A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Self-supervised Exposure Trajectory Recovery for Dynamic Blur Estimation
[article]
2020
arXiv
pre-print
Dynamic scene blurring is an important yet challenging topic. Recently, deep learning methods have achieved impressive performance for dynamic scene deblurring. However, the motion information contained in a blurry image has yet to be fully explored and accurately formulated because: (i) the ground truth of blurry motion is difficult to obtain; (ii) the temporal ordering is destroyed during the exposure; and (iii) the motion estimation is highly ill-posed. By revisiting the principle of camera
arXiv:2010.02484v1
fatcat:6wmtnmbotffmrle4a2evpzog4a