Joint Generative and Contrastive Learning for Unsupervised Person Re-identification [article]

Hao Chen, Yaohui Wang, Benoit Lagadec, Antitza Dantcheva, Francois Bremond
<span title="2021-03-30">2021</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Recent self-supervised contrastive learning provides an effective approach for unsupervised person re-identification (ReID) by learning invariance from different views (transformed versions) of an input. In this paper, we incorporate a Generative Adversarial Network (GAN) and a contrastive learning module into one joint training framework. While the GAN provides online data augmentation for contrastive learning, the contrastive module learns view-invariant features for generation. In this
more &raquo; ... t, we propose a mesh-based view generator. Specifically, mesh projections serve as references towards generating novel views of a person. In addition, we propose a view-invariant loss to facilitate contrastive learning between original and generated views. Deviating from previous GAN-based unsupervised ReID methods involving domain adaptation, we do not rely on a labeled source dataset, which makes our method more flexible. Extensive experimental results show that our method significantly outperforms state-of-the-art methods under both, fully unsupervised and unsupervised domain adaptive settings on several large scale ReID datsets.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2012.09071v2">arXiv:2012.09071v2</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/nsjt6bdjqjcgzpvfgvkjh3b27u">fatcat:nsjt6bdjqjcgzpvfgvkjh3b27u</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210401001536/https://arxiv.org/pdf/2012.09071v2.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/be/e3/bee39f695c4771fb761d614a1cd4e48ffa8fcc83.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2012.09071v2" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>