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Abstract—This paper provide a review of the active integrated
antenna (AIA) technologies. After a brief introduction on the defi-
nition and some historical remarks, the paper concentrates on the
research effort on the past decades or so. The AIAs are reviewed
in its various functions. First, an oscillator-type AIA is presented,
followed by very interesting aspects of coupled oscillator arrays
for phase control. Use of an AIA concept for efficient RF front
end is described with examples on high-power amplifier AIAs.
Next, a phase-conjugation-based retrodirective array is reviewed.
Finally, AIA systems for receiving, transmitting, and duplexing
are reviewed.

Index Terms—Amplifier, antenna, array, oscillator.

I. INTRODUCTION

T HE active integrated antenna (AIA) has been a growing
area of research in recent years, as the microwave inte-

grated circuit and monolithic microwave integrated circuit tech-
nologies became more mature allowing for high-level integra-
tion. From a microwave engineer’s viewpoint, an AIA can be
regarded as an active microwave circuit in which the output or
input port is free space instead of a conventional 50-inter-
face. In this case, the antenna can provide certain circuit func-
tions such as resonating, filtering, and duplexing, in addition to
its original role as a radiating element. On the other hand, from
an antenna designer’s point-of-view, the AIA is an antenna that
possesses built-in signal- and wave-processing capabilities such
as mixing and amplification. A typical AIA consists of active
devices such as Gunn diodes or three-terminal devices to form
an active circuit, and planar antennas such as dipoles, microstrip
patches, bowties, or slot antennas.

Looking back in history, the idea of using active antennas
can be traced back to as early as 1928 [1]. At that time, a
small antenna with an electron tube was commonly used in
radio broadcast receivers around 1 MHz. After the invention
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of high-frequency transistors, the study of active antennas
received much more attention and several pioneering works
were reported [2]–[11] in the 1960s and 1970s. Several advan-
tages of implementing the active devices in passive radiating
elements were discussed in [12]. For instance, these works
include increasing the effective length of short antenna and
increasing antenna bandwidth, decreasing the mutual coupling
between array elements, and improving the noise factor.

Over the past ten years, the major driving forces for the re-
search on AIAs are the development of novel efficient quasi-op-
tical power combiners [13], [14]. The original purpose for the
quasi-optical power combining is to combine the output power
from an array of many solid-state devices in free space to over-
come combiner loss limitations, which are significant at mil-
limeter-wave frequencies [15], [16]. Since quasi-optical power
combing is given elsewhere, this topic will not be discussed
here. Rather, this paper reviews more on the functional perfor-
mance of individual AIA or a small array thereof.

Recently, numerous innovative designs based on the AIA’s
concept have been proposed and successively demonstrated.
AIA technology has evolved to a point where practical imple-
mentation for use in the latest microwave and millimeter-wave
system is considered feasible. It is currently pursued in a
number of related fields such as power combining, beam
steering and switching, retrodirective arrays, as well as high-ef-
ficiency power-amplifier designs. These AIA-based designs
are particularly attractive for millimeter-wave systems because
they provide an effective solution to several fundamental prob-
lems at these frequencies, including higher transmission-line
loss, limited source power, reduced antenna efficiency, and lack
of high-performance phase shifters.

This paper reviews the recent research activities related to this
emerging technology with emphasis on its applications in inte-
grated antenna oscillators, coupled oscillators and phase con-
trol, high-efficiency RF front-ends, and retrodirective arrays.
AIA systems are also discussed. For those who have not closely
followed the development in this area, [13] and [17] present a
more detailed description of the constructing elements of AIAs,
as well as some application examples.

II. I NTEGRATED ANTENNA OSCILLATORS

An integrated antenna oscillator is formed by integrating an
active solid-state device directly with an antenna. The active
solid-state device could be a diode such as Gunn, IMPATT,
BARITT, etc., or a transistor such as MESFET, high electron-
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Fig. 1. General integrated antenna oscillator circuit.

mobility transistor (HEMT), heterojunction bipolar transistor
(HBT), etc. In the conventional approach, the antenna and os-
cillator are two separate components interconnected by a trans-
mission line. There is freedom to optimize the performance of
the oscillator and antenna independently because there is an ob-
vious distinction between the circuit component and radiating
structure. In the integrated antenna oscillator, there is no obvious
distinction or boundary between the oscillator and antenna. The
active device lies within the volume normally associated with
the radiating structure. The antenna serves both as a load and
radiator for the active device. The AIA oscillator has the advan-
tages of smaller size, lower cost, and lower loss, as compared to
the conventional approach.

The general integrated antenna oscillator circuit is shown in
Fig. 1. For a transistor with three terminals, is the input
impedance looking into the transistor with one port terminated.
The active device impedance is a function of frequency,
dc-bias current , RF current , and temperature .
Thus,

(1)

where is negative for an oscillation to occur.
The load impedance including the device embedding circuits

and the antenna structure can be expressed as

(2)

The oscillation occurs when the following two conditions are
satisfied [18]:

(3)

(4)

where is the oscillating frequency. The first condition re-
quires the circuit at resonance andis determined by the circuit
resonant frequency given by (3). The second condition requires
the negative device resistance is greater than the load resistance.
The location of the active device in an antenna needs to be de-
signed correctly to satisfy the above conditions.

Early integrated active antenna concept surfaced in 1960s.
Antennas integrated with a parametric amplifier, tunnel diode,
and transistor were reported [19]–[21]. The idea found very little
use until the mid-1980s when integrated circuit antennas be-
came popular for compact mobile systems and spatial power
combining was sought to solve power deficiencies of solid-state
devices.

In 1984 and 1985, Thomaset al. [22], [23] reported a
Gunn-integrated rectangular microstrip patch antenna oper-

Fig. 2. Integrated Gunn patch-antenna oscillator.

Fig. 3. Integrated FET patch-antenna oscillator.

ating at -band frequencies. The active microstrip patch was a
compact inexpensive microwave source, which could be used
for Doppler-sensing or spatial power-combining applications.
The design consists of a Gunn diode and a rectangular mi-
crostrip patch antenna. The antenna serves as a resonator and
load for the radiating oscillator. Fig. 2 shows the configuration
of the active antenna oscillator [22]. The Gunn diode was
mounted between the patch and ground-plane offset along the
patch to locate it at the 10-feed point. For better phase noise,
the integrated Gunn patch-antenna oscillator can be injected
locked to a sable source using an external source or mutual
coupling [24]–[26]. IMPATT diodes integrated with patch
diodes were also demonstrated [27]–[29]. A microstrip patch
antenna integrated with an FET transistor was also reported, as
shown in Fig. 3 [30]. The patch serves as a feedback element
for the FET oscillator circuit and a radiator. Since then, many
different active antenna oscillators have been reported. They
can be found in several books [14], [31]–[34] and review papers
[13], [17].

III. COUPLED OSCILLATORS AND PHASE CONTROL

Injection-locking and phase-locked-loop techniques have
been used to achieve synchronous operation of a number of
integrated antenna oscillator elements. In addition to achieving
phase coherence for power-combining purposes, it has been
found that such techniques also allow for the manipulation
of the phase distribution without additional phase-shifting
circuitry, suggesting a potential for low-cost beam-scanning
systems.

Fig. 4 shows three possibilities for synchronization of inte-
grated antennas by injection locking. Each array element is a
self-contained voltage-controlled oscillator that includes an an-
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(a)

(b)

(c)

Fig. 4. Three different topologies for synchronization of active antenna
oscillators by injection locking. (a) External locking to a common source.
(b) Unilateral locking in a chain. (c) Mutual (bilateral) locking.

tenna as the resonator and load. In Fig. 4(a), the oscillators are
all slaved to a common signal (the desired output signal) that
is distributed using a corporate feed network. According to the
basic laws of injection locking [35], the phase of each oscillator
can be changed relative to the reference signal (and, hence, the
other oscillators) by adjusting the oscillator tuning voltage (the
free-running frequency). A 4 4 array using this topology was
reported in [36] for power combining. A 2 2 “monopulse”
beam-switching array, capable of generating sum and differ-
ence patterns for angle-tracking, was also developed using in-
jection-locked active antennas [37].

A variation of the injection-locking concept that eliminates
the corporate feed structure is to cascade the oscillators, as in
Fig. 4(b), where each array element is injection-locked unilater-
ally to the preceding element in the array. This has been demon-
strated for beam-scanning applications [37], [38]. Amplifiers
are used to couple the injection-signals to neighboring oscilla-
tors to insure unilaterial locking, and also enhance the locking
bandwidth.

A third extension of the injection-locking concept is an array
of mutually synchronized oscillators, shown in Fig. 4(c). Each
oscillator is bilaterally coupled to neighboring array elements.
This system was first proposed by Stephan [39] who described
the system as “inter-injection-locked” oscillators. In this case,
the steady-state phase relationships are more difficult to calcu-
late. A theory for computing these relationships is described in
detail in [40] and [41], and leads to a set of coupled differen-
tial equations describing the phase dynamics. Attempts to solve
these equations have led to interesting approaches to beam scan-
ning. Stephan and Morgan [42] describe one technique whereby

two coherent injected signals with a fixed phase offset are in-
jected at opposite ends of the array. Stephan and Morgan found
that, under certain conditions, the phase difference between the
two injected signals is divided uniformly along the array to pro-
duce a constant phase progression.

Another method, developed by Liao and York [43], exploits
the dependence of the steady-state phase distribution on the dis-
tribution of free-running frequencies or oscillator “tunings.” It
was found that a constant phase progression could be realized
by adjusting the free-running frequencies of only the end ele-
ments in the array. Several demonstrations are described in [40]
and [41].

One feature of all injection-locked arrays is that the near-car-
rier noise properties are governed primarily by the master
oscillator or reference signal, even if the oscillators themselves
are quite noisy. The coupling network will have some influence,
however, on the specific noise reduction. Analysis of phase
noise in free-running and injection-locked arrays is described
in [41]. The phase noise of free-running arrays is shown to
decrease as , where is the number of oscillators in the
system.

An apparent limitation of the injection-locked or coupled-os-
cillator topologies (for some applications) is the limited range of
phase shifts that can be synthesized, in the range90 to 90 .
This could be improved by introducing a frequency-doubler cir-
cuit after each oscillator. Subharmonic injection locking is an
alternative method, which has been shown to allow up to 360
phase shifts [44]. It may also be possible to use self-oscillating
mixers as the array elements in order to combine transmit and
receive functions or phase-locked loops (PLLs) [45] as the array
element for increased bandwidth. These and other variations are
described in more detail in [37] and the references therein.

IV. A MPLIFYING AIA

The most power-hungry component in transmitter designs are
power amplifiers; therefore, high-efficiency power amplifiers
are the essential key components for highly compact and light-
weight transmitters in wireless communication systems. Even a
few percent of improvement in power-added efficiency (PAE)
can be significant if it can be designed without the major degra-
dation in linearity. Reference [46] has shown that improving the
PAE of an onboard 2-kW solid-state power amplifier (SSPA)
in a communication satellite from 25% to 30% will reduce the
waste heats substantially from 6 to 4.7 kW.

Several new design architectures for high-efficiency and
good linearity power amplifiers have been investigated. An-
other promising technique for achieving high efficiency and
minimum circuit size is using the AIA concept. In this scheme,
an antenna is used as a harmonic tuning load of a power
amplifier, in addition to its original role as a radiating element.
As mentioned in [47], an antenna used in the AIA approach
must radiate efficiently with acceptable patterns. In addition,
in a high efficient power-amplifier design, the load impedance
should provide a reactive termination at the higher harmonics.

The first demonstration of power-amplifier design using the
AIA concept was a class-B GaAs FET power amplifier inte-
grated with a patch antenna, which is shorted in the middle so
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Fig. 5. Prototype class-F PA with a circular segment microstrip antenna.

that the input impedance at the second harmonic becomes zero
by eliminating the mode. A 7% improvement in PAE and
0.5 dB in output power have been demonstrated when compared
to a reference amplifier using a standard patch antenna without
shorting pins [48].

The second single-ended AIA amplifier design employed a
modified circular segment microstrip antenna, which is capable
of reactively terminating both the second and third harmonics
[49]. Fig. 5 presents the photograph of this class-F PA. A rel-
atively high PAE of 63% was achieved at 2.55 GHz with the
output power of 24.4 dBm. In addition, there is no major degra-
dation in the antenna radiation patterns with the cross-polariza-
tion level below 16 dB at all directions in both the - and

-planes.
More recently, the AIA concept has been extended into the

push–pull power-amplifier designs, where the power of two an-
tiphase-driven class-B power amplifiers are directly combined
through a dual-feed planar antenna [50]–[52]. In the traditional
microwave-frequency push–pull power amplifier, the two FET
devices are combined through a broad-band 180hybrid or a
balun. However, the loss associated with the output hybrid limit
the practical efficiency of this type of power amplifier at mi-
crowave and millimeter-wave frequencies. In the AIA approach,
active devices are directly integrated with the antenna, allowing
the antenna to serve as a power combiner and a harmonically
tuned load, in addition to its original role as a radiating element,
thus minimizing circuit size and insertion loss. In the most re-
cent push–pull PA design [52], the amplifier is integrated with
a modified quasi-Yagi antenna, which is capable of reactively
terminating the second harmonic. A peak PAE of 60.9% at the
output power of 28.2 dBm has been achieved at 4.15 GHz. Ad-
ditionally, the second harmonic radiation was found to be 30 dB
below the fundamental in both- and -planes.

V. SIGNAL-PROCESSINGARRAY (PHASE CONJUGATION)

Retrodirective arrays represent a type of special antenna ar-
rays, which reflect any incident signal back toward the source
without prior knowledge of the source’s location. They do not
rely on the sophisticated digital signal-processing algorithms as
utilized by so-called “smart antennas.” A retrodirective array
can provide an omnidirectional coverage, while simultaneously
maintaining a high level of antenna gain. This unique property
makes retrodirective arrays important in wide range of applica-

Fig. 6. Prototype four-element retrodirective array.

tions, such as self-steering antennas, radar transponders, search
and rescue, and in mobile communication systems [53]–[55].

Retrodirectivity can be realized when each element in the
array radiates an outgoing wave whose phase is conjugate to that
of the incoming signal relative to a common reference [56]. The
classical example of retrodirective array is the Van Atta array,
where the conjugated elements of a symmetric array are con-
nected by transmission lines of equal length [57]. However, this
classical example has its limitations on symmetry of the array
and uniformity of the phase front. To overcome these limita-
tions, a more general approach of phase conjugation based on
heterodyne mixing was proposed [58], [59]. The phase conju-
gation with heterodyne mixing is a simple and effective tech-
nique to achieve retrodirectivity using a local oscillator (LO)
that has twice the RF frequency. In this scheme, the lower side-
band product has the same frequency as the RF, but the phase is
conjugated. When combined with an antenna and placed in an
array, the phase-conjugated signal from each antenna element
will be radiated toward the source direction. However, since
the RF and IF share the same frequency in this scheme, good
RF/IF isolation cannot be achieved using a filter. Alternative
approaches must be used [59], [60]. More recently, an active
retrodirective array circuit topology was demonstrated. The use
of MESFETs in phase-conjugated circuitry is attractive since
these active devices can provide conversion gain in addition to
the mixing operation. This allows an array to send amplified
signals toward the source location without amplifiers, resulting
in compact circuit size and lower cost [61]. Fig. 6 presents a
photograph of the prototype four-element retrodirective antenna
array using the circuit topology proposed in [62]. The experi-
mental results have shown excellent retrodirective performance.
Such type of self-tracking system can be used in advanced wire-
less applications such as RF ID tags and remote information re-
trieval.

VI. AIA S YSTEMS(RECEIVING, TRANSMITTING, DIPLEXING)

Sections I–V have described a number of AIA configurations
and have suggested appropriate application areas. In seeking to
understand whether such technology is applicable to commu-
nications and sensors in a wider sense, several system require-
ments can be cited. For transmitting elements, these include sta-
bility and purity, and capability to be frequency tuned and mod-
ulated. Sensitivity and selectivity are important for receive el-
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ements. Finally, the ability to duplex both transmit and receive
functions is necessary for many systems.

A. Transmitting Elements

Standalone antenna oscillators have inherently low stability.
The combination of a single active device oscillator with an
antenna that generally has a bandwidth of a few percent re-
sults in external quality factor less than a few 10 s. While this
may be acceptable in short-range sensor systems, such as in-
truder alarms, it is too low for most multichannel communica-
tions applications. In addition, long-term stability must be im-
proved and tuning made more accurate. Patch oscillator con-
trol using a PLL [63] has been shown to reduce phase noise to
levels acceptable in, for example, the Digital Enhanced Cord-
less Telephone (DECT) standard. A phase noise of70 dBc/Hz
at 10 kHz has been achieved at an operating frequency around
1.8 GHz. It is estimated that, using chip-based PLLs, a com-
pact single-substrate transmitter could be made with overall size
1.5 the patch-antenna size.

PLL techniques become difficult at very high frequencies
and an alternative technique using a coupled cavity beneath
the antenna oscillator has been demonstrated [64]. Using scale
models at 4 GHz of millimeter-wave oscillators, a phase noise
of 78 dBc/Hz at 10-kHz offset was obtained for both a patch
and a slot oscillator. measurements of copper-plated cavities
micromachined in silicon at 34 GHz suggested that better phase
noise than the above could be obtained at millimetric wave-
lengths. Simulations, using the van der Pol method, showed that
the use of a coupled cavity increases the oscillator startup time
by about a factor of three. The use of a single long cavity be-
neath two oscillators improved mutual locking so that if the two
had slightly different free-running frequencies, due to manu-
facturing differences, there was an increased chance of the two
locking together.

Out-of-band radiation must be suppressed in most practical
systems and careful oscillator design is needed. Circular sector
patches [65] and shorted quarter-wavelength patches [49] have
been shown to give a reduction of over 10 dB in radiation at
harmonic frequencies. Analysis is also available [66] to guide
design methods.

When locked oscillators are used to provide either frequency
or phase modulation, then the finite locking time places a limit
on the capacity of the communications link. This effect is in-
creased when locked oscillator arrays are, for simplicity, modu-
lated through the locking signal applied to a single element only.
Van der Pol analysis [67] has shown that the data rate is inversely
proportional to the array length and for a seven-element linear
array is of the order of 10 Mb/s.

B. Receiving Elements

Direct down-conversion receive elements have been widely
reported [68]. If increased sensitivity and selectivity is required,
then superheterodyne techniques must be used. However, if a
single-substrate configuration is used, then considerable radia-
tion from the LO will result. For a 0-dBm LO power, an effec-
tive isotropic radiated power of 25 dBm has been measured,
with results confirmed by theory [69]. To meet the requirement

Fig. 7. Simultaneous transmit–receive active antenna.

for unwanted radiation from equipment for the DECT, shielding
can be used, but this reduces the degree of integration and will
result in increased cost and size.

C. Duplex Elements

Various forms of duplex elements have been demonstrated.
If the oscillator active device is also used as a self-oscillating
mixer, then simple Doppler radar elements can be made. A
time-division communications function can be performed by
switching the oscillator between transmit and LO frequency.
Polarization duplexing, with an oscillating active device con-
nected to one side of a square patch and a low-noise amplifier
attached to an orthogonal side, as shown in Fig. 7, allows
simultaneous transmit and receive operation [70]. Rotation by
180 of one of a pair of elements is used to increase the isolation
in a two-element array, which was measured at 45 dB. This
isolation would allow a pair of 8 8 element arrays to form a
duplex link with a range of approximately 100 m. Simultaneous
transmit–receive operation on the same frequency and polar-
ization has been demonstrated by the integration of an active
circulator in the form of a ring with three embedded amplifiers
surrounding a quarter-wavelength patch [71]. Isolation of 25 dB
was achieved over a relatively narrow bandwidth.

VII. CONCLUDING REMARKS

As presented above, the AIA is an interesting subject of study
with many examples presented above. The topic is rather inter-
disciplinary in nature and, hence, is challenging, but provides
many opportunities. However, this technology is still in its in-
fancy. As such, it is important to identify its attractive features
and limitations, particularly in terms of system applications.
Some of them have been identified in this paper. For instance, an
AIA’s structural simplicity may be advantageous where system
requirements such as those for phase noise are not severe. It is
hoped that this technology with possible modifications and sup-
plements find its usage in many engineering applications.
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