A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Motion planning with uncertainty: a landmark approach
1995
Artificial Intelligence
In robotics uncertainty exists at both planning and execution time. Effective planning must make sure that enough information becomes available to the sensors during execution, to allow the robot to correctly identify the states it traverses. It requires selecting a set of states, associating a motion command with every state, and synthesizing functions to recognize state achievement. These three tasks are often interdependent, causing existing planners to be either unsound, incomplete, and/or
doi:10.1016/0004-3702(94)00079-g
fatcat:hz525c4tefdd3o2u3wirfe4nfa