate
genes involved in lipid
transport and
metabolism in
response to fatty
acid–derived ligands

INTRODUCTION

Mitochondria are essential eukaryotic or-
ganelles that process glycolysis and lipolysis
products to generate, via oxidative phospho-
rylation (OxPhos), the cellular energy carrier
ATP. In addition, mitochondria contain
enzymes critical for multiple biosynthetic
processes—including lipid, cholesterol, nu-
cleotide, heme, and steroid synthesis—and play
important roles in amino acid metabolism and
ion homeostasis. Mitochondria also signal, via
reactive oxygen species (ROS) and Ca2+, and
are critical regulators of cell death pathways.
Given their central bioenergetic, metabolic,
and signaling roles, tight regulation of mito-
chondrial mass and mitochondrial function is
vital. Notably, mitochondrial mass, function,
and morphology differ significantly in different
cell types and are dynamically regulated in
response to a wide range of physiological cues
(e.g., physical activity, nutrient availability,
temperature, circadian cues, exposure to
infectious agents).

Mitochondrial biogenesis is a complex pro-
cess that requires the synthesis, import, and
incorporation of proteins and lipids to the exist-
ing mitochondrial reticulum, as well as replica-
tion of the mitochondrial DNA (mtDNA). The
mitochondrial proteome comprises ∼1100 to
1500 proteins (1). The vast majority of them are
encoded by nuclear genes, and we refer to them
in this review as simply mitochondrial genes.
The mitochondrial genome encodes only 13
proteins, a small but essential group because
all 13 are OxPhos components. Comparison
of mitochondria across different tissues shows
significant concordance between protein lev-
els and mRNA levels (2), suggesting that mi-
tochondrial mass in a cell is controlled largely,
although not solely, at the level of transcrip-
tion. Thus, mitochondrial biogenesis requires
the coordinated transcription of the large num-
ber of mitochondrial genes in the nucleus, as
well as of the fewer but essential genes in mito-
chondria. The coordination of the two genomes
is achieved by nucleus-encoded mitochondrial
proteins, such as TFAM, TFB1M, and TFB2M,

that control the transcription and replication of
mtDNA and are induced in response to signals
promoting mitochondrial biogenesis (3–5).

Mitochondrial biogenesis is a long-term
adaptive response and is not always required
to meet transiently increased energetic needs.
Transient changes in energy demands can be
met by increases in the expression of a sub-
set of mitochondrial genes or of critical regula-
tors and by the enhancement of mitochondrial
function. Similarly, expression of subsets of mi-
tochondrial genes is important for the special-
ized functions of mitochondria in different tis-
sues (e.g., steroid synthesis in adrenal gland or
cholesterol in liver) and different physiological
states [e.g., expression of uncoupling proteins
(UCPs) upon exposure to cold or after a meal,
leading to increased thermogenesis]. Strikingly,
∼50% of the mitochondrial genes are expressed
in a tissue-specific manner (2), suggesting that
a large part of the mitochondrial proteome is
dedicated to specialized functions.

The regulation of mitochondrial biogen-
esis and function presents a transcriptional
challenge. Regulatory mechanisms must pro-
vide for the induction of the broad mitochon-
drial gene set and at the same time enable
tissue- and signal-specific inductions of gene
subsets. Pioneering studies by Scarpulla and
colleagues started addressing this challenge by
identifying transcription factors that recognize
conserved motifs at the promoters of mito-
chondrial OxPhos genes, leading to the iden-
tification of nuclear respiratory factor (NRF)-1
and GA-binding protein (GABP) (also known
as NRF-2) (5). In parallel, efforts in the nu-
clear receptor field to elucidate the function
of orphan receptors led to the realization that
the peroxisome proliferator–activated recep-
tors (PPARs) control mitochondrial gene sub-
sets with roles in fatty acid oxidation (FAO)
and uncoupling (5, 6). A major breakthrough
in our understanding of how the different
gene subsets are coordinately regulated was the
identification of PPARγ coactivator-1α (PGC-
1α) as a transcriptional coactivator of NRF-1,
GABP, and PPARs and the appreciation of the
ability of PGC-1α to integrate physiological
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signals and to enhance mitochondrial biogene-
sis and oxidative function (7, 8). PGC-1α also
led to the identification of related coactivators
[PGC-1β and the PGC-1-related coactivator
(PRC)] and other transcription factors [the
nuclear receptors ERRs (estrogen-related re-
ceptors)] that function in the same or simi-
lar pathways (9, 10). This review discusses the
transcriptional regulators that control mito-
chondrial biogenesis and function and the
mechanisms by which these regulators sense en-
ergetic and metabolic demands associated with
different physiological states.

TRANSCRIPTIONAL
REGULATORS OF
MITOCHONDRIAL BIOGENESIS
AND FUNCTION

Overview

Expression of the large number of genes re-
quired for mitochondrial biogenesis and func-
tion is under the control of a network of nu-
clear DNA–binding transcription factors and
coregulators (Figure 1). This network allows
for broad and robust activation of the mito-
chondrial biogenesis program in response to
varied physiological cues, as well as specialized
tissue- or signal-specific modifications of mi-
tochondrial gene expression and function. In
this section, we first discuss the DNA-binding
factors, which target overlapping but distinct
sets of mitochondrial genes. Notably, each of
these factors targets not only mitochondrial
genes but also genes with nonmitochondrial
functions, which poses the interesting question
of how the factors sort out mitochondrial and
non-mitochondrial roles. For each factor, we
review mechanisms and signals that regulate
their activity and expression so as to provide
the context in which they contribute to mito-
chondrial gene expression. Next, we discuss the
transcriptional coregulators that enhance or re-
press the activity of the DNA-binding factors.
The ability of the coregulators to interact with
multiple DNA-binding factors enables the inte-
gration of signals into the broad mitochondrial

Fatty acid oxidation
(FAO) or
β-oxidation: the
mitochondrial
degradation of fatty
acids by a cycle of
oxidation, hydration,
oxidation, and thiolysis
reactions, generating
acetyl CoA and
reducing equivalents
(NADH and FADH2)

PPARγ coactivators
[PGC-1α, PGC-1β,
and PGC-1-related
coactivator (PRC)]:
coactivators of ERRs,
PPARs, NRF-1,
GABP, and other
transcription factors

Estrogen-related
receptors (ERRα,
ERRβ, and ERRγ):
orphan nuclear
receptors that regulate
a broad set of
mitochondrial genes

gene expression program, as best illustrated for
PGC-1α.

DNA-Binding Transcription Factors

Nuclear respiratory factor-1, regula-
tor of OxPhos and mtDNA replication/
transcription factors. NRF-1 was identified
as a transcription factor binding to a conserved
regulatory site of the cytochrome c promoter
(11). NRF-1 binding sites are evolutionarily
conserved in the proximal promoters of
many mitochondrial genes (5). Accordingly,
NRF-1 activates the expression of OxPhos
components, mitochondrial transporters,
and mitochondrial ribosomal proteins. In
addition, NRF-1 regulates expression of Tfam,
Tfb1m, and Tfb2m and thereby coordinates the
increased expression of nuclear mitochondrial
genes with increases in mtDNA replication
and expression (5). NRF-1 may also affect ex-
pression of mitochondrial and metabolic genes
via indirect mechanisms, e.g., by inducing
expression of the transcription factor MEF2A,
which activates Cox genes, Glut4, and PGC-1α

(12).
Silencing of NRF-1 leads to a significant

suppression of mitochondrial target genes, sug-
gesting that endogenous NRF-1 is constitu-
tively active and important for the basal expres-
sion of mitochondrial targets (13–15). Never-
theless, NRF-1 activity can also be regulated
by phosphorylation and/or interactions with
PGC-1α, PGC-1β, PRC, and cyclin D1. Phos-
phorylation of NRF-1 occurs upon exposure
of quiescent fibroblasts to serum (which cor-
relates with induction of Cycs) and exposure of
hepatoma cells to oxidants (which leads to an
NRF-1-dependent induction of Tfam). De-
pending on the context, phosphorylation af-
fects NRF-1 translocation to the nucleus,
DNA binding, and/or transcriptional activity
(5). Physical interactions of the PGC-1 fam-
ily members with NRF-1 enhance NRF-1-
dependent gene expression (8, 16, 17). Finally,
cyclin D1, which suppresses mitochondrial bio-
genesis, associates with NRF-1 and represses
NRF-1 activity (14, 18).
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Coregulators

DNA-binding
factors

Mitochondrial
genes

PGC-1β

ERRγ GABP

PRC

PGC-1α

RIP140

c-MYC

ERRα

ERRβ NRF-1

Oxidative phosphorylation
mtDNA replication/transcription

Mitochondrial import

TCA
Mitochondrial dynamics

Fatty acid
oxidation

CREB

P
PA

R
α

P
PA

R
γ

P
PA

R
δ

Uncoupling
proteins

YY1

Figure 1
The transcriptional network that controls mitochondrial gene expression. DNA-binding factors regulate overlapping but distinct
classes of mitochondrial genes (solid black arrows). The relative levels and activities of these factors in different tissues or in response to
signals can thus endow mitochondria with specialized mitochondrial functions. Coregulators (PGC-1α, PGC-1β, PRC, and RIP140)
interact with multiple DNA-binding factors to coordinate the regulation of multiple classes of mitochondrial genes (blue arrows indicate
coactivation and red bars corepression). The relative levels and activities of the coregulators are major determinants of mitochondrial
biogenesis. Several feed-forward and feedback loops (dashed arrows) control activity of the network. DNA-binding factors regulate
expression of themselves [e.g., ERRα induces PPARα, NRF-1, GABPα, and its own promoter (30, 75)], as well as of coregulators (e.g.,
PPARγ, PPARδ, ERRγ, and CREB induce PGC-1α, whereas ERRα induces RIP140). These regulatory loops are likely tissue- and
signal-specific [e.g., PPARα expression is reduced in BAT but not in WAT of ERRα null mice (10)]. Abbreviations used: BAT, brown
adipose tissue; CREB, cAMP response element–binding protein; ERR, estrogen-related receptor; GABPα, GA-binding protein α;
NRF-1, nuclear respiratory factor; PPAR, peroxisome proliferator–activated receptor; PGC-1, PPARγ coactivator-1; PRC,
PGC-1-related coactivator; RIP140, receptor-interacting protein 140; WAT, white adipose tissue.

AMP-activated
protein kinase
(AMPK): a kinase
that is activated in
response to increases
in cellular AMP:ATP
ratio and that signals
energetic stress by
phosphorylating target
proteins (e.g.,
acetyl-CoA
carboxylase, PGC-1α)

Many signals known to induce mitochon-
drial biogenesis or respiratory function also in-
duce NRF-1 expression, suggesting that NRF-
1 is part of the energy-sensing pathway in
mammalian cells. For example, NRF-1 expres-
sion is induced by electrical stimulation in car-
diac myocytes, respiratory uncoupling in HeLa
cells, PGC-1α overexpression in myotubes,
serum activation in 3T3 fibroblasts, Ca2+ flux
in skeletal myotubes, and etoposide stimula-
tion of fibroblasts (5, 8, 19, 20). The induced
NRF-1 levels are not just coincidental;
dominant-negative NRF-1 inhibits PGC-1α-
dependent mitochondrial biogenesis in my-

otubes (8). In vivo, NRF-1 expression in mus-
cle is induced by exercise in rat and zebra fish
(21–23). NRF-1 induction by exercise has not
been seen in human studies, which may re-
flect species differences, the types of muscle
tested, or the type and duration of physical ac-
tivity (24, 25). Finally, NRF-1 expression was
induced in the muscle of rats fed with a creatine
analog that activates AMP-activated protein ki-
nase (AMPK) and induces adaptations similar
to those induced by exercise training (26). All
together, two major signals have emerged as
regulators of NRF-1 expression: increases in
Ca2+ and activation of AMPK. Whether these
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signals regulate NRF-1 activity directly, and not
simply NRF-1 expression, is not yet known.

In support of a role for NRF-1 as a critical
transcription factor for expression of mitochon-
drial genes, NRF-1 null animals show early
embryonic lethality, and NRF-1−/− blastocysts
have reduced mtDNA content and mitochon-
drial membrane potential (27). Although NRF-
1 seems necessary for mitochondrial biogenesis,
its expression alone is not sufficient to drive this
program. Transgenic overexpression of NRF-1
in muscle increases expression of select NRF-1
targets but does not enhance respiratory capac-
ity, suggesting that activation of parallel tran-
scription pathways must complement NRF-1
during exercise-induced muscle mitochondrial
biogenesis (28).

Although identified as a transcriptional reg-
ulator of mitochondrial genes, NRF-1 also reg-
ulates many genes with nonmitochondrial func-
tions and in particular genes with roles in
cell-cycle control and proliferation (13). The
breadth of NRF-1 function is the likely ex-
planation for why NRF-1 null mice die at an
earlier stage [embryonic day (E)3.5–6.5] than
do mice lacking the mtDNA replication fac-
tor TFAM (E8.5–10.5). In addition, NRF-1
may have developmental functions, as shown
for the Drosophila and zebra fish NRF-1 or-
thologs, which play roles in nervous system and
muscle development (5).

GA-binding protein. Scarpulla and col-
leagues (29) identified GABP (also referred to
as NRF-2) as an activator of the CoxIV pro-
moter. It is a heterotetramer of two distinct and
unrelated subunits: GABPα, which contains an
ETS domain and serves as the DNA-binding
subunit, and GABPβ (β1 or β2, encoded by
two homologous genes), which contains a
transcriptional activation domain. Functional
GABP binding sites have been identified
in the proximal promoters of many mito-
chondrial genes, including ones for OxPhos
components, mitochondrial import, and Tfam,
Tfb1m, and Tfb2m (which encode the mtDNA
transcription factors) (5). Moreover, motifs
with the consensus site for GABP, although

common to many promoters, are enriched in
a set of coregulated OxPhos genes that show
reduced expression in diabetes (30). Consistent
with a role of GABP for OxPhos and other
mitochondrial gene expression, knockdown
of GABPα expression in cells leads to the
reduced expression of all 10 nuclear-encoded
Cox genes (as well as Tfam, Tfb1m, and the
import machinery component Tomm20) and a
20% decrease in cellular COX activity (31).

The GABP protein integrates signaling in-
formation relevant to mitochondrial biogene-
sis and function. GABPα and GABPβ become
phosphorylated in muscle cells treated with
neuregulin, a factor that promotes expression
of OxPhos genes (32, 33). In addition, phos-
phorylated GABP together with host-cell factor
1 (HCF1) recruit the transcriptional coactiva-
tors PGC-1α and PRC, which further enhance
GABP-dependent transcription (33, 34). The
third member of the PGC-1 family, PGC-1β,
also interacts with HCF1 (17), suggesting that
it may also coactivate GABP.

GABP expression is broad (35) and regu-
lated by developmental and physiological sig-
nals that impact mitochondria. GABPα levels
increase at times of mitochondrial biogenesis
during brown adipose tissue (BAT) develop-
ment in mice and during brown adipocyte dif-
ferentiation in vitro (36). Likewise, GABPα

is induced in myotubes by Ca2+ (19) and in
skeletal muscle by exercise (22, 25). In liver,
GABPα is induced by treatment with thyroid
hormone, which enhances respiratory rate (37).
Conversely, GABPα expression is reduced un-
der pathological conditions in which mitochon-
drial gene expression is dysregulated, such as a
rat model of congestive heart failure (38). The
GABPα promoter contains regulatory binding
sites for the nuclear receptor ERRα and for
GABP itself, which enable transactivation of
the promoter by PGC-1α (30). Thus, signals
that activate PGC-1α, ERRα, or GABP are also
likely to enhance GABPα expression.

Although often discussed as a transcrip-
tion factor for mitochondrial genes, GABP
has much wider functions, regulating cell-
cycle, ribosomal, myeloid, and neuromuscular

www.annualreviews.org • Regulation of Mitochondrial Biogenesis 181

A
nn

u.
 R

ev
. P

hy
si

ol
. 2

00
9.

71
:1

77
-2

03
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

O
R

N
E

L
L

 U
N

IV
E

R
SI

T
Y

 o
n 

09
/2

7/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV369-PH71-09 ARI 5 January 2009 14:42

junction genes (39). Consistent with a wide
range of targets, Gabpa disruption in mice re-
sults in preimplantation lethality (35), whereas
immune-specific loss of GABPα reveals a crit-
ical role in B cell development and function
(40). Mice lacking GABPα specifically in mus-
cle show no overt muscle defects, with normal
distribution and appearance of mitochondria,
suggesting that GABP is not essential for mus-
cle mitochondrial biogenesis (41, 42).

Peroxisome proliferator–activated recep-
tors (PPARα, PPARγ, and PPARδ): regu-
lators of lipid metabolism. PPARs are nu-
clear receptors that sense lipids and control
lipid homeostasis. PPARα and PPARδ are pri-
marily regulators of lipid oxidation, whereas
PPARγ promotes lipid synthesis and storage.
The three receptors have distinct tissue dis-
tributions and physiological functions. PPARα

levels are highest in the liver, although also ex-
pressed strongly in the heart and BAT. PPARα

promotes FAO and liver ketogenesis and is im-
portant for the response to fasting (6). PPARδ is
expressed widely and is particularly abundant in
skeletal muscle and heart. PPARδ, which has a
broader function in oxidative metabolism than
does PPARα, promotes glucose as well as lipid
oxidation, enhances metabolic rate, and pro-
motes the formation of oxidative fiber types
in skeletal muscle (43, 44). PPARγ is most
abundant in adipose tissue, where it promotes
adipocyte differentiation and lipogenesis, and
is present at lower levels in macrophages, mus-
cle, and liver (6). In addition to endogenous
ligands, PPARs are activated by synthetic lig-
ands and drugs: PPARα ligands include the hy-
polipidemic fibrates, whereas PPARγ is the tar-
get of thiazolidinedione (TZD) class of insulin
sensitizers (6).

PPARs act as heterodimers with retinoid X
receptors (RXRs) to regulate a broad set of
genes involved in lipid uptake, storage, and
metabolism, including genes encoding mito-
chondrial FAO enzymes (6). Lipid uptake and
metabolism provide substrates for mitochon-
drial oxidation and are thereby intimately re-
lated to mitochondrial function. PPARs also

regulate the expression of genes encoding
UCPs, i.e., transporters that reside in the in-
ner mitochondrial membrane and play roles in
thermogenesis, ROS production, and oxidative
capacity. Thus, via their ability to regulate genes
of lipid metabolism and mitochondrial UCPs,
PPARs are poised to confer cell-type special-
ization to mitochondria and in particular to en-
able the use of lipids as high-energy sources
for ATP production. Because PPAR ligands
are endogenously produced (likely by lipolysis)
at specific physiological states and in response
to environmental signals (e.g., fasting, expo-
sure to cold, exercise), PPARs also enable mi-
tochondrial adaptation to changing energetic
and metabolic needs. Importantly, these regula-
tory actions of PPARs are integrated with those
of other regulators of mitochondrial biogene-
sis and function, such as NRF-1 and GABP, via
PGC-1α and PGC-1β, which interact physi-
cally with PPARs and enhance their ability to
induce target genes (7, 45, 46). Interestingly, the
coactivation function of PGC-1α with PPARγ

is gene-specific, suggesting that PGC-1α en-
hances a selective subset of PPAR targets and
may thereby drive PPAR function to specific
pathways (7).

In addition to their effects on lipid trans-
port and metabolism, PPARγ and PPARδ

promote mitochondrial biogenesis in a cell-
type-specific manner. When one thinks of mi-
tochondrial biogenesis, the focus is often on
tissues rich in mitochondria, even though mito-
chondria are critical organelles for all cell types.
White adipose tissue (WAT) is not particu-
larly rich in mitochondria. Nevertheless, WAT
mitochondrial biogenesis and activity respond
dynamically to physiological signals. They be-
come suppressed in animal models of diabetes
and diet-induced obesity and are enhanced by
treatment with the insulin-sensitizing PPARγ

ligands (47–49). Treatment with the PPARγ

ligand pioglitazone also increases mitochon-
drial biogenesis in subcutaneous adipose tissue
in humans (50). The ability of PPARγ ago-
nists to enhance mitochondrial biogenesis in
adipocytes in vitro suggests that the effects are
due to a cell-autonomous function of PPARγ
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in WAT and are not just a response to systemic
changes brought about by PPARγ ligands in
other tissues (49, 51). Notably, in all these stud-
ies PPARγ agonists induced the expression of
endogenous PGC-1α, suggesting that PPARγ

affects mitochondrial biogenesis indirectly by
enhancing the transcription of PGC-1α. In
support of this mechanism, Hondares et al.
(52) have identified a functional PPAR response
element (PPRE) in the PGC-1α promoter
that determines PPARγ-dependent transcrip-
tion in adipocytes (Figure 2). Because PGC-1α

coactivates PPARγ, this element also enables
PGC-1α to enhance its own expression in an
autoregulatory fashion. Notably, these studies
suggest that changes in mitochondrial biogen-
esis in WAT may underlie both diabetes-related
pathogenesis and TZD-induced improvements
in glycemic control. The PPARγ/PGC-1α-
stimulated WAT mitochondrial activity may
ameliorate symptoms of metabolic disease by
increasing energy expenditure, mitochondrial
capacity for lipogenesis, and/or the synthesis
and secretion of adipokines. Finally, TZDs and
PPARγ may increase not only PGC-1α but also
PGC-1β expression (49).

Activation of PPARδ affects mitochondrial
biogenesis and function in skeletal muscle.
Treatment of mice with an agonist PPARδ lig-
and enhances muscle lipid uptake, FAO, and
mitochondrial biogenesis; it also increases ex-
pression of UCPs, GLUT4, and PGC-1α (53).
Similarly, transgenic mice expressing PPARδ or
a constitutively active PPARδ-VP16 chimera
specifically in muscle show enhanced expres-
sion of oxidative metabolism and uncoupling
genes and a shift to more oxidative muscle fiber
types (46, 54). Conversely, mice lacking PPARδ

specifically in muscle show a decrease in mi-
tochondrial gene expression and in oxidative
capacity (55). Studies with PPARδ ligands in
vitro indicate that these effects are largely due
to PPARδ-regulated gene expression in mus-
cle (56, 57). Although PPARδ acts directly on
genes of lipid metabolism and UCPs, via char-
acterized PPREs, there is no evidence so far for
a direct PPARδ effect on mitochondrial biogen-
esis and OxPhos genes. Thus, it is possible that,

analogous to PPARγ in adipocytes, PPARδ im-
pacts mitochondrial biogenesis via its ability to
induce PGC-1α expression in muscle. In sup-
port of this, PPARδ ligands induce PGC-1α

in muscle in vitro and in vivo, and mice
lacking PPARδ show reduced levels of mus-
cle PGC-1α expression (52, 53, 58). The
same PPRE that mediates PPARγ-dependent
induction of PGC-1α in adipocytes medi-
ates PPARδ-dependent induction in myotubes
(52, 55, 59).

Similar pathways of PPAR-dependent en-
hancement of PGC-1α and/or PGC-1β may
take place in other tissues. PPARγ and PPARδ

promote oxidative metabolism and mitochon-
drial biogenesis during alternative activation in
macrophages (60, 61). PGC-1β, which is im-
portant for macrophage alternative activation
(62), is expressed at reduced levels in PPARδ

null macrophages (63). Finally, although no
effect of PPARα or PPARα ligands on
PGC-1 expression has yet been reported, given
the central and common pathways of regula-
tion and function of PPARα and PGC-1α in
liver, we speculate that PPARα contributes to
the fasting-induced expression of PGC-1α in
this tissue. Importantly, these observations sug-
gest that PPARs, primarily appreciated for their
effects on lipid metabolism, may have a wider
impact on mitochondrial biogenesis and func-
tion by acting as transcriptional regulators of
PGC-1 coactivators.

Estrogen-related receptors (ERRα, ERRβ,
and ERRγ): regulators of a broad mitochon-
drial program. ERRα, ERRβ, and ERRγ are
members of the nuclear receptor superfamily
and the most recent discoveries in the mito-
chondrial gene expression regulatory network.
As their name implies, ERRs show sequence
similarities to the estrogen receptor, particu-
larly in the DNA-binding and ligand-binding
domains (64). Despite this similarity, ERRs
are not activated by estrogens or estrogen-like
molecules and can attain constitutively active
ligand-binding domain conformations in the
absence of a ligand (65, 66). The transcrip-
tional activity of ERRs is instead regulated via
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Figure 2
Positive and negative signals that regulate mitochondrial biogenesis and converge at the PGC-1α promoter
and/or the PGC-1α protein. The upper part of the figure shows regulatory sites of the PGC-1α promoter,
the corresponding DNA-binding transcription factors, and signals activating (black arrows) or repressing (red
bars) these factors. The promoter is not drawn to scale; where multiple cis-regulatory elements have been
identified, only one is shown; and numbering is based on Reference 145. PGC-1α can coactivate several
transcription factors that bind the PGC-1α promoter (PPARs, MEF2, and ERRγ, indicated by arrows below
the promoter). As a result, signals that enhance or repress PGC-1α protein activity (shown at bottom and
indicated by the black arrow/green plus sign and red bar/red minus sign, respectively) can similarly affect
PGC-1α transcription. Many of the factors and signals shown here are expressed or active in a tissue-specific
manner, so this diagram does not represent PGC-1α regulation in all tissues. An alternative promoter,
upstream to the one studied so far and shown here, was described recently (178). The alternative promoter
drives the expression of a cDNA with an alternatively spliced first exon and is reported to be the one induced
by exercise and cold in skeletal muscle and BAT, respectively (178).

Receptor-interacting
protein 140 (RIP140
or NRIP1):
a corepressor of many
nuclear receptors

physical interaction with coregulators, such as
coactivators of the SRC and PGC-1 family or
corepressors like receptor-interacting protein
140 (RIP140) (10, 64). ERRα, in particular, en-
hances gene expression only when partnered
with the PGC-1 coactivators, which convert
ERRα from a latent to a potent transcriptional
activator (67–69). Conversely, ERRs in com-
plex with RIP140 are thought to repress gene
expression (70). ERRs are also subject to reg-
ulation by phosphorylation and sumoylation,
which affect DNA binding, dimerization, and
coactivator interaction (64). Although the func-

tional consequences of these modifications for
the regulation of mitochondrial gene expres-
sion are yet to be determined, one activator of
ERRα is neuregulin, which also promotes mi-
tochondrial function (32).

ERRs bind as monomers, homodimers, or
heterodimers of different ERRs to ERR re-
sponse elements (ERREs) (64). The identifi-
cation of one of the first ERREs as a regu-
latory site in the promoter of the FAO gene
Acadm suggested that ERRs could be regulators
of FAO. Recent studies have indeed established
a role for ERRα, the best characterized of the
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three ERRs, in the regulation of lipid oxida-
tion genes, as well as a wider set of mitochon-
drial genes, including components of OxPhos,
tricarboxylic acid (TCA) cycle, mitochondrial
import, mitochondrial dynamics, and oxidative
stress defenses (10, 64). The actions of ERRα

are mediated via ERREs present at the reg-
ulatory regions of many mitochondrial genes
(71–74). ERREs are significantly enriched in
OxPhos and PGC-1α-regulated gene sets and
are often found in association with NRF-1 or
GABP sites (30, 72). ERRα also acts on mi-
tochondrial gene expression through indirect
mechanisms by regulating the expression of
GAPBα and PPARα (30, 75). siRNA and phar-
macological approaches have shown that en-
dogenous ERRα is required for the ability of
exogenously expressed PGC-1α to induce mi-
tochondrial biogenesis and respiration (30, 71).
Conversely, overexpression of ERRα in car-
diac myocytes acts similarly to PGC-1α, in-
creasing lipid oxidation rates (75). Expression
of an ERRα-VP16 chimera, which no longer
requires PGC-1α or PGC-1β to be transcrip-
tionally active, can by itself induce mitochon-
drial biogenesis, suggesting that activation of
ERR target genes is central to the regulation of
mitochondrial function (71).

Consistent with a role in mitochondrial bio-
genesis and function, ERRs are expressed at
high levels in tissues with high energetic de-
mands (64). Moreover, ERRα, which is in-
duced by PGC-1α via a positive autoregulatory
loop (30, 69, 76), responds to signals central
to the regulation of mitochondrial biogenesis
or function, such as upon exposure to cold (in
BAT and muscle), fasting (in liver), and exer-
cise (in skeletal muscle) (25, 69, 77). Studies of
ERRα null mice have provided further support
and clarification on the physiological role of
ERRα for mitochondrial function. The BAT
of ERRα null mice shows a 40% decrease in
mitochondrial content and oxidative capacity.
Although mild, the energetic deficiency ren-
ders these mice unable to defend their body
temperature when challenged with even mildly
cold temperatures (13◦C), despite normal ex-
pression of the thermogenic Ucp1 (74). An en-

Tricarboxylic acid
(TCA) cycle: the
mitochondrial matrix
pathway that oxidizes
acetyl CoA (as well as
other products of
amino acid
metabolism) to
produce ATP and
reducing equivalents
(NADH and FADH2)
for OxPhos

ergetic deficiency, without alteration in mito-
chondrial content, is also seen in the heart.
The defect manifests as signs of heart failure
when animals are challenged with increased
workload (78). Finally, ERRα is necessary for
increased rates of respiration and ROS pro-
duction in macrophages stimulated with in-
terferon β (IFNβ). Consequently, ERRα null
macrophages have a decreased ability to clear
pathogens, and ERRα null mice have impaired
survival rates when infected with Listeria (73).

Changes in mitochondrial gene expression
or oxidative capacity are also seen in other tis-
sues of ERRα null mice, such as WAT, intestine,
and skeletal muscle (75, 79, 80), supporting a
wide role of ERRα in mitochondrial function.
Nevertheless, ERRα null mice are viable and
fertile, suggesting that the mitochondrial de-
fects are mild. The mild phenotype can be in-
terpreted in at least two not mutually exclusive
ways. First, ERRα may simply be part of the
mechanism conferring adaptation to tissue- and
physiology-specific cues and may not be impor-
tant for basal levels of mitochondrial gene ex-
pression. This would be consistent with the de-
fects in ERRα null mice being most apparent in
tissues with highest mitochondrial content and
in states of increased energy demand. Second,
loss of ERRα function may be compensated by
increased activity of other ERRs or other fac-
tors with similar roles. Consistent with this idea,
ERRα null mice show increased expression of
ERRγ and PGC-1α in heart; ERRγ in skele-
tal muscle; and ERRγ, PPARα, and PGC-1β

in adipose tissue (75; J.A. Villena & A. Kralli,
unpublished data). Furthermore, recent studies
show that ERRα and ERRγ target highly over-
lapping sets of mitochondrial genes in heart (72)
and that ERRγ null mice, which die perinatally,
have signs of mitochondrial dysfunction and de-
creased oxidative capacity in the heart (81). The
extent to which ERRβ may compensate for the
absence of ERRα is not yet clear.

Given the evidence that ERRα activates
the expression of many mitochondrial genes,
a striking phenotype of ERRα null mice is
decreased adiposity and a resistance to high-
fat diet–induced obesity (79). The underlying
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mechanism(s) for this phenotype is not yet clear
but may include a decrease in lipid absorption
in the intestine (80); a developmental role for
ERRα in adipocyte differentiation and func-
tion (82); defective lipogenesis, possibly due to
an energetic and/or TCA cycle deficiency (79);
and increased energy expenditure due to the in-
creased expression of compensating regulators,
such as PGC-1α, PGC-1β, and ERRγ.

As seen with other transcription factors that
regulate mitochondrial gene expression, ERRs
also have roles as regulators of nonmitochon-
drial programs. ERR-regulated targets include
genes with roles in Ca2+ homeostasis, contrac-
tile function, glucose metabolism, angiogene-
sis, lung maturation, ion channel and trans-
porter expression, and other cellular processes
(64). ERRβ in particular plays important roles
in extraembryonic cells during development
(83), in embryonic stem cell biology (84), and in
the development of the endolymph-producing
cells of the inner ear (85).

Other nuclear transcription factors: CREB,
c-Myc, and YY1. Additional transcriptional
regulators with broad biological functions con-
tribute to the control of mitochondrial gene
expression. The cAMP response element–
binding (CREB) protein regulates Cycs expres-
sion; binding sites for CREB protein are present
not only at the Cycs but also at the Cox5a, Cox8a,
Idh3g, Nnt, and Ucp1 genes (5). Increased cAMP
signaling is associated with states of changing
energetic demands (e.g., adrenergic stimulation
in BAT upon exposure to cold, and the fast-
ing response in liver), and CREB contributes
to mitochondrial function both directly, by act-
ing at specific mitochondrial genes, as well
as indirectly, by inducing PGC-1α expression
(86, 87).

An increasing number of studies support
the role of c-Myc as a regulator of mitochon-
drial genes (5). Recent genome-wide associa-
tion studies show c-Myc binding to 107 mito-
chondrial genes, including the mitochondrial
DNA polymerase γ (88). Moreover, c-Myc may
affect mitochondrial biogenesis via its ability to
activate the expression of PGC-1β (89). Con-

sistent with the binding and gene expression
studies, c-Myc null cells have diminished mi-
tochondrial mass (90). The context in which c-
Myc regulates mitochondrial genes is not yet
clear. An interesting possibility is that c-Myc
links mitochondrial biogenesis to cell growth
and proliferation.

Finally, the transcription factor YY1 has
been implicated in both positive and negative
regulation of COX genes (5). Recent stud-
ies show that YY1 in muscle is in a com-
plex with PGC-1α, enhancing mitochondrial
gene expression and cellular respiration (91).
The interaction of YY1 with PGC-1α requires
the activity of mammalian target of rapamycin
(mTOR), suggesting that YY1 integrates in-
formation from two nutrient-sensing pathways:
PGC-1α, which relays signals of low cellular
energy state (92, 93), and mTOR, which pro-
motes cell growth in the presence of nutri-
ents. The physiological state during which this
mechanism becomes important for mitochon-
drial biogenesis is not clear.

Transcriptional Coregulators

PPARγ coactivator-1 family (PGC-1α,
PGC-1β, and PRC): promoters of mi-
tochondrial biogenesis programs. PGC-1
coactivators play important roles in the con-
trol of mitochondrial biogenesis and function
by integrating physiological signals and coordi-
nately enhancing the function of diverse tran-
scription factors acting at mitochondrial genes.
PGC-1α was first identified by Spiegelman
and colleagues (7) as a protein interacting with
PPARγ, selectively expressed in BAT, and in-
duced by exposure to cold. PGC-1β and PRC
were identified on the basis of their similarity to
PGC-1α (16, 17, 94). The three coactivators
regulate expression of a broad mitochondrial
gene set and promote mitochondrial biogenesis
(9). They also carry important functions outside
the mitochondrial gene expression program (9),
which are not discussed here.

The PGC-1 proteins share three molecular
features that are important for the regu-
lation of mitochondrial genes. First, they
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contain protein surfaces that enable inter-
actions with NRF-1, GABP, PPARs, ERRs,
and YY1 and are thereby recruited to target
regulatory sites. These protein surfaces include
leucine-rich motifs that mediate interactions
with nuclear receptors (16, 45, 94, 95); a
conserved DHDY motif that binds HCF and
presumably enables interactions with GABP
(17, 33, 34); and less well-characterized inter-
faces for NRF-1, YY1, and other transcription
factors (8, 91, 96). Second, the three PGC-1
proteins share similar transcriptional activation
domains that enable the enhancement of
gene expression (16, 45, 94, 97, 98). The
molecular mechanisms are best characterized
for PGC-1α and include the ability to recruit
the histone acetyltransferases CBP/p300 and
Mediator (9). Finally, PGC-1 proteins contain
sites of posttranslational modifications or
interaction with regulatory proteins. Some of
these sites are conserved in the three members,
suggesting common mechanisms of regulation
(99). In summary, the mode of PGC-1 action at
mitochondrial genes seems deceptively simple:
PGC-1 docks on transcription factors bound at
their respective response elements and enables
the recruitment of histone acetyltransferases
and the Mediator complex, thereby enhancing
transcription initiation and/or elongation.
PGC-1 proteins also have domains proposed
to regulate posttranscriptional steps, such as
RNA splicing (100, 101); the importance of
this mechanism for mitochondrial function has
not been addressed.

Overexpression of PGC-1α and PGC-1β in
many cell types induces mitochondrial biogene-
sis and enhances respiration, suggesting that the
two coactivators are limiting for the mitochon-
drial gene expression program (9). The func-
tional properties of mitochondria in PGC-1α-
and PGC-1β-expressing cells differ in terms of
coupling and oxidative stress defenses, suggest-
ing that PGC-1α and PGC-1β induce simi-
lar but not identical programs (102). Differen-
tial effects of PGC-1α and PGC-1β may be
due to selective preferences in associations with
DNA-binding transcription factors and/or dif-
ferences in the communication with the gen-

eral transcription machinery. Overexpression of
PRC induces OxPhos genes, and knockdown
of PRC decreases cytochrome oxidase activity;
however, it is not clear if increased PRC ex-
pression is sufficient to induce mitochondrial
biogenesis (34).

The central roles of PGC-1α and
PGC-1β in mitochondrial gene expres-
sion and biogenesis have been demonstrated in
mice with gain- and loss-of-function studies.
Transgenic expression of PGC-1α or PGC-1β

in skeletal muscle leads to an increase in
mitochondrial content, increased expression
of mitochondrial genes, and enhanced exer-
cise performance (103–105). PGC-1α and
PGC-1β activate expression of distinct muscle
contractile proteins (PGC-1α promotes type
IIa and type I, and PGC-1β promotes type IIx
fibers), consistent with the notion that the two
proteins carry some distinct physiological roles
(103, 104). Conversely, loss of PGC-1α by
genetic inactivation results in viable mice with
modest but significant decreases in expression
of mitochondrial genes; decreased mitochon-
drial enzymatic activities; and phenotypes of
mild to moderate mitochondrial dysfunction,
such as a failure to defend body temperature
when exposed to cold, reduced capacity to
sustain running, and energetic impairments in
heart in response to β-adrenergic stimulation
or cardiac pressure overload (106–109). Simi-
larly, PGC-1β null or hypomorph mice show
decreased mitochondrial gene expression and
defects in thermogenesis and cardiac perfor-
mance (73, 110, 111). Overall, mitochondrial
biogenesis defects are subtle, with decreases
in mitochondrial volume seen only in some
tissues [e.g., skeletal muscle of PGC-1α (108)
and PGC-1β hypomorph (111) mice].

The mild mitochondrial biogenesis defects
seen in mice lacking just PGC-1α or PGC-1β

suggest that PGC-1α and PGC-1β compen-
sate for each other’s loss in vivo. In support of
this notion, the induction of mitochondrial bio-
genesis during in vitro brown adipocyte differ-
entiation is not affected by the lack of a single
PGC-1 but is abolished when both PGC-1α

and PGC-1β are knocked down (112). Further
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Sirtuin 1 (SIRT1):
NAD+-dependent
protein deacetylase
homologous to the
yeast silent
information regulator
(Sir2) and implicated
in caloric restriction
and aging pathways

Histone deacetylase
(HDAC): a family of
enzymes that
deacetylate histones
and other proteins

confirmation is provided by the recent gener-
ation of double PGC-1α/PGC-1β null mice,
which show severe reductions in BAT mito-
chondrial density, late fetal arrest in cardiac mi-
tochondrial biogenesis, small hearts, reduced
cardiac output and other signs of heart defects
and die shortly after birth (113). These findings
suggest that PGC-1α and PGC-1β are essen-
tial for the developmental program that drives
high levels of mitochondrial biogenesis in tis-
sues with high energy demands, such as BAT
and heart, but not for basal levels of mitochon-
drial biogenesis (by comparison, Tfam null mice
die at E10.5).

One of the most interesting aspects of
PGC-1 biology is the potential of these coregu-
lators to sense signals of energetic or metabolic
needs and to relay such signals to changes in
gene expression. PGC-1α has served as the pro-
totype PGC-1 family member in understanding
this role (9). Signaling information is to a large
extent integrated at two levels: transcriptional
regulation and posttranslational regulation
(Figure 2). At the transcriptional level, both
PGC-1α and PGC-1β are expressed in a tissue-
selective manner, with high levels in tissues with
high energy demands, suggesting that their
transcription depends on tissue-specific devel-
opmental cues (9). Moreover, PGC-1α, but not
PGC-1β, is highly inducible in response to sig-
nals of increased energy needs (e.g., in BAT and
muscle upon exposure to cold, in liver upon
fasting, in skeletal muscle in response to ex-
ercise), suggesting that PGC-1α plays a role
in long-term adaptation to such needs (7–9).
At the posttranslational level, PGC-1α activity
is regulated via phosphorylation by mitogen-
activated protein kinase (MAPK) p38, AKT,
AMPK, and glycogen synthase kinase-3 (GSK-
3) (93, 95, 99, 114, 115), (de)acetylation by
GCN5 and Sirtuin 1 (SIRT1) (92, 116), argi-
nine methylation by PRMT1 (117), ubiquiti-
nation by SCFcdc4 (99), and interaction with
the repressor MYBBP1A (118). Several of these
modifications are likely to affect PGC-1β activ-
ity as well because the PGC-1α target mod-
ification sites are conserved. The signaling
pathways that regulate PGC-1α expression and

activity, and the physiological context in which
these pathways act, are discussed in the next
section.

Receptor-interacting protein 140: a brake
on mitochondrial biogenesis. The nuclear
receptor corepressor RIP140 functions as the
antithesis of PGC-1 coactivators and acts as a
transcriptional brake on mitochondrial biogen-
esis. Like PGC-1α/β, RIP140 interacts with a
broad set of nuclear receptors (including ERRs
and PPARs) via a series of LXXLL motifs (70,
119). However, RIP140 docking to nuclear re-
ceptors recruits additional corepressors, such as
CtBP and histone deacetylases (HDACs), and
leads to suppression of gene transcription. In
vitro and in vivo studies support the role of
RIP140 in mitochondrial function. Silencing of
RIP140 in 3T3L1 cells leads to increased ex-
pression of many mitochondrial genes, includ-
ing ones with roles in the TCA cycle, OxPhos,
FAO, and organelle biogenesis (120). The abil-
ity of RIP140 to repress at least some of these
genes depends on endogenous ERRα (120),
indicating that the same transcription factor
(i.e., ERRα) can mediate positive and nega-
tive effects on mitochondrial gene expression,
depending on the cellular context and type of
coregulator present. RIP140 null animals have
increased oxygen consumption and expression
of mitochondrial genes (121). Muscle-specific
deletion of RIP140 results in increased mi-
tochondrial volume and number of oxidative
fibers, i.e., effects similar to ones seen in mice
overexpressing PGC-1α (103, 122).

Even though RIP140 is expressed widely,
there is some correlation of high RIP140 levels
and low mitochondrial content. For example,
RIP140 levels are higher in WAT than in BAT
and higher in glycolytic than in oxidative muscle
fibers (70). RIP140 expression is also induced by
many nuclear receptors, including ERRα (123).
The ERRα-mediated induction of RIP140 may
serve as a mechanism that limits mitochon-
drial gene induction in amplitude and/or tem-
porally. Like PGC-1α, RIP140 is regulated by
protein modifications. Sumoylation (124) and
acetylation (125) have both been proposed to
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enhance the repressive ability of RIP140. Inter-
estingly, the same arginine methyltransferase,
PRMT1, modifies RIP140 and PGC-1α (117,
126). PRMT1-mediated methylation enhances
the activity of PGC-1α and suppresses that of
RIP140, suggesting that PRMT1 can act as a
switch in the cellular balance of PGC-1α versus
RIP140. It will be interesting to define physio-
logical signals that regulate PRMT1.

PHYSIOLOGICAL STATES THAT
PROMOTE MITOCHONDRIAL
BIOGENESIS

Overview

Energetic demands vary not only among cell
types but also in different physiological states.
Thus, gene expression programs of mitochon-
drial biogenesis and function are regulated in
response to physiological signals that accom-
pany increased demands for energy or ener-
getic efficiency. One of the best-understood
paradigms is endurance exercise training—in
which increased mitochondrial biogenesis con-
tributes to muscle performance (3, 127). Sim-
ilarly, long-term cold exposure induces mito-
chondrial biogenesis in BAT of small animals,
which enables a higher capacity for adaptive
thermogenesis (128). Finally, and of particu-
lar interest to today’s calorie-ridden society,
caloric restriction induces mitochondrial bio-
genesis (4, 129). In this section, we first present
an overview of the signals associated with ex-
ercise, exposure to cold, and caloric restriction
and then review how each of these signals com-
municates to the transcription factors that con-
trol mitochondrial gene expression.

Endurance exercise activates signals that are
associated with physical activity, such as mus-
cle contraction–induced increases in cytoplas-
mic Ca2+, as well as signals that relay energy
deficits, such as AMPK (127) (Figure 3). Ex-
ercise also activates the sympathetic nervous
system, leading to adrenergic stimulation and
increased cAMP signaling. Ca2+-derived sig-
nals, AMPK, cAMP, and other signals (e.g., ni-
tric oxide) then activate the transcription fac-

tors controlling mitochondrial gene expression
(5, 9, 130). Single bouts of exercise lead to tran-
sient increases in the levels of PGC-1α, PRC,
NRF-1, GABP, ERRα, PPARδ, and down-
stream mitochondrial targets (22, 24, 25, 127,
131). The increase in expression of these tran-
scription factors is likely mediated by post-
translational modifications that enhance their
activity, as proposed for PGC-1α (132, 133).
Repeated bouts of exercise are necessary for
long-term adaptive responses, including a sta-
ble increase in PGC-1α protein and increased
mitochondrial biogenesis (3, 127).

Exposure to cold leads to the activation
of the sympathetic nervous system, adrener-
gic stimulation of BAT, and increased cAMP
and cAMP-dependent pathways [i.e., activation
of protein kinase A (PKA), p38 MAPK, and
transcription factors CREB/ATF2], which in-
duce PGC-1α (87) (Figure 3). PGC-1α and
CREB/ATF2 induce the thermogenic Ucp1,
which uses the mitochondrial proton gradi-
ent to generate heat (7, 87). PGC-1α also in-
duces deiodinase 2, which generates local thyroid
hormone and further enhances mitochondrial
function (112). As with exercise, acute short-
term exposure to cold induces a small set of mi-
tochondrial genes, whereas long-term exposure
results in mitochondrial biogenesis.

Caloric restriction without malnutrition en-
hances mitochondrial biogenesis in rodents and
humans (4, 134–136). The molecular signals
implicated in caloric restriction, which likely
imposes a demand for increased energetic ef-
ficiency, include increased SIRT1 activity, in-
creased AMPK activity (possibly due to an in-
crease in circulating adiponectin levels), and the
induction of endothelial nitric oxide synthase
(eNOS) (Figure 3). All three signals converge
on PGC-1α by regulating PGC-1α activity and
expression levels (92, 93, 137).

Induction of mitochondrial biogenesis is
also seen in “stressed” cells, in which stress may
be due to (a) an energetic deficiency, as seen
in treatment of cells with uncoupling agents,
(b) DNA damage, as seen in cells exposed to
ionizing radiation or the drug etoposide, or
(c) microtubule disruption (20, 133, 138–140).
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Figure 3
Diverse physiological signals regulate mitochondrial biogenesis in a tissue-specific manner. Shown are signaling pathways that induce
mitochondrial biogenesis in skeletal muscle in response to endurance exercise or caloric restriction, in BAT in response to cold
exposure, and in macrophages in response to signals promoting alternative activation. The signals enhance activity (orange outlines)
and/or expression (upward blue vertical arrows) of transcriptional regulators PGC-1α, GABP, or PGC-1β.

An emerging theme from these studies is the
repeated use of similar signals as in physiologi-
cal states of mitochondrial biogenesis: AMPK,
activated by uncoupling agents and the DNA
damage–responsive kinase ATM (as in exercise
and caloric restriction) (20, 139), and bursts of
Ca2+, which mediate the uncoupling-induced
response and retrograde signaling from mito-
chondria to nucleus (as in exercise) (139, 141).

Ca2+-Induced Pathways

Muscle contraction leads to Ca2+ bursts that
signal to mitochondrial gene expression pro-
grams via the Ca2+-dependent phosphatase
calcineurin, Ca2+/calmodulin-dependent ki-
nases (including CAMKII, CAMKIV, and
CAMKKβ), and p38 MAPK (127) (Figure 3).

Several lines of evidence support the roles of
these molecules in mitochondrial biogenesis
and function. First, caffeine treatment of cul-
tured myotubes, which leads to Ca2+ release,
activates p38 in a CAMK-dependent manner
and mimics the effects of exercise, inducing
PGC-1α, NRF-1, GABP, and TFAM (19). In-
hibitors of CAMK or p38 block these effects
(19, 142). Second, transgenic mice expressing
constitutively active calcineurin or CAMKIV
in muscle show increased mtDNA content, mi-
tochondrial volume, and PGC-1α levels (143,
144). Third, the calcineurin, CAMK, and p38
signals converge at regulatory sites of the
PGC-1α promoter, where they act on tran-
scription factors of the MEF2 family (activated
via calcineurin and p38) and the CREB/ATF2
family (activated by CAMKIV and p38) to
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induce PGC-1α expression (Figure 2) (145–
148). A CAMK-dependent phosphorylation of
HDAC5 may also export HDAC5 from the
nucleus and relieve the inhibitory effect of
HDAC5 on MEF2, thereby further enhancing
PGC-1α expression (149).

In addition to inducing PGC-1α expression
via the activation of MEF2 and CREB/ATF2,
the MAPK p38 phosphorylates and enhances
the activity of PGC-1α, thereby promoting
PGC-1α to coactivate MEF2 and induce its
own expression (Figure 2) (95, 114). Thus, in
vivo, activation of the PGC-1α protein may
precede the induced expression of PGC-1α

(132). p38 also regulates stability of the
PGC-1α protein. In cells with low SCFcdc4

E3 ubiquitin ligase activity (e.g., 293 cells),
phosphorylation of PGC-1α by p38 leads to
increased protein stability (114). Conversely,
in cells that have SCFcdc4 and active GSK-3β,
p38- and GSK-3β-mediated phosphorylation
of PGC-1α promotes ubiquitination and
ubiquitin-mediated degradation, thereby
decreasing protein stability (99). The effects of
GSK-3β and SCFcdc4 on PGC-1α in muscle
have not been examined. However, activation
of p38 in myotubes exposed to palmitate leads
to decreased PGC-1α expression, suggesting
that p38 can act both positively and negatively,
depending on cellular context (150).

AMPK: Cellular Energy Status Sensor

AMPK senses cellular energetic deficiencies
as an increase in the AMP:ATP ratio and
becomes activated in endurance exercise,
caloric restriction, and other stressor-induced
states. Several studies have established a role
for AMPK in mitochondrial biogenesis and
oxidative metabolism (127). Briefly, rodents
treated with chemical activators of AMPK
[e.g., 5′-aminoimidazole-4-carboxamide-1-β-
ribofuranoside (AICAR)] or expressing consti-
tutively active AMPK have enhanced muscle
mitochondrial biogenesis, FAO, and expression
of PGC-1α, NRF-1, and PPARα (26, 127,
151, 152). The ability of AMPK to induce
PGC-1α in muscle is lost in PGC-1α null

mice, consistent with AMPK enhancing the
activity of PGC-1α protein, which then
promotes PGC-1α transcription (Figure 2).
Indeed, AMPK phosphorylates PGC-1α and
enhances PGC-1α activity (93). AMPK
also phosphorylates and inactivates the
MEF2-associated repressor HDAC5, thereby
further enhancing PGC-1α transcription
(Figure 2) (148, 153). PGC-1α is important
for the AMPK-dependent induction of some
mitochondrial genes, like Cycs, but not others,
like Ucp3 and Pdk4, suggesting that AMPK
activates other transcription factors besides
PGC-1α (93). Interestingly, AICAR-mediated
activation of AMPK in mice enhances not just
muscle mitochondrial biogenesis but also the
capacity for exercise, suggesting a central and
wide role of AMPK in the program induced by
endurance exercise (154).

Finally, AMPK is activated by other hor-
mones and signals that enhance mitochondrial
biogenesis and function, such as adiponectin,
leptin, thyroid hormone, and the DNA double-
strand break–sensing kinase ATM, suggesting
that AMPK plays a central role in multiple
pathways that enhance mitochondrial biogen-
esis (20, 129, 155–157).

SIRT1: A Nutrient Deprivation Sensor

SIRT1 is a NAD+-dependent deacetylase and
the mammalian homolog of the yeast Sir2,
which mediates effects of caloric restriction
on yeast life span. Similar to the yeast Sir2,
the mammalian SIRT1 is activated in states
of nutrient deprivation, such as fasting and
caloric restriction (158). SIRT1 deacetylates
and activates PGC-1α, thereby reversing the
effects of the acetyltransferase GCN5, which
acetylates and represses PGC-1α (158). In
muscle, SIRT1 promotes the deacetylation of
PGC-1α and the increased expression of
PGC-1α, ERRα and many mitochondrial
genes, including Tfam, TCA cycle, OxPhos,
and FAO genes (92). Increasing SIRT1 activity,
by feeding mice the SIRT1 activator resvera-
trol, induces muscle mitochondrial biogenesis
and enhances exercise performance, suggesting
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an important role of SIRT1 for mitochondrial
function in vivo (159). Besides SIRT1, resvera-
trol may also activate AMPK (160). Thus, stud-
ies with specific SIRT1 activators will be nec-
essary to define the in vivo role of SIRT1 (161).
Finally, the effects of SIRT1 on PGC-1α may
depend on cellular context because SIRT1 re-
presses PGC-1α activity in PC12 cells (162).
There are 13 acetylated lysines in PGC-1α

(158); some of them may enhance, whereas oth-
ers may repress, PGC-1α activity.

Other Signals: cAMP, Neuregulins,
and Nitric Oxide

Several other signals have been implicated in
the regulation of mitochondrial biogenesis. In-
duction of PGC-1α in muscle by exercise is
blunted in mice lacking β-adrenergic recep-
tors, indicating that adrenergic stimulation and
cAMP signaling contribute to the adaptive re-
sponses (130) (Figure 3). Moreover, exercise
and Ca2+ induce the expression of neuregulins,
which activate ErbB tyrosine kinases (163).
Neuregulins enhance expression of PPARδ,
PGC-1α, and mitochondrial genes and increase
oxidative capacity in muscle cells (164). Inter-
estingly, neuregulins may act at multiple steps
because the ErbB pathway also activates GABP
and ERRα (33, 165). Another signal that im-
pacts mitochondrial biogenesis is the gas ni-
tric oxide (NO), which induces PGC-1α ex-
pression via a cGMP-dependent mechanism
(166). Mice lacking eNOS, an NO-producing
enzyme that is induced by caloric restriction,
show mitochondrial defects in multiple tissues
(135).

Molecular studies of PGC-1α have also
identified regulators whose role in the physi-
ological pathways of mitochondrial biogenesis
is not yet clear. Some of these regulators affect
mitochondrial function in vitro and in vivo. For
example, the kinase cyclinH/Cdk7/MAT1 reg-
ulates the expression of PGC-1α and OxPhos
genes in HIB1B cells, and mice lacking MAT1
in heart show decreased PGC-1α and PGC-1β

activity and mitochondrial and energetic defi-
ciencies (167, 168). The underlying mechanism

for this regulation is not known. Similarly, fu-
ture studies need to elucidate the physiologi-
cal contributions of other regulators, such as
SCFcdc4 (which is regulated in neurons by oxida-
tive stress), MYBBP1A, and PRMT1 (99, 117,
118).

(Patho)physiological States Associated
with Decreased Mitochondrial
Biogenesis

Decreased mitochondrial biogenesis and func-
tion are seen in aging, physical inactivity, obe-
sity, and insulin resistance. They often parallel
decreases in the expression of transcriptional
regulators, like PGC-1α, PGC-1β, and NRF-
1 (9, 169). One likely cause for the decreased
mitochondrial biogenesis is simply reduced in-
put in the positive signals discussed above. For
example, aging is associated with a blunted
AMPK stimulation by exercise, insulin resis-
tance with decreased plasma adiponectin lev-
els, obesity with increased cytokines that sup-
press eNOS expression, and so on (129, 169,
170). Signals that specifically repress the tran-
scriptional program of mitochondrial biogene-
sis may include lipids. Lipid infusion or a high-
fat diet in humans leads to decreased expression
of PGC-1α, PGC-1β, and their mitochondrial
targets (171, 172). Similarly, exposure to palmi-
tate downregulates PGC-1α and mitochon-
drial gene expression, as well as oxygen con-
sumption in C2C12 myotubes (150). However,
increasing plasma free fatty acids and high-fat
diets in rats induce PGC-1α and PPARβ/δ ex-
pression and mitochondrial content (173, 174).
The conflicting results may be due to differ-
ences in fatty acid and diet composition, sug-
gesting that it is the types rather than simply the
levels of lipids that signal to mitochondrial gene
expression programs. Finally, insulin can nega-
tively regulate PGC-1α by two distinct mech-
anisms: first, by repressing FOXO-dependent
PGC-1α expression (175, 176) and second, via
AKT-dependent phosphorylation and repres-
sion of PGC-1α activity (115) (Figure 2). The
significance of the AKT effect for mitochon-
drial biogenesis in muscle is not clear.
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FEATURES OF THE
TRANSCRIPTIONAL NETWORK
AND THE REGULATING SIGNALS

One of the remarkable features of the network
of transcription factors regulating mitochon-
drial biogenesis and function is the extensive use
of feed-forward and feedback loops (Figures 1
and 2). Increases in one network component
often enhance the expression of others. For ex-
ample, PGC-1α not only coactivates ERRα,
GABP, and NRF-1 but also increases their ex-
pression levels. ERRα enhances the expression
of PPARα, GABP, and the negative regulator
RIP140. PPARγ, PPARδ, ERRγ, and CREB
induce the expression of PGC-1α. ERRα and
PGC-1α induce their own expression. These
regulatory loops are likely to be important in
enhancing the amplitude of the mitochondrial
gene response, as well as in limiting it tempo-
rally. Moreover, modeling of biological feed-
back loops suggests that such coupled positive

and negative feedback systems are better able
to respond faithfully to signals in the presence
of noise (177).

A second interesting feature is the paral-
lel activation of multiple signaling pathways in
physiological states that enhance mitochondrial
biogenesis and function (e.g., Ca2+ and AMPK
in exercise, AMPK and SIRT1 in caloric re-
striction) (Figure 3). The importance of paral-
lel pathways is nicely demonstrated in a recent
study showing that, although pharmacological
activation of PPARδ by itself does not enhance
exercise performance, the combination of the
PPARδ agonist with exercise training results in
the synergistic enhancement of exercise perfor-
mance (154). It seems reasonable to assume that
a robust and specific induction of an expen-
sive process, such as mitochondrial biogene-
sis, requires concurrent activation of more than
one pathway, as well as multiple transcription
factors.

SUMMARY POINTS

1. Mitochondrial biogenesis and function are dynamically regulated in a tissue- and signal-
specific manner to enable cellular adaptation to energetic and metabolic demands.

2. Mitochondrial biogenesis in response to physiological signals is a long-term adaptive
response and requires changes in the transcription of nuclear genome–encoded mito-
chondrial genes.

3. Short-term adaptation can be achieved by the increased expression of a subset of mito-
chondrial genes that enhance mitochondrial function without inducing mtDNA replica-
tion and organelle expansion.

4. Mitochondrial biogenesis and function are regulated by a transcriptional network com-
prising (a) DNA-binding factors that target distinct but overlapping sets of mitochondrial
genes and (b) coregulators that integrate signals and coordinate the action of multiple
DNA-binding factors. The network allows the concerted regulation of a broad mito-
chondrial gene set while also permitting tissue- and signal-specific expression patterns
of subsets of mitochondrial genes.

5. A series of regulatory feed-forward and feedback loops among the transcription factors
of the mitochondrial gene expression network allows robust and specific transcriptional
responses to physiological signals.

6. Distinct physiological stimuli that induce mitochondrial biogenesis use common signals,
including activity-dependent bursts of Ca2+ and the cellular energy status sensor AMPK.
Cellular stress can induce the same signals.
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7. The coactivator PGC-1α plays a central role in adaptive responses by integrating diverse
signals that impact mitochondrial biogenesis and coordinating multiple DNA-binding
factors to induce broad sets of mitochondrial genes.

FUTURE ISSUES

1. The central role of PGC-1α in integrating most if not all signals known to regulate
mitochondrial biogenesis may largely reflect the attention allotted to this coactivator.
Future studies on the mechanisms that regulate activity of PGC-1β, PRC, RIP140,
and the downstream DNA-binding factors will likely elucidate contexts in which these
other regulators integrate signals, and thus may decipher possible “codes” that determine
activity of the transcriptional network.

2. The field has made major advances in characterizing the signals and mechanisms that
induce mitochondrial biogenesis. Signals or states resulting in mitochondrial dysfunction
are less well understood. Studies on the molecular mechanisms that may underlie de-
creased mitochondrial biogenesis and function in (patho)physiological states will provide
insights into basic science questions regarding such decreases (e.g., do they have causal
roles, or are they secondary to disease?), as well as suggest novel modes of intervention.

3. There are a large number of transcriptional regulators of mitochondrial biogenesis and
function. Some of them seem, at first glance, to have similar roles. It will be important
to understand the specific roles and contributions of individual regulators in different
tissues and at different physiological states. This knowledge will help identify targets for
intervention in cases of cell-type-specific mitochondrial dysfunction. It may also help in
the design of drugs that spare tissues where increased mitochondrial function may not
be safe.
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