Uniqueness of minimal coverings of maximal partial clones

Karsten Schölzel
<span title="">2011</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/3g7sk2fqarhcrmieipwvp62bfe" style="color: black;">Algebra Universalis</a> </i> &nbsp;
A partial function f on an k-element set E k is a partial Sheffer function if every partial function on E k is definable in terms of f . Since this holds if and only if f belongs to no maximal partial clone on E k , a characterization of partial Sheffer functions reduces to finding families of minimal coverings of maximal partial clones on E k . We show that for each k ≥ 2 there exists a unique minimal covering.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s00012-011-0138-z">doi:10.1007/s00012-011-0138-z</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/4znt2nu7pre4veyqgbdzziv6qq">fatcat:4znt2nu7pre4veyqgbdzziv6qq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170829215737/http://www.math.uni-rostock.de/~schoelzel/papers/alguniv-covering.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/35/49/3549cb73663db586f836a0fbe2f651c39344bb73.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s00012-011-0138-z"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>