Optical conductivity in thet−JHolstein model

L. Vidmar, J. Bonča, S. Maekawa
2009 Physical Review B  
Using recently developed numerical method we compute charge stiffness and optical conductivity of the t-J model coupled to optical phonons. Coherent hole motion is most strongly influenced by the electron-phonon coupling within the physically relevant regime of the exchange interaction. We find unusual non-monotonous dependence of the charge stiffness as a function of the exchange coupling near the crossover to the strong electron-phonon coupling regime. Optical conductivity in this regime
more » ... a two-peak structure. The low-frequency peak represents local magnetic excitation, attached to the hole, while the higher-frequency peak corresponds to the mid infrared band that originates from coupling to spin-wave excitations, broadened and renormalized by phonon excitations. We observe no separate peak at or slightly above the phonon frequency. This finding suggests that the two peak structure seen in recent optical measurements is due to magnetic excitations coupled to lattice degrees of freedom via doped charge carriers.
doi:10.1103/physrevb.79.125120 fatcat:4egft2deozgcxmoeeb5bmobg5u